Experimental version for
testing purpose only!

My private, inofficial Version of:

SUSE Linux Enterprise Server 15 SP7

Virtualization Guide

Virtualization Guide
SUSE Linux Enterprise Server 15 SP7

This guide describes virtualization technology in general. It introduces libvirt—the
unified interface to virtualization—and provides detailed information on specific hy-
pervisors.

File generated at 2025-11-17 15:09

This is my own, experimental version of a Document from SUSE company. The only purpose of this
document is the test of an alternative publishing mechanism. Errors in the publishing mechanism
may lead to wrong content.You can find the original version of this document at documenta-

ion. .com.

The books and articles exist as XML sources, conformant to the DocBook standard. SUSE publishes
them with the DocBook XSLT 1.0 Stylesheets, which generate XSL-FO, and Apache FOP, which in turn

generates PDF.

This version is based on the same DocBook sources, but published with the new xsITNG Stylesheets,
which produce XHTML+CSS, and an rendering engine like Antenna House or Weasyprint to generate
PDF. The only purpose of this version is a "real life test" of the new publishing mechanism, together with
an "DocBook TNG Framework" that i wrote. It helps me to use and customize the xsITNG Stylesheets.

— Frank Steimke, Bremen, Gemany

https://documentation.suse.com
https://documentation.suse.com
https://xsltng.docbook.org/

Contents

 Glossary

Preface 14

Available documentation 14
Improving the documentation 14
Documentation conventions 15

Support 17

Support statement for SUSE Linux Enterprise Server 17 « Technology previews 18

Introduction 1

Virtualization technology 2
Overview 2

Virtualization benefits 2

Virtualization modes 3

I/0 virtualization 3

Virtualization scenarios 6
Server consolidation 6

Isolation 6

Disaster recovery 7

Dynamic load balancing 7

Introduction to Xen virtualization 8
Basic components 8

Xen virtualization architecture 9

Introduction to KVM virtualization 11
Basic components 11

KVM virtualization architecture 11
Virtualization tools 13

Virtualization console tools 13

Virtualization GUI tools 14

Installation of virtualization components 16

10

Introduction 16

Installing virtualization components 16

Specifying a system role 16 « Running the YaST Virtualization module 17 - Installing specific

installation patterns 18

Enable nested virtualization in KVM 18

VMware ESX as a guest hypervisor 20

Virtualization limits and support 21

Architecture support 21

KVM hardware requirements 21 - Xen hardware requirements 22

Hypervisor limits 22

KVM limits 22 + Xen limits 23
Supported host environments (hypervisors) 23

Supported guest operating systems 24

Availability of paravirtualized drivers 25

Supported VM migration scenarios 26

Offline migration scenarios 26 + Live migration scenarios 27

Feature support 29

Xen host (DomO) 29 + Guest feature support 30

Managing virtual machines with Libvirt 32

libvirt daemons 33
Starting and stopping the modular daemons 33
Starting and stopping the monolithic daemon 35

Switching to the monolithic daemon 37

Preparing the VM Host Server 38

Configuring networks 38

Network bridge 38 - Virtual networks 42

Configuring a storage pool 50

Managing storage with virsh 53 - Managing storage with Virtual Machine Manager 57

Guest installation 63

10.1

10.2

10.3

11

11.1

11.2

11.3

11.4

11.5

11.6

11.7

12

12.1

12.2

GUI-based guest installation 63

Configuring the virtual machine for PXE boot 65
Installing from the command line with virt-install 66

Advanced guest installation scenarios 69

Advanced UEFI configuration 69 « Memory ballooning with Windows guests 71 « Including

add-on products in the installation 71

Basic VM Guest management 73

Listing VM Guests 73

Listing VM Guests with Virtual Machine Manager 73 - Listing VM Guests with virsh 73

Accessing the VM Guest via console 74

Opening a graphical console 74 « Opening a serial console 75

Changing a VM Guest's state: start, stop, pause 76

Changing a VM Guest's state with Virtual Machine Manager 77 - Changing a VM Guest's state
with virsh 78

Saving and restoring the state of a VM Guest 78

Saving/restoring with Virtual Machine Manager 80 -+ Saving and restoring with virsh 80

Creating and managing snapshots 80

Terminology 81 - Creating and managing snapshots with Virtual Machine Manager
81 + Creating and managing snapshots with virsh 83

Deleting a VM Guest 85

Deleting a VM Guest with Virtual Machine Manager 85 + Deleting a VM Guest with virsh 85

Monitoring 85

Monitoring with Virtual Machine Manager 85 + Monitoring with virt-top 86 « Monitoring
with kvm_stat 87

Connecting and authorizing 89

Authentication 89

libvirtd authentication 89 - VNC authentication 93

Connecting to a VM Host Server 96

“system” access for non-privileged users 97 - Managing connections with Virtual Machine

Manager 98

12 .3 Configuring remote connections 99

Remote tunnel over SSH (gemu+ssh or xen+ssh) 99 « Remote TLS/SSL connection with
x509 certificate (gemu+t1ls or xen+t1ls) 100

13 Advanced storage topics 107

13.1 Locking disk files and block devices with virtlockd 107
Enable locking 107 » Configure locking 107

13.2 Online resizing of guest block devices 108
13.3 Sharing directories between host and guests (file system pass-through) 109

13.4 Using RADOS block devices with Libvirt 110

14 Configuring virtual machines with Virtual Machine Manager
111

14.1 Machine setup 111

Overview 112 - Performance 112 + Processor 113 + Memory 115 « Boot options 116
14 .2 Storage 117
14 .3 Controllers 118
14 .4 Networking 119
14.5 Input devices 120
14.6 Video121
14 .7 USB redirectors 122
14 .8 Miscellaneous 123
14.9 Adding a CD/DVD-ROM device with Virtual Machine Manager 124
14 .10 Adding a floppy device with Virtual Machine Manager 124
14 .11 Ejecting and changing floppy or CD/DVD-ROM media with Virtual Machine Manager 125

14 .12 Assigning a host PCI device to a VM Guest 126
Adding a PCI device with Virtual Machine Manager 126

14 .13 Assigning a host USB device to a VM Guest 127
Adding a USB device with Virtual Machine Manager 127

15 Configuring virtual machines with virsh 129

15.1 Editing the VM configuration 129

vi

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

10

11

12

13

14

15

16

17

18

16

16.

16.

16.

1

2

3

Changing the machine type 129
Configuring hypervisor features 130

Configuring CPU 131
Configuring the number of CPUs 131 + Configuring the CPU model 132

Changing boot options 133
Changing boot order 134 - Using direct kernel boot 134

Configuring memory allocation 135

Adding a PCI device 136
PCI Pass-Through for IBM Z 138

Adding a USB device 139

Adding SR-IOV devices 140

Requirements 140 « Loading and configuring the SR-IOV host drivers 141 - Adding a VF network
device to a VM Guest 143 « Dynamic allocation of VFs from a pool 145

Listing attached devices 146
Configuring storage devices 147
Configuring controller devices 148

Configuring video devices 149

Changing the amount of allocated VRAM 149 + Changing the state of 2D/3D acceleration 150

Configuring network devices 150

Scaling network performance with multiqueue virtio-net 150
Using macvtap to share VM Host Server network interfaces 151
Disabling a memory balloon device 152

Configuring multiple monitors (dual head) 152

Crypto adapter pass-through to KVM guests on IBM Z 153

Introduction 153 - What is covered 153 « Requirements 154 - Dedicate a crypto adapter to a
KVM host 154 + Further reading 155

Enhancing virtual machine security with AMD SEV-SNP 156
Supported hardware 156
Enabling confidential compute module 156

Installing packages and setting up the base system 156

16.4
16.5
16.6

17
17.1
17.2
17.3
17.4

17.5

18

18.1

18.2

18.3

1
19
19.1
19.2
19.3
19.4
19.5

19.6

20

Verifying setup 157
Launching an AMD SEV-SNP virtual machine 158

Verifying the AMD SEV-SNP virtual machine 160

Migrating VM Guests 161

Types of migration 161

Migration requirements 162

Live-migrating with Virtual Machine Manager 163
Migrating with virsh 164

Step-by-step example 166

Exporting the storage 166 « Defining the pool on the target hosts 166 - Creating the volume
168 « Creating the VM Guest 168 « Migrate the VM Guest 168

Xen to KVM migration guide 169

Migration to KVM using virt-v2v 169

Introduction to virt-v2v 169 - Installing virt-v2v 170 - Converting virtual machines to
run under KVM managed by Libvirt 170 - Running converted virtual machines 174

Xen to KVM manual migration 175

General outline 175 - Back up the Xen VM Guest 175 + Changes specific to paravirtualized guests
176 « Update the Xen VM Guest configuration 178 - Migrate the VM Guest 182

More information 183

Hypervisor-independent features 184
Disk cache modes 185

What is a disk cache? 185

How does a disk cache work? 185

Benefits of disk caching 185

Virtual disk cache modes 185

Cache modes and data integrity 186

Cache modes and live migration 187

VM Guest clock settings 188

vii

viii

20.1

20.2

21

21.1

21.2

21.3

21.4

21.5

22
22.1
22.2
22.3

22 .4

23
23.1
23.2
23.3
23.4
23.5
23.6

23.7

24

24.1

KVM: using kvm_clock 188

Other timekeeping methods 188

Xen virtual machine clock settings 188

libguestfs 189

VM Guest manipulation overview 189

VM Guest manipulation risk 189 - libguestfs design 189
Package installation 190

Guestfs tools 190

Modifying virtual machines 190 « Supported file systems and disk images 190 « virt-
rescue 191 virt-resize 192 - Other virt-* tools 193 - guestfish 195 - Converting a
physical machine into a KVM guest 195

Troubleshooting 197
Btrfs-related problems 197 + Environment 198 - libguestfs-test-tool 198

More information 198

QEMU guest agent 199

Running QEMU GA commands 199

virsh commands that require QEMU GA 199
Enhancing 1ibvirt commands 200

More information 200

Software TPM emulator 202
Introduction 202

Prerequisites 202

Installation 202

Using swtpm with QEMU 202

Using swtpm with Libvirt 203

TPM measurement with OVMF firmware 203
Resources 204

Creating crash dumps of a VM Guest 205

Introduction 205

24 .

24 .

24 .

2

3

25

25.

25.

25.

25.

25.

25.

1

26

26.

26.

26.

26.

1

2

3

4

27

27 .

27.

27.

27.

27 .

Creating crash dumps for fully virtualized machines 205
Creating crash dumps for paravirtualized machines 205

Additional information 205

Managing virtual machines with Xen 206

Setting up a virtual machine host 207
Best practices and suggestions 207

Managing Dom0O memory 208

Setting DomO memory allocation 208
Network card in fully virtualized guests 209
Starting the virtual machine host 210

PCI Pass-Through 211

Configuring the hypervisor for PCI Pass-Through 212 - Assigning PCI devices to VM Guest
systems 213 « VGA Pass-Through 213 - Troubleshooting 214 - More information 214

USB pass-through 214
Identify the USB device 215 + Emulated USB device 215 « Paravirtualized PVUSB 215

Virtual networking 217
Network devices for guest systems 217
Host-based routing in Xen 218

Creating a masqueraded network setup 220

Special configurations 222

Bandwidth throttling in virtual networks 222 - Monitoring the network traffic 223

Managing a virtualization environment 224

XL—ZXen management tool 224

Guest domain configuration file 225
Automatic start of guest domains 225
Event actions 226

Time Stamp Counter 227

Saving virtual machines 227

27.6

27.7

28
28.1
28.2
28.3
28.4

28.5

29

29.1

29.2

29.3

29.4

29.5

29.6

29.7

30
30.1
30.2

30.3

Restoring virtual machines 228

Virtual machine states 228

Block devices in Xen 229

Mapping physical storage to virtual disks 229
Mapping network storage to virtual disk 230
File-backed virtual disks and loopback devices 230
Resizing block devices 231

Scripts for managing advanced storage scenarios 231

Virtualization: configuration options and settings 233

Virtual CD readers 233

Virtual CD readers on paravirtual machines 233 - Virtual CD readers on fully virtual machines

233 - Adding virtual CD readers 233 - Removing virtual CD readers 234
Remote access methods 235

VNC viewer 235

Assigning VNC viewer port numbers to virtual machines 236 « Using SDL instead of a VNC

viewer 236
Virtual keyboards 236

Dedicating CPU resources 237
Dom0 237 « VM Guests 238

HVM features 238

Specify boot device on boot 238 + Changing CPUIDs for guests 239 + Increasing the number of
PCI-IRQs 240

Virtual CPU scheduling 240

Administrative tasks 242
The boot loader program 242
Sparse image files and disk space 243

Migrating Xen VM Guest systems 244

Detecting CPU features 245 « Preparing block devices for migrations 246 « Migrating VM Guest
systems 246

30.4

30.5
31
31.1

31.2

32
32.1
32.2

32.3

33

34
35
35.1
35.2

35.3

36
36.1

36.2

Monitoring Xen 246

Monitor Xen with xentop 247 - Additional tools 247

Providing host information for VM Guest systems 248

XenStore: configuration database shared between domains 250
Introduction 250

File system interface 250

XenStore commands 250 «+ /vm 251+ /local/domain/<domid> 253

Xen as a high-availability virtualization host 255
Xen HA with remote storage 255
Xen HA with local storage 256

Xen HA and private bridges 256

Xen: converting a paravirtual (PV) guest into a fully virtual
(FV/HVM) guest 257

Managing virtual machines with QEMU 261
QEMU overview 262
Setting up a KVM VM Host Server 263

CPU support for virtualization 263
Required software 263

KVM host-specific features 265

Using the host storage with virtio-scsi 265 « Accelerated networking with vhost-net
266 - Scaling network performance with multiqueue virtio-net 266 « VFIO: secure direct access
to devices 267 - VirtFS: sharing directories between host and guests 269 « KSM: sharing
memory pages between guests 270

Guest installation 272
Basic installation with gemu-system-ARCH 272

Managing disk images with gemu-img 273
General information on gemu-img invocation 273 - Creating, converting, and checking disk

images 275 + Managing snapshots of virtual machines with gemu-img 279 + Manipulate disk

images effectively 281

Xi

37
37.1

37.2

37.3

37.4

37.5

38
38.1
38.2
38.3
38.4
38.5
38.6
38.7
38.8
38.9

38.10

38.11

VI
39
40

Xii

Running virtual machines with gemu-system-ARCH 286
Basic qemu-system-ARCH invocation 286

General gemu-system-ARCH options 287

Basic virtual hardware 288 « Storing and reading configuration of virtual devices 290 « Guest

real-time clock 290

Using devices in QEMU 291

Block devices 291 « Graphic devices and display options 296 - USB devices 298 - Character
devices 299

Networking in QEMU 301

Defining a network interface card 302 + User-mode networking 302 - Bridged networking 304

Viewing a VM Guest with VNC 306

Secure VNC connections 309

Virtual machine administration using QEMU monitor 312
Accessing monitor console 312

Getting information about the guest system 312
Changing VNC password 316

Managing devices 316

Controlling keyboard and mouse 317

Changing available memory 317

Dumping virtual machine memory 318

Managing virtual machine snapshots 319

Suspending and resuming virtual machine execution 320
Live migration 320

QMP - QEMU machine protocol 321

Access QMP via standard input/output 321 « Access QMP via telnet 322 « Access QMP via Unix
socket 323 + Access QMP via Libvirt's virsh command 323

Troubleshooting 325
Integrated help and package documentation 326

Gathering system information and logs 327

40.

Libvirt log controls 327

Virtual machine drivers 339

Configuring GPU Pass-Through for NVIDIA cards 340
Introduction 340

Prerequisites 340

Configuring the host 340

Verify the host environment 340 - Enable IOMMU 341 - Blacklist the Nouveau driver

341 - Configure VFIO and isolate the GPU used for pass-through 341 « Load the VFIO driver
341 - Disable MSR for Microsoft Windows guests 342 - Install UEFI firmware 342 - Reboot the
host machine 342

Configuring the guest 343

Requirements for the guest configuration 343 + Install the graphic card driver 343

XM, XL toolstacks, and the Llibvirt framework 346

Xen toolstacks 346

Upgrading from xend /xm to x1/libxl 346 « XL design 347 + Checklist before upgrade 347
Import Xen domain configuration into Libvirt 348

Differences between the xm and X1 applications 349

Notation conventions 349 « New global options 350 » Unchanged options 350 - Removed

options 354 « Changed options 357 - New options 370

External links 371

Saving a Xen guest configuration in an Xm compatible format 372
GNU licenses 373

GNU Free Documentation License 373

Xiii

Preface
Available documentation

Online documentation

Our documentation is available online at https://documentation.suse.com. Browse or down-
load the documentation in various formats.

Latest updates
@ The latest updates are usually available in the English-language version of this
documentation.
SUSE Knowledgebase

If you run into an issue, check out the Technical Information Documents (TIDs) that are avail-

able online at https://www.suse.com/support/kb/. Search the SUSE Knowledgebase for
known solutions driven by customer need.

Release notes
For release notes, see https://www.suse.com/releasenotes/.
In your system

For offline use, the release notes are also available under /usr/share/doc/release-
notes on your system. The documentation for individual packages is available at /usr/
share/doc/packages.

Many commands are also described in their manual pages. To view them, run man, followed
by a specific command name. If the man command is not installed on your system, install it
with sudo zypper install man.

Improving the documentation

Your feedback and contributions to this documentation are welcome. The following channels for
giving feedback are available:

Service requests and support

For services and support options available for your product, see https://www.suse.com/sup-
port/.

Xiv

https://documentation.suse.com
https://www.suse.com/support/kb/
https://www.suse.com/releasenotes/
https://www.suse.com/support/
https://www.suse.com/support/

To open a service request, you need a SUSE subscription registered at SUSE Customer
Center. Go to https://scc.suse.com/support/requests, log in, and click Create New.

Bug reports
Report issues with the documentation at https://bugzilla.suse.com!/.

To simplify this process, click the Report an issue icon next to a headline in the HTML ver-
sion of this document. This preselects the right product and category in Bugzilla and adds a
link to the current section. You can start typing your bug report right away.

A Bugzilla account is required.
Contributions

To contribute to this documentation, click the Edit source document icon next to a headline in
the HTML version of this document. This will take you to the source code on GitHub, where
you can open a pull request.

A GitHub account is required.

Edit source document only available for English

@ The Edit source document icons are only available for the English version of
each document. For all other languages, use the Report an issue icons in-
stead.

For more information about the documentation environment used for this documentation, see
the repository's README.
Mail

You can also report errors and send feedback concerning the documentation to doc-
team@suse. com. Include the document title, the product version, and the publication date
of the document. Additionally, include the relevant section number and title (or provide the
URL) and provide a concise description of the problem.

Documentation conventions
The following notices and typographic conventions are used in this document:

« /etc/passwd: Directory names and file names
* PLACEHOLDER: Replace PLACEHOLDER with the actual value

* PATH: An environment variable

XV

https://scc.suse.com/support/requests
https://bugzilla.suse.com/

XVi

 1s, - -help: Commands, options, and parameters
e user: The name of a user or group
» package name: The name of a software package

« Alt, ALt—F1: A key to press or a key combination. Keys are shown in uppercase as on a
keyboard.

* File, File > Save As: menu items, buttons

* (x86_64p|This paragraph is only relevant for the AMD64/Intel 64 architectures. The arrows
mark the beginning and the end of the text block.(«

(zseries;power pThis paragraph is only relevant for the architectures IBM Z and POWER. The

arrows mark the beginning and the end of the text block.@
e Chapter 1, “Example chapter”; A cross-reference to another chapter in this guide.

» Commands that must be run with root privileges. You can also prefix these commands with
the sudo command to run them as a non-privileged user:

#command>sudocommand
» Commands that can be run by non-privileged users:
>command

« Commands can be split into two or multiple lines by a backslash character (\) at the end of a
line. The backslash informs the shell that the command invocation will continue after the end
of the line:

>echo a b \
cd

* A code block that shows both the command (preceded by a prompt) and the respective out-
put returned by the shell:

>command
output

* Notices

Warning notice

Vital information you must be aware of before proceeding. Warns you about se-
curity issues, potential loss of data, damage to hardware, or physical hazards.

Important notice

o Important information you should be aware of before proceeding.

Note notice

@ Additional information, for example about differences in software versions.

Tip notice

@ Helpful information, like a guideline or a piece of practical advice.

» Compact Notices

Note

S

Additional information, for example about differences in software versions.

Tip

9

Helpful information, like a guideline or a piece of practical advice.

Support

Find the support statement for SUSE Linux Enterprise Server and general information about tech-
nology previews below. For details about the product lifecycle, see https://www.suse.com/lifecycle.

If you are entitled to support, find details on how to collect information for a support ticket at https://
documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html.

Support statement for SUSE Linux Enterprise Server

To receive support, you need an appropriate subscription with SUSE. To view the specific support
offers available to you, go to hitps://www.suse.com/support/ and select your product.

The support levels are defined as follows:

L1
Problem determination, which means technical support designed to provide compatibility in-
formation, usage support, ongoing maintenance, information gathering and basic trou-
bleshooting using available documentation.

L2

Problem isolation, which means technical support designed to analyze data, reproduce cus-
tomer problems, isolate a problem area and provide a resolution for problems not resolved
by Level 1 or prepare for Level 3.

XVii

https://www.suse.com/lifecycle
https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html
https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html
https://www.suse.com/support/

L3

Problem resolution, which means technical support designed to resolve problems by engag-
ing engineering to resolve product defects which have been identified by Level 2 Support.

For contracted customers and partners, SUSE Linux Enterprise Server is delivered with L3 support
for all packages, except for the following:

* Technology previews.

« Sound, graphics, fonts, and artwork.

« Packages that require an additional customer contract.

« Some packages shipped as part of the module Workstation Extension are L2-supported only.

» Packages with names ending in -devel (containing header files and similar developer re-
sources) will only be supported together with their main packages.

SUSE will only support the usage of original packages. That is, packages that are unchanged and
not recompiled.

Technology previews

Technology previews are packages, stacks, or features delivered by SUSE to provide glimpses into
upcoming innovations. Technology previews are included for your convenience to give you a
chance to test new technologies within your environment. We would appreciate your feedback. If
you test a technology preview, please contact your SUSE representative and let them know about
your experience and use cases. Your input is helpful for future development.

Technology previews have the following limitations:

» Technology previews are still in development. Therefore, they may be functionally incom-
plete, unstable, or otherwise not suitable for production use.

» Technology previews are not supported.
» Technology previews may only be available for specific hardware architectures.

« Details and functionality of technology previews are subject to change. As a result, upgrad-
ing to subsequent releases of a technology preview may be impossible and require a fresh
installation.

* SUSE may discover that a preview does not meet customer or market needs, or does not
comply with enterprise standards. Technology previews can be removed from a product at
any time. SUSE does not commit to providing a supported version of such technologies in
the future.

For an overview of technology previews shipped with your product, see the release notes at https://
WWW.suse.com/releasenotes.

Xviii

https://www.suse.com/releasenotes
https://www.suse.com/releasenotes

Part I. Introduction

o 01 A~ W N P

Virtualization technology 2
Virtualization scenarios 6
Introduction to Xen virtualization 8
Introduction to KVM virtualization 11
Virtualization tools 13

Installation of virtualization components
16

Virtualization limits and support 21

CHAPTER 1. VIRTUALIZATION TECHNOLOGY

Chapter 1. Virtualization technology
1.1. Overview

SUSE Linux Enterprise Server includes the latest open source virtualization technologies, Xen and
KVM. With these hypervisors, SUSE Linux Enterprise Server can be used to provision, de-
provision, install, monitor and manage multiple virtual machines (VM Guests) on a single physical
system (for more information see Hypervisor). SUSE Linux Enterprise Server can create virtual
machines running both modified, highly tuned, paravirtualized operating systems and fully
virtualized unmodified operating systems.

The primary component of the operating system that enables virtualization is a hypervisor (or
virtual machine manager), which is a layer of software that runs directly on server hardware. It
controls platform resources, sharing them among multiple VM Guests and their operating systems
by presenting virtualized hardware interfaces to each VM Guest.

SUSE Linux Enterprise is an enterprise-class Linux server operating system that offers two types
of hypervisors: Xen and KVM.

SUSE Linux Enterprise Server with Xen or KVM acts as a virtualization host server (VHS) that
supports VM Guests with its own guest operating systems. The SUSE VM Guest architecture
consists of a hypervisor and management components that constitute the VHS, which runs many
application-hosting VM Guests.

In Xen, the management components run in a privileged VM Guest often called DomO. In KVM,
where the Linux kernel acts as the hypervisor, the management components run directly on the
VHS.

1.2. Virtualization benefits
Virtualization brings a lot of advantages while providing the same service as a hardware server.

First, it reduces the cost of your infrastructure. Servers are mainly used to provide a service to a
customer, and a virtualized operating system can provide the same service, with:

* Less hardware: you can run several operating systems on a single host, therefore all
hardware maintenance is reduced.

« Less power/cooling: less hardware means you do not need to invest more in electric power,
backup power, and cooling if you need more service.

» Save space: your data center space is saved because you do not need more hardware
servers (less servers than service running).

» Less management: using a VM Guest simplifies the administration of your infrastructure.

* Agility and productivity: Virtualization provides migration capabilities, live migration and
snapshots. These features reduce downtime, and bring an easy way to move your service
from one place to another without any service interruption.

1.3. Virtualization modes

Guest operating systems are hosted on virtual machines in either full virtualization (FV) mode or
paravirtual (PV) mode. Each virtualization mode has advantages and disadvantages.

* Full virtualization mode lets virtual machines run unmodified operating systems, such as
Windows* Server 2003. It can use either Binary Translation or hardware-assisted
virtualization technology, such as AMD* Virtualization or Intel* Virtualization Technology.
Using hardware assistance allows for better performance on processors that support it.

Certain guest operating systems hosted in full virtualization mode can be configured to use
drivers from the SUSE Virtual Machine Drivers Pack (VMDP) instead of drivers originating
from the operating system. Running virtual machine drivers improves performance
dramatically on guest operating systems, such as Windows Server 2003. For more
information, see Appendix A, Virtual machine drivers.

» To be able to run under paravirtual mode, guest operating systems normally need to be
modified for the virtualization environment. However, operating systems running in
paravirtual mode have better performance than those running under full virtualization.

Operating systems currently modified to run in paravirtual mode are called paravirtualized
operating systems and include SUSE Linux Enterprise Server.

1.4.1/0 virtualization

VM Guests not only share CPU and memory resources of the host system, but also the I/O
subsystem. Because software 1/O virtualization techniques deliver less performance than bare
metal, hardware solutions that deliver almost “native” performance have been developed recently.
SUSE Linux Enterprise Server supports the following I/O virtualization techniques:

Full virtualization

Fully Virtualized (FV) drivers emulate widely supported real devices, which can be used with
an existing driver in the VM Guest. The guest is also called Hardware Virtual Machine
(HVM). Since the physical device on the VM Host Server may differ from the emulated one,
the hypervisor needs to process all I/O operations before handing them over to the physical
device. Therefore all I/O operations need to traverse two software layers, a process that not
only significantly impacts I/O performance, but also consumes CPU time.

Paravirtualization

Paravirtualization (PV) allows direct communication between the hypervisor and the VM
Guest. With less overhead involved, performance is much better than with full virtualization.

CHAPTER 1. VIRTUALIZATION TECHNOLOGY

However, paravirtualization requires either the guest operating system to be modified to
support the paravirtualization API or paravirtualized drivers. See the section called
“Availability of paravirtualized drivers” for a list of guest operating systems supporting
paravirtualization.

PVHVM

This type of virtualization enhances HVM (see Full virtualization) with paravirtualized (PV)
drivers, and PV interrupt and timer handling.

VFIO

VFIO stands for Virtual Function I/O and is a new user-level driver framework for Linux. It
replaces the traditional KVM PCIl Pass-Through device assignment. The VFIO driver
exposes direct device access to user space in a secure memory (IOMMU) protected
environment. With VFIO, a VM Guest can directly access hardware devices on the VM Host
Server (pass-through), avoiding performance issues caused by emulation in performance
critical paths. This method does not allow to share devices—each device can only be
assigned to a single VM Guest. VFIO needs to be supported by the VM Host Server CPU,
chipset and the BIOS/EFI.

Compared to the legacy KVM PCI device assignment, VFIO has the following advantages:

» Resource access is compatible with UEFI Secure Boot.
« Device is isolated and its memory access protected.
« Offers a user space device driver with more flexible device ownership model.

« Is independent of KVM technology, and not bound to x86 architecture only.

In SUSE Linux Enterprise Server the USB and PCIl pass-through methods of device
assignment are considered deprecated and are superseded by the VFIO model.

SR-IOV

The latest I/O virtualization technique, Single Root I/O Virtualization SR-IOV combines the
benefits of the aforementioned techniques—performance and the ability to share a device
with several VM Guests. SR-IOV requires special I/O devices, that are capable of replicating
resources so they appear as multiple separate devices. Each such “pseudo” device can be
directly used by a single guest. However, for network cards for example the number of
concurrent queues that can be used is limited, potentially reducing performance for the VM
Guest compared to paravirtualized drivers. On the VM Host Server, SR-IOV must be
supported by the I/O device, the CPU and chipset, the BIOS/EFI and the hypervisor—for
setup instructions see the section called “Assigning a host PCI device to a VM Guest”.

Requirements for VFIO and SR-IOV

To be able to use the VFIO and SR-I0OV features, the VM Host Server needs to fulfill
the following requirements:

* |IOMMU needs to be enabled in the BIOS/EFI.

* For Intel CPUs, the kernel parameter intel iommu=on needs to be provided
on the kernel command line. For more information, see https://github.com/
torvalds/linux/blob/master/Documentation/admin-guide/kernel-
parameters.txt#1.1951.

* The VFIO infrastructure needs to be available. This can be achieved by loading
the kernel module vfio pci. For more information, see the section called
“Loading kernel modules” in “Administration Guide”.

https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt#L1951
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt#L1951
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt#L1951
https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

CHAPTER 2. VIRTUALIZATION SCENARIOS

Chapter 2. Virtualization scenarios
Virtualization provides several useful capabilities to your organization, for example:

» more efficient hardware usage
« support for legacy software

* operating system isolation

* live migration

« disaster recovery

* load balancing
2.1. Server consolidation

Many servers can be replaced by one big physical server, so that hardware is consolidated, and
guest operating systems are converted to virtual machines. This also supports running legacy
software on new hardware.

* Better usage of resources that were not running at 100%

» Fewer server locations needed

* More efficient use of computer resources: multiple workloads on the same server
« Simplification of data center infrastructure

« Simplifies moving workloads to other hosts, avoiding service downtime

* Faster and agile virtual machine provisioning

» Multiple guest operating systems can run on a single host
Important

o Server consolidation requires special attention to the following points:

* Maintenance windows should be carefully planned
« Storage is key: it must be able to support migration and growing disk usage

* You must verify that your servers can support the additional workloads

2.2. Isolation

Guest operating systems are fully isolated from the host running them. Therefore, if there are
problems inside virtual machines, the host is not harmed. Also, problems inside one VM do not
affect other VMs. No data is shared between VMs.

* UEFI Secure Boot can be used for VMs.

* KSM should be avoided. For more details on KSM, refer to KSM.

« Individual CPU cores can be assigned to VMs.
* Hyper-threading (HT) should be disabled to avoid potential security issues.
* VM should not share network, storage, or network hardware.

« Use of advanced hypervisor features such as PCI pass-through or NUMA adversely affects
VM migration capabilities.

* Use of paravirtualization and virtio drivers improves VM performance and efficiency.
AMD provides specific features regarding the security of virtualization.
2.3. Disaster recovery

The hypervisor can make snapshots of VMs, enabling restoration to a known good state, or to any
desired earlier state. Since Virtualized OSes are less dependent on hardware configuration than
those running directly on bare metal, these snapshots can be restored onto different server
hardware so long as it is running the same hypervisor.

2.4. Dynamic load balancing

Live migration provides a simple way to load-balance your services across your infrastructure, by
moving VMs from busy hosts to those with spare capacity, on demand.

CHAPTER 3. INTRODUCTION TO XEN VIRTUALIZATION

Chapter 3. Introduction to Xen virtualization

This chapter introduces and explains the components and technologies you need to understand to
set up and manage a Xen-based virtualization environment.

3.1. Basic components
The basic components of a Xen-based virtualization environment are the following:

» Xen hypervisor
* Dom0O
« any number of other VM Guests

» tools, commands and configuration files to manage virtualization

Collectively, the physical computer running all these components is called a VM Host Server
because together these components form a platform for hosting virtual machines.

The Xen hypervisor

The Xen hypervisor, sometimes simply called a virtual machine monitor, is an open source
software program that coordinates the low-level interaction between virtual machines and
physical hardware.

The DomO

The virtual machine host environment, also called DomO or controlling domain, is composed
of several components, such as:

* SUSE Linux Enterprise Server provides a graphical and a command line environment
to manage the virtual machine host components and its virtual machines.

Note

@ The term “DomQ” refers to a special domain that provides the
management environment. This may be run either in graphical or in

command line mode.

* The xl tool stack based on the xenlight library (libxl). Use it to manage Xen guest
domains.

« QEMU—an open source software that emulates a full computer system, including a
processor and multiple peripherals. It provides the ability to host operating systems in
both full virtualization or paravirtualization mode.

Xen-based virtual machines

A Xen-based virtual machine, also called a VM Guest or DomU, consists of the following
components:

« At least one virtual disk that contains a bootable operating system. The virtual disk can
be based on a file, partition, volume, or other type of block device.

* A configuration file for each guest domain. It is a text file following the syntax
described in the man page man 5 x1.conf.

« Several network devices, connected to the virtual network provided by the controlling
domain.

Management tools, commands, and configuration files

There is a combination of GUI tools, commands and configuration files to help you manage
and customize your virtualization environment.

3.2. Xen virtualization architecture

The following graphic depicts a virtual machine host with four virtual machines. The Xen hypervisor
is shown as running directly on the physical hardware platform. The controlling domain is also a
virtual machine, although it has several additional management tasks compared to all the other
virtual machines.

Figure 3.1. Xen virtualization architecture

Virtual Machine Host Server Virtual Machine Virtual Machine Virtual Machine
Mgmt Path
Paravirtualized OS Paravirtualized OS Unmodified OS
SUSE Linux [Linux] [NetWare] [MS Windows]

-) ¢%®

NetWare

S s
v
Virtual 10 Path
Virtual 10 Path
Virtual 10 Path
—
Direct 10 Path XEN Hypervisor (Virtual Machine Monitor)
A 4
10 & Platform Devices Memory & CPU
(Disk, LAN, USB, BMC, Hardware (x86, x86-64, EM64T)

IPMI, ACPI, etc.)

Physical Machine

CHAPTER 3. INTRODUCTION TO XEN VIRTUALIZATION

On the left, the virtual machine host's DomO0 is shown running the SUSE Linux Enterprise Server
operating system. The two virtual machines shown in the middle are running paravirtualized
operating systems. The virtual machine on the right shows a fully virtual machine running an
unmodified operating system, such as the latest version of Microsoft Windows/Server.

10

Chapter 4. Introduction to KVM virtualization
4.1. Basic components

KVM is a full virtualization solution for hardware architectures that support hardware virtualization
(refer to the section called “Architecture support” for more details on supported architectures).

VM Guests (virtual machines), virtual storage and virtual networks can be managed with QEMU
tools directly or with the libvirt-based stack. The QEMU tools include gemu-system-ARCH,
the QEMU monitor, qemu-img, and qemu-ndb. A Libvirt-based stack includes libvirt itself,
along with libvirt-based applications such as virsh, virt-manager, virt-install, and
virt-viewer.

4.2. KVM virtualization architecture
This full virtualization solution consists of two main components:

* A set of kernel modules (kvm.ko, kvm-intel. ko, and kvm-amd. ko) that provides the
core virtualization infrastructure and processor-specific drivers.

A user space program (gemu-system-ARCH) that provides emulation for virtual devices and
control mechanisms to manage VM Guests (virtual machines).

The term KVM more properly refers to the kernel level virtualization functionality, but is in practice
more commonly used to refer to the user space component.

11

CHAPTER 4. INTRODUCTION TO KVM VIRTUALIZATION

Figure 4.1. KVM virtualization architecture

KVM (Modules)

Hardware Support,

Virtualization Technologies for x86
N PRFARICIRYAD

12

Chapter 5. Virtualization tools
5.1. Virtualization console tools

libvirt includes several command-line utilities to manage virtual machines. The most important
ones are:

virsh (Package: Llibvirt-client)

A command-line tool to manage VM Guests with similar functionality as the Virtual Machine
Manager. virsh allows you to change a VM Guest's status, set up new guests and devices,
or edit existing configurations. virsh is also useful to script VM Guest management
operations.

virsh takes the first argument as a command and further arguments as options to this
command:

virsh [-c URI] COMMANDDOMAIN-ID [OPTIONS]

Like zypper, virsh can also be called without a command. In this case, it starts a shell
waiting for your commands. This mode is useful when having to run subsequent commands:

~> virsh -c gemu+ssh://wilber@mercury.example.com/system
Enter passphrase for key '/home/wilber/.ssh/id rsa':
Welcome to virsh, the virtualization interactive terminal.

Type: ‘'help' for help with commands
'quit' to quit

virsh # hostname
mercury.example.com

virt-install (Package: virt-install)

A command-line tool for creating new VM Guests using the libvirt library. It supports
graphical installations via VNC or SPICE protocols. Given suitable command-line arguments,
virt-install can run unattended. This allows for easy automation of guest installs.
virt-install is the default installation tool used by the Virtual Machine Manager.

remote-viewer (Package: virt-viewer)
A simple viewer of a remote desktop. It supports SPICE and VNC protocols.
virt-clone (Package: virt-install)

A tool for cloning existing virtual machine images using the libvirt hypervisor
management library.

13

CHAPTER 5. VIRTUALIZATION TOOLS

virt-host-validate (Package: libvirt-client)

A tool that validates whether the host is configured in a suitable way to run libvirt
hypervisor drivers.

5.2. Virtualization GUI tools

The following libvirt-based graphical tools are available on SUSE Linux Enterprise Server. All tools
are provided by packages carrying the tool's name.

Virtual Machine Manager (package: virt-manager)

The Virtual Machine Manager is a desktop tool for managing VM Guests. It provides the
ability to control the lifecycle of existing machines (start/shutdown, pause/resume, save/
restore) and create new VM Guests. It allows managing multiple types of storage and virtual
networks. It provides access to the graphical console of VM Guests with a built-in VNC
viewer and can be used to view performance statistics. virt-manager supports connecting
to a local Libvirtd, managing a local VM Host Server, or a remote libvirtd managing a
remote VM Host Server.

File Edit View Help
L |- ~

Name v CPU usage

QEMU/KVM

¥ QEMU/KVM: pythagoras.suse.de
debian.780
Shutoff

fedora_21
Shutoff

opensusel3
Shutoff

sled12
Shutoff

slesllsp3
Shutoff

sles12_spl
Running

Ubuntu.1410
Shutoff

IE NN NN

To start the Virtual Machine Manager, enter virt-manager at the command prompt.

14

Note

@ To disable automatic USB device redirection for VM Guest using spice, either
launch virt-manager with the --spice-disable-auto-usbredir
parameter or run the following command to persistently change the default
behavior:

>dconf write /org/virt-manager/virt-manager/console/auto-
redirect false

virt-viewer (Package: virt-viewer)

A viewer for the graphical console of a VM Guest. It uses SPICE (configured by default on
the VM Guest) or VNC protocols and supports TLS and x509 certificates. VM Guests can be
accessed by name, ID or UUID. If the guest is not already running, the viewer can be told to
wait until the guest starts, before attempting to connect to the console. virt-viewer is not
installed by default and is available after installing the package virt-viewer.

Note

@ To disable automatic USB device redirection for VM Guest using spice, add an
empty filter using the --spice-usbredir-auto-redirect-filter=""
parameter.

yast2 vm (Package: yast2-vm)

A YaST module that simplifies the installation of virtualization tools and can set up a network
bridge:

Choose Hypervisor(s) to install

Server: Minimal system to get a running Hypervisor
Tools: Configure, manage and monitor virtual machines

A disabled checkbox means the Hypervisor item has already been installed

Xen Hypervisor

| Xen server [| Xen tools

KVM Hypervisor
v KVM server (v} KVM tools

Cancel Accept

15

CHAPTER 6. INSTALLATION OF VIRTUALIZATION COMPONENTS

Chapter 6. Installation of virtualization components
6.1. Introduction

To run a virtualization server (VM Host Server) that can host one or more guest systems (VM
Guests), you need to install required virtualization components on the server. These components
vary depending on which virtualization technology you want to use.

6.2. Installing virtualization components

You can install the virtualization tools required to run a VM Host Server in one of the following
ways:

* By selecting a specific system role during SUSE Linux Enterprise Server installation on the
VM Host Server

* By running the YaST Virtualization module on an already installed and running SUSE Linux
Enterprise Server.

* By installing specific installation patterns on an already installed and running SUSE Linux
Enterprise Server.

6.2.1. Specifying a system role

You can install all the tools required for virtualization during the installation of SUSE Linux
Enterprise Server on the VM Host Server. During the installation, you are presented with the
System Role screen.

Figure 6.1. System Role screen

cases which tailor the system

SLES with GNOME
+ GNOME environment

Desktop

SE Linux Enterprise.

16

Here you can select either the KVM Virtualization Host or the Xen Virtualization Host roles. The
appropriate software selection and setup is automatically performed during SUSE Linux Enterprise

Server installation.

Tip

@ Both virtualization system roles create a dedicated /var/lib/libvirt partition,
and enable the firewalld and Kdump services.

6.2.2. Running the YaST Virtualization module

Depending on the scope of SUSE Linux Enterprise Server installation on the VM Host Server, none
of the virtualization tools may be installed on your system. They are automatically installed when
configuring the hypervisor with the YaST Virtualization module.

Tip

@ The YaST Virtualization module is included in the yast2-vm package. Verify it is
installed on the VM Host Server before installing virtualization components.

Procedure 6.1. Installing the KVM environment
To install the KVM virtualization environment and related tools, proceed as follows:

1. Start YaST and select Virtualization > Install Hypervisor and Tools.

2. Select KVM server for a minimal installation of QEMU and KVM environment. Select KVM
tools to use the libvirt-based management stack as well. Confirm with Accept.

3. YaST offers to automatically configure a network bridge on the VM Host Server. It ensures
proper networking capabilities of the VM Guest. Agree to do so by selecting Yes, otherwise
choose No.

4. After the setup has been finished, you can start creating and configuring VM Guests.
Rebooting the VM Host Server is not required.

Procedure 6.2. Installing the Xen environment
To install the Xen virtualization environment, proceed as follows:

1. Start YaST and selectVirtualization > Install Hypervisor and Tools.

2. Select Xen server for a minimal installation of Xen environment. Select Xen tools to use the
libvirt-based management stack as well. Confirm with Accept.

17

CHAPTER 6. INSTALLATION OF VIRTUALIZATION COMPONENTS

3. YaST offers to automatically configure a network bridge on the VM Host Server. It ensures
proper networking capabilities of the VM Guest. Agree to do so by selecting Yes, otherwise
choose No.

4. After the setup has been finished, you need to reboot the machine with the Xen kernel.

Default boot kernel

@ If everything works as expected, change the default boot kernel with YaST and
make the Xen-enabled kernel the default. For more information about changing
the default kernel, see the section called “Configuring the boot loader with
YaST” in “Administration Guide”.

6.2.3. Installing specific installation patterns

Related software packages from SUSE Linux Enterprise Server software repositories are
organized into installation patterns. You can use these patterns to install specific virtualization
components on an already running SUSE Linux Enterprise Server. Use zypper to install them:

zypper install -t pattern PATTERN NAME

To install the KVM environment, consider the following patterns:
kvm_server
Installs basic VM Host Server with the KVM and QEMU environments.
kvm_tools
Installs Libvirt tools for managing and monitoring VM Guests in KVM environment.
To install the Xen environment, consider the following patterns:
xen_server
Installs a basic Xen VM Host Server.
xen_tools
Installs Libvirt tools for managing and monitoring VM Guests in Xen environment.

6.3. Enable nested virtualization in KVM

Technology preview

o KVM's nested virtualization is still a technology preview. It is provided for testing
purposes and is not supported.

18

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

Nested guests are KVM guests run in a KVM guest. When describing nested guests, we use the
following virtualization layers:

LO
A bare metal host running KVM.

L1
A virtual machine running on LO. Because it can run another KVM, it is called a guest
hypervisor.

L2

A virtual machine running on L1. It is called a nested guest.
Nested virtualization has many advantages. You can benefit from it in the following scenarios:

» Manage your own virtual machines directly with your hypervisor of choice in cloud
environments.

» Enable the live migration of hypervisors and their guest virtual machines as a single entity.

Note

@ Live migration of a nested VM Guest is not supported.

* Use it for software development and testing.

To enable nesting temporarily, remove the module and reload it with the nested KVM module
parameter:

* For Intel CPUs, run:
>sudo modprobe -r kvm_intel && modprobe kvm intel nested=1
* For AMD CPUs, run:

>sudo modprobe -r kvm amd && modprobe kvm amd nested=1

To enable nesting permanently, enable the nested KVM module parameter in the /etc/
modprobe.d/kvm *.conf file, depending on your CPU:

* For Intel CPUs, edit /etc/modprobe.d/kvm_intel.conf and add the following line:
options kvm intel nested=1
» For AMD CPUgs, edit /etc/modprobe.d/kvm_amd.conf and add the following line:

options kvm amd nested=1

19

CHAPTER 6. INSTALLATION OF VIRTUALIZATION COMPONENTS

When your LO host is capable of nesting, you can start an L1 guest in one of the following ways:

» Use the -cpu host QEMU command line option.

* Add the vmx (for Intel CPUs) or the svm (for AMD CPUs) CPU feature to the -cpu QEMU
command line option, which enables virtualization for the virtual CPU.

6.3.1. VMware ESX as a guest hypervisor

If you use VMware ESX as a guest hypervisor on top of a KVM bare metal hypervisor, you may
experience unstable network communication. This problem occurs especially between nested KVM
guests and the KVM bare metal hypervisor or external network. The following default CPU
configuration of the nested KVM guest is causing the problem:

<cpu mode='host-model' check='partial'/>

To fix it, modify the CPU configuration as follow:

[...]

<cpu mode='host-passthrough' check='none'>
<cache mode='passthrough'/>

</cpu>

[...]

20

Chapter 7. Virtualization limits and support

Important

o QEMU is only supported when used for virtualization together with the KVM or Xen
hypervisors. The TCG accelerator is not supported, even when it is distributed within
SUSE products. Users must not rely on QEMU TCG to provide guest isolation, or for

any security guarantees. See also https://gemu-project.qgitlab.io/gemu/system/
security.html.

7.1. Architecture support

7.1.1. KVM hardware requirements

SUSE supports KVM full virtualization on AMDG64/Intel 64, AArch64, IBM Z and IBM LinuxONE
hosts.

*«On the AMDG64/Intel 64 architecture, KVM is designed around hardware virtualization
features included in AMD* (AMD-V) and Intel* (VT-x) CPUs. It supports virtualization features
of chipsets and PCI devices, such as an I/O Memory Mapping Unit (/OMMU) and Single
Root I/O Virtualization (SR-IOV). You can test whether your CPU supports hardware
virtualization with the following command:

>egrep '(vmx|svm)' /proc/cpuinfo
If this command returns no output, your processor either does not support hardware
virtualization, or this feature has been disabled in the BIOS or firmware.

The following Web sites identify AMDG64/Intel 64 processors that support hardware

virtualization: https://ark.intel.com/Products/VirtualizationTechnology (for Intel CPUs), and
https://products.amd.com/ (for AMD CPUS).

* On the Arm architecture, Armv8-A processors include support for virtualization.

» On the Arm architecture, we only support running QEMU/KVM via the CPU model host (it is
named host-passthrough in Virtual Machine Manager or Libvirt).

KVM kernel modules not loading
The KVM kernel modules only load if the CPU hardware virtualization features are

available.

The general minimum hardware requirements for the VM Host Server are the same as outlined in
the section called “Hardware requirements” in “Deployment Guide”. However, additional RAM for
each virtualized guest is needed. It should at least be the same amount that is needed for a

21

https://qemu-project.gitlab.io/qemu/system/security.html
https://qemu-project.gitlab.io/qemu/system/security.html
https://ark.intel.com/Products/VirtualizationTechnology
https://products.amd.com/
https://fsteimke.github.io/xsltng-docs/suse/book-deployment.pdf

CHAPTER 7. VIRTUALIZATION LIMITS AND SUPPORT

physical installation. It is also strongly recommended to have at least one processor core or hyper-
thread for each running guest.

AArché64

@ AArch64 is a continuously evolving platform. It does not have a traditional standards
and compliance certification program to enable interoperability with operating
systems and hypervisors. Ask your vendor for the support statement on SUSE Linux
Enterprise Server.

POWER

@ Running KVM or Xen hypervisors on the POWER platform is not supported.

7.1.2. Xen hardware requirements
SUSE supports Xen on AMD64/Intel 64.
7.2. Hypervisor limits

New features and virtualization limits for Xen and KVM are outlined in the Release Notes for each
Service Pack (SP).

Only packages that are part of the official repositories for SUSE Linux Enterprise Server are
supported. Conversely, all optional subpackages and plug-ins (for QEMU, libvirt) provided at
packagehub are not supported.

For the maximum total virtual CPUs per host, see the section called “Assigning CPUs”. The total
number of virtual CPUs should be proportional to the number of available physical CPUs.

32-bit hypervisor

@ With SUSE Linux Enterprise Server 11 SP2, we removed virtualization host facilities
from 32-bit editions. 32-bit guests are not affected and are fully supported using the
provided 64-bit hypervisor.

7.2.1. KVM limits

Supported (and tested) virtualization limits of a SUSE Linux Enterprise Serverl5 SP7 host running
Linux guests on AMDG64/Intel 64. For other operating systems, refer to the specific vendor.

22

https://www.suse.com/releasenotes/
https://packagehub.suse.com/

Table 7.1. KVM VM limits

Maximum virtual CPUs per VM

768

Maximum memory per VM

4 TiB

Note

@ KVM host limits are identical to SUSE Linux Enterprise Server (see the
corresponding section of release notes), except for:

» Maximum virtual CPUs per VM: see recommendations in the Virtualization Best

Practices Guide regarding over-commitment of physical CPUs at the section

called “Assigning CPUs”. The total virtual CPUs should be proportional to the

available physical CPUs.

7.2.2. Xen limits

Table 7.2. Xen VM limits

Maximum virtual CPUs per VM

64 (HVM Windows guest), 128 (trusted HVMSs), or 512 (PV)

Maximum memory per VM

2 TiB (64-bit guest), 16 GiB (32-bit guest with PAE)

Table 7.3. Xen host limits

Maximum total

hibernate modes

_ 1024
physical CPUs
Maximum total See recommendations in the Virtualization Best Practices Guide regarding
virtual CPUs per | over-commitment of physical CPUs in sec-vi-best-perf-cpu-assign. The total
host virtual CPUs should be proportional to the available physical CPUs.
Maximum]

_ 16 TiB
physical memory
Suspend and

Not supported.

7.3. Supported host environments (hypervisors)

This section describes the support status of SUSE Linux Enterprise Serverl5 SP7 running as a

guest operating system on top of different virtualization hosts (hypervisors).

23

file:///home/frank/oxygenxml/xsltng-framework/resources/xsl/sec-vt-best-perf-cpu-assign

CHAPTER 7. VIRTUALIZATION LIMITS AND SUPPORT

Table 7.4. The following SUSE host environments are supported

SUSE Linux Enterprise Server

Hypervisors

SUSE Linux Enterprise Server 12
SP5

Xen and KVM (SUSE Linux Enterprise Server 15 SP6
guest must use UEFI boot)

SUSE Linux Enterprise Server 15
SP3to SP7

Xen and KVM

The following third-party host environments are supported

« Citrix XenServer

* Nutanix Acropolis Hypervisor with AOS

* Oracle VM Server 3.4

e Oracle Linux KVM 7. 8

* VMware ESXi 6.7, 7.0

* Windows Server 2016, 2019, 2022

You can also search in the SUSE YES certification database.

The level of support is as follows

» Support for SUSE host operating systems is full L3 (both for the guest and host), according

to the respective product lifecycle.

» SUSE provides full L3 support for SUSE Linux Enterprise Server guests within third-party

host environments.

» Support for the host and cooperation with SUSE Linux Enterprise Server guests must be

provided by the host system's vendor.

7.4. Supported guest operating systems

This section lists the support status for guest operating systems virtualized on top of SUSE Linux

Enterprise Serverl5 SP7 for KVM and Xen hypervisors.

Important

o Microsoft Windows guests can be rebooted by libvirt/virsh only if

paravirtualized drivers are installed in the guest. Refer to https://www.suse.com/

products/vimdriverpack/ for more details on downloading and installing PV drivers.

The following guest operating systems are fully supported (L3):

* SUSE Linux Enterprise Server 12 SP5

24

https://www.citrix.com/products/citrix-hypervisor/
https://portal.nutanix.com/page/documents/compatibility-matrix/guestos
https://www.oracle.com/fr/virtualization/virtualbox/
https://www.oracle.com/linux/
https://www.vmware.com/products/esxi-and-esx.html
https://www.suse.com/yessearch/Search.jsp
https://www.suse.com/lifecycle/
https://www.suse.com/products/vmdriverpack/
https://www.suse.com/products/vmdriverpack/

* SUSE Linux Enterprise Server 15 SP2, 15 SP3, 15 SP4, 15 SP5, 15 SP6
* SUSE Linux Enterprise Micro 5.1, 5.2, 5.3, 5.4, 5.5, 6.0

» Windows Server 2016, 2019

* Oracle Linux 6, 7, 8 (KVM hypervisor only)

The following guest operating systems are supported as a technology preview (L2, fixes if
reasonable):

* SLED 15 SP3
* Windows 10/ 11

Red Hat and CentOS guest operating systems are fully supported (L3) if the customer has
purchased SUSE Liberty Linux.

 Refer to the SUSE Liberty Linux documentation at https://documentation.suse.com/liberty for
the list of available combinations and supported releases. In other cases, they are supported
on a limited basis (L2, fixes if reasonable).

RHEL PV drivers

@ Starting from RHEL 7.2, Red Hat removed Xen PV drivers.

All other guest operating systems

« In other combinations, L2 support is provided but fixes are available only if feasible. SUSE
fully supports the host OS (hypervisor). The guest OS issues need to be supported by the
respective OS vendor. If an issue fix involves both the host and guest environments, the
customer needs to approach both SUSE and the guest VM OS vendor.

 All guest operating systems are supported both fully virtualized and paravirtualized. The
exception is Windows systems, which are only supported fully virtualized (but they can use

PV drivers: https://www.suse.com/products/vmdriverpack/), and OES operating systems,
which are supported only paravirtualized.

« All guest operating systems are supported both in 32-bit and 64-bit environments, unless
stated otherwise.

7.4.1. Availability of paravirtualized drivers

To improve the performance of the guest operating system, paravirtualized drivers are provided
when available. Although they are not required, it is strongly recommended to use them.

25

https://documentation.suse.com/liberty
https://www.suse.com/products/vmdriverpack/

CHAPTER 7. VIRTUALIZATION LIMITS AND SUPPORT

Starting with SUSE Linux Enterprise Server 12 SP2, we switched to a PVops kernel. We are no
longer using a dedicated kernel-xen package:

e The kernel-default+kernel-xen on domO was replaced by the kernel-default
package.

* The kernel -xen package on PV domU was replaced by the kernel-default package.

* The kernel-default+xen-kmp on HVYM domU was replaced by kernel-default.

For SUSE Linux Enterprise Server 12 SP1 and older (down to 10 SP4), the paravirtualized drivers
are included in a dedicated kernel-xen package.

The paravirtualized drivers are available as follows:

SUSE Linux Enterprise Server 12/ 12 SP1 |/ 12 SP2
Included in kernel

SUSE Linux Enterprise Server 11 /11 SP1/11 SP2 /11 SP3/ 11 SP4
Included in kernel

SUSE Linux Enterprise Server 10 SP4
Included in kernel

Red Hat

Available since Red Hat Enterprise Linux 5.4. Starting from Red Hat Enterprise Linux 7.2,
Red Hat removed the PV drivers.

Windows

SUSE has developed virtio-based drivers for Windows, which are available in the Virtual
Machine Driver Pack (VMDP). For more information, see https://www.suse.com/products/

vmdriverpack/.

7.5. Supported VM migration scenarios

SUSE Linux Enterprise Server supports migrating a virtual machine from one physical host to
another.

7.5.1. Offline migration scenarios

SUSE supports offline migration, powering off a guest VM, then moving it to a host running a
different SLE product, from SLE 12 to SLE 15 SPX. The following host operating system
combinations are fully supported (L3) for migrating guests from one host to another:

26

https://www.suse.com/products/vmdriverpack/
https://www.suse.com/products/vmdriverpack/

Table 7.5. Supported offline migration guests

TargetSLES host | 12 | 12 | 12 | 15 | 15 | 156 | 15 | 15 | 15 | 15
Source SLES host SP3 | SP4 | SP5 | GA | SP1 | SP2 | SP3 | SP4 | SP5 | SP6
12 SP3 vl vl e e [XXX X| XX
12 SP4 X| v | 7oA 7| XX X|X|X
12 SP5 X | X| v | X| v v X X X | X
15 GA X X | X|X| || v | X|X]|X
15 SP1 X | X | X[X| v v v I X X | X
15 SP2 X I X | X | X| X| v v v | X | X
15 SP3 X[X[X[X| X| X| v v v v
15 SP4 XXX | X[X| X[X|X| v v v
15 SP5 X[X I X| X I X[X| X[X| |V
15 SP6 XX | X[X|X| X[X | X|X|
v Fully compatible and fully supported

1 Supported for KVM hypervisor only

X Not supported

7.5.2. Live migration scenarios

This section lists support status of live migration scenarios when running virtualized on top of
SLES. Also, refer to the supported the section called “Migration requirements”. The following host
operating system combinations are fully supported (L3 according to the respective product life

cycle).

Live migration

@ « SUSE always supports live migration of virtual machines between hosts
running SLES with successive service pack numbers. For example, from SLES
15 SP4 to 15 SP5.

e SUSE strives to support live migration of virtual machines from a host running
a service pack under LTSS to a host running a newer service pack, within the
same major version of SUSE Linux Enterprise Server. For example, virtual
machine migration from a SLES 12 SP2 host to a SLES 12 SP5 host. SUSE
only performs minimal testing of LTSS-to-newer migration scenarios and
recommends thorough on-site testing before attempting to migrate critical
virtual machines.

27

https://www.suse.com/lifecycle
https://www.suse.com/lifecycle

Xen live migration

CHAPTER 7. VIRTUALIZATION LIMITS AND SUPPORT

0 Live migration between SLE 11 and SLE 12 is not supported because of the different
tool stack, see the Release notes for more details.

Confidential Computing

0 SLES 15 SP6 and newer include kernel patches and tooling to enable AMD and Intel
Confidential Computing technology in the product. As this technology is not yet fully

ready for a production environment, it is provided as a technology preview.

Table 7.6. Supported live migration guests

Target SLES host

Source SLES host

12
SP4

12
SP5

SP1

=
o1

SP3

SP4

SP5

SP6

SP7

12 SP3

12 SP4

X

12 SP5

~ XX

15GA

AN

15 SP1

15 SP2

~ XXX XX

15 SP3

15 SP4

15 SP5

~IXIXIX| XXX X | X

X X XXX X X| XX

15 SP6

XXX X| X|X|X|X| ~
XX X|X|X|X|X]| ~

X[X|X[X[X|X|~ | X|[X 8 &

XXX X|X| ~

X|X[X|X|~[~[XIX|X|X|8 &

X|X|X| ~

XX~ |~ [X[X[X[X| X | X
X~ XXX X[X| X | X

N

N
N

v Fully compatible and fully supported

1 Supported for KVM hypervisor only

s2 When available

) ¢ Not supported

28

https://www.suse.com/releasenotes/x86_64/SUSE-SLES/12/#fate-317306

7.6. Feature support

Nested virtualization: tech preview

Nested virtualization allows you to run a virtual machine inside another VM while still
using hardware acceleration from the host. It has low performance and adds more
complexity while debugging. Nested virtualization is normally used for testing
purposes. In SUSE Linux Enterprise Server, nested virtualization is a technology
preview. It is only provided for testing and is not supported. Bugs can be reported, but
they are treated with low priority. Any attempt to live migrate or to save or restore
VMs in the presence of nested virtualization is also explicitly unsupported.

Post-copy live migration: tech preview

Post-copy is a method to live migrate virtual machines that is intended to get VMs
running as soon as possible on the destination host, and have the VM RAM
transferred gradually in the background over time as needed. Under certain
conditions, this can be an optimization compared to the traditional pre-copy method.
However, this comes with a major drawback: An error occurring during the migration
(especially a network failure) can cause the whole VM RAM contents to be lost.
Therefore, we recommend using pre-copy only in production, while post-copy can be
used for testing and experimentation in case losing the VM state is not a major
concern.

7.6.1. Xen host (DomO0)

Table 7.7. Feature support—host (Dom0)

Features Xen
Network and block device hotplugging v
Physical CPU hotplugging x
Virtual CPU hotplugging v
Virtual CPU pinning v
Virtual CPU capping v
Intel* VT-x2: FlexPriority, FlexMigrate (migration constraints apply to dissimilar CPU ,
architectures)

Intel* VT-d2 (DMA remapping with interrupt filtering and queued invalidation) v
AMD* IOMMU (I/0O page table with guest-to-host physical address translation) v

29

S

CHAPTER 7. VIRTUALIZATION LIMITS AND SUPPORT

Adding or removing physical CPUs at runtime is not supported

The addition or removal of physical CPUs at runtime is not supported. However,
virtual CPUs can be added or removed for each VM Guest while offline.

7.6.2. Guest feature support

S

Live migration of Xen PV guests

For live migration, both source and target system architectures need to match; that is,
the processors (AMD* or Intel*) must be the same. Unless CPU ID masking is used,
such as with Intel FlexMigration, the target should feature the same processor
revision or a more recent processor revision than the source. If VMs are moved
among different systems, the same rules apply for each move. To avoid failing
optimized code at runtime or application start-up, source and target CPUs need to
expose the same processor extensions. Xen exposes the physical CPU extensions to
the VMs transparently. To summarize, guests can be 32-bit or 64-bit, but the VHS
must be identical.

Windows guest

Hotplugging of virtual network and virtual block devices, and resizing, shrinking and
restoring dynamic virtual memory are supported in Xen and KVM only if PV drivers
are being used (VMDP).

Intel FlexMigration

For machines that support Intel FlexMigration, CPU-ID masking and faulting allow for
more flexibility in cross-CPU migration.

Tip

For KVM, a detailed description of supported limits, features, recommended settings
and scenarios, and other useful information is maintained in kvm-supported. txt.
This file is part of the KVM package and can be found in /usr/share/doc/
packages/qemu-kvm.

30

https://www.suse.com/products/vmdriverpack/

Table 7.8. Guest feature support for Xen and KVM

Xen PV guest

31

Features (Domu) Xen FV guest KVM FV guest
Virtual network and virtual block , , ,
device hotplugging

Virtual CPU hotplugging v X X
Virtual CPU over-commitment v v v
Dynamic virtual memory resize v v v
VM save and restore v v v
VM Live Migration v [1] v [1] v
VM snapshot v v v
Advanced debugging with GDBC v v v
DomO metrics visible to VM v v v
Memory ballooning v X X
PCI Pass-Through v [2] v v
AMD SEV X X v [3]
v Fully compatible and fully supported

) ¢ Not supported

[1] See the section called “Migration requirements”.

[2] NetWare guests are excluded.

[3] See https://documentation.suse.com/sles/html/SLES-amd-sev/article-amd-sev.html

https://documentation.suse.com/sles/html/SLES-amd-sev/article-amd-sev.html

PART II. MANAGING VIRTUAL MACHINES WITH LIBVIRT

Part II. Managing virtual machines with
libvirt

10
11
12
13
14

15
16
17
18

libvirt daemons 33

Preparing the VM Host Server 38
Guest installation 63

Basic VM Guest management 73
Connecting and authorizing 89
Advanced storage topics 107

Configuring virtual machines with Virtual Machine Manager
111

Configuring virtual machines with virsh 129

Enhancing virtual machine security with AMD SEV-SNP 156
Migrating VM Guests 161

Xen to KVM migration guide 169

32

Chapter 8. 1ibvirt daemons

A libvirt deployment for accessing KVM or Xen requires one or more daemons to be installed
and active on the host. libvirt provides two daemon deployment options: monolithic or modular
daemons. libvirt has always provided the single monolithic daemon libvirtd. It includes the
primary hypervisor drivers and all secondary drivers needed for managing storage, networking,
node devices, etc. The monolithic libvirtd also provides secure remote access for external
clients. Over time, libvirt added support for modular daemons, where each driver runs in its
own daemon, allowing users to customize their libvirt deployment. Modular daemons are
enabled by default, but a deployment can be switched to the traditional monolithic daemon by
disabling the individual daemons and enabling Libvirtd.

The modular daemon deployment is useful in scenarios where minimal libvirt support is
needed. For example, if virtual machine storage and networking is not provided by libvirt, the
libvirt-daemon-driver-storage and libvirt-daemon-driver-network packages are
not required. Kubernetes is an example of an extreme case, where it handles all networking,
storage, cgroups and namespace integration, etc. Only the libvirt-daemon-driver-QEMU
package, providing virtgemud, needs to be installed. Modular daemons allow configuring a
custom libvirt deployment containing only the components required for the use case.

8.1. Starting and stopping the modular daemons

The modular daemons are named after the driver which they are running, with the pattern
“VitDRIVERA". They are configured via the files /etc/libvirt/virtDRIVERd.conf. SUSE
supports the virtgemud and virtxend hypervisor daemons, along with all the secondary
daemons:

« virtnetworkd - The virtual network management daemon which provides libvirt's virtual
network management APIs. For example, virtnetworkd can be used to create a NAT virtual
network on the host for use by virtual machines.

« virtnodedevd - The host physical device management daemon which provides libvirt's
node device management APIs. For example, virthodedevd can be used to detach a PCI
device from the host for use by a virtual machine.

« virtnwfilterd - The host firewall management daemon which provides libvirt's firewall
management APIs. For example, virtnwfilterd can be used to configure network traffic
filtering rules for virtual machines.

« virtsecretd - The host secret management daemon which provides libvirt's secret
management APIs. For example, virtsecretd can be used to store a key associated with a
LUKs volume.

33

CHAPTER 8. LIBVIRT DAEMONS

» virtstoraged - The host storage management daemon which provides libvirt's storage
management APIs. virtstoraged can be used to create storage pools and create volumes
from those pools.

« virtinterfaced - The host NIC management daemon which provides 1ibvirt's host network
interface management APIs. For example, virtinterfaced can be used to create a bonded
network device on the host. SUSE discourages the use of libvirt's interface management
APIs in favor of default networking tools like wicked or NetworkManager. It is recommended
to disable virtinterfaced.

« virtproxyd - A daemon to proxy connections between the traditional Libvirtd sockets and
the modular daemon sockets. With a modular libvirt deployment, virtproxyd allows
remote clients to access the Libvirt APIs similar to the monolithic libvirtd. It can also
be used by local clients that connect to the monolithic 1ibvirtd sockets.

« virtlogd - A daemon to manage logs from virtual machine consoles. virtlogd is also used by
the monolithic Libvirtd. The monolithic daemon and virtgemud systemd unit files require
virtlogd, so it is not necessary to explicitly start virtlogd.

* virtlockd - A daemon to manage locks held against virtual machine resources such as disks.
virtlockd is also used by the monolithic 1ibvirtd. The monolithic daemon, virtgemud, and
virtxend systemd unit files require virtlockd, so it is not necessary to explicitly start virtlockd.

virtlogd and virtlockd are also used by the monolithic libvirtd. These daemons have
always been separate from libvirtd for security reasons.

By default, the modular daemons listen for connections on the /var/run/libvirt/
VirtDRIVERd-sock and /var/run/libvirt/virtDRIVERd-sock-ro Unix Domain Sockets.
The client library prefers these sockets over the traditional /var/run/libvirt/libvirtd-
sock. The virtproxyd daemon is available for remote clients or local clients expecting the traditional
libvirtd socket.

The virtgemud and virtxend services are enabled in the systemd presets. The sockets for
virtnetworkd, virtnodedevd, virtnwfilterd, virtstoraged and virtsecretd are
also enabled in the presets, ensuring the daemons are enabled and available when the
corresponding packages are installed. Although enabled in presets for convenience, the modular
daemons can also be managed with their systemd unit files:

* VirtDRIVERd.service - The main unit file for launching the virtDRIVERd daemon. We
recommend configuring the service to start on boot if VMs are also configured to start on
host boot.

* VirtDRIVERd.socket - The unit file corresponding to the main read-write UNIX socket /var/
run/libvirt/virtDRIVERd-sock. We recommend starting this socket on boot by
default.

34

* VirtDRIVERd-ro.socket - The unit file corresponding to the main read-only UNIX socket /
var/run/libvirt/virtDRIVERd-sock-ro. We recommend starting this socket on boot
by default.

* VirtDRIVERd-admin.socket - The unit file corresponding to the administrative UNIX socket /
var/run/libvirt/virtDRIVERd-admin-sock. We recommend starting this socket on
boot by default.

When systemd socket activation is used, several configuration settings in virtDRIVERd.conf are
no longer honored. Instead, these settings must be controlled via the system unit files:

* unix_sock_group - UNIX socket group owner, controlled via the SocketGroup parameter in
the virtDRIVERd.socket and virtDRIVERd-ro.socket unit files.

 unix_sock_ro_perms - Read-only UNIX socket permissions, controlled via the SocketMode
parameter in the virtDRIVERd- ro.socket unit file.

* unix_sock_rw_perms - Read-write UNIX socket permissions, controlled via the SocketMode
parameter in the virtDRIVERd. socket unit file.

* unix_sock_admin_perms - Admin UNIX socket permissions, controlled via the SocketMode
parameter in the virtDRIVERd-admin. socket unit file.

* unix_sock_dir - Directory in which all UNIX sockets are created, independently controlled via
the ListenStream parameter in any of the virtDRIVERd.socket, virtDRIVERd-
ro.socket and virtDRIVERd-admin.socket unit files.

8.2. Starting and stopping the monolithic daemon

The monolithic daemon is known as libvirtd and is configured via /etc/libvirt/
libvirtd.conf. libvirtd is managed with several systemd unit files:

« libvirtd.service - The main systemd unit file for launching libvirtd. We recommend
configuring Libvirtd.service to start on boot if VMs are also configured to start on host
boot.

« libvirtd.socket - The unit file corresponding to the main read-write UNIX socket /var/run/
libvirt/libvirt-sock. We recommend enabling this unit on boot.

« libvirtd-ro.socket - The unit file corresponding to the main read-only UNIX socket /var/
run/libvirt/libvirt-sock-ro. We recommend enabling this unit on boot.

* libvirtd-admin.socket - The unit file corresponding to the administrative UNIX socket /var/
run/libvirt/libvirt-admin-sock. We recommend enabling this unit on boot.

« libvirtd-tcp.socket - The unit file corresponding to the TCP 16509 port for non-TLS remote
access. This unit should not be configured to start on boot until the administrator has
configured a suitable authentication mechanism.

35

CHAPTER 8. LIBVIRT DAEMONS

« libvirtd-tls.socket - The unit file corresponding to the TCP 16509 port for TLS remote access.
This unit should not be configured to start on boot until the administrator has deployed x509
certificates and optionally configured a suitable authentication mechanism.

When systemd socket activation is used, certain configuration settings in Libvirtd.conf are no
longer honored. Instead, these settings must be controlled via the system unit files:

« listen_tcp - TCP socket usage is enabled by starting the Libvirtd-tcp.socket unit file.
« listen_tls - TLS socket usage is enabled by starting the Libvirtd-tls.socket unit file.

e tcp_port - Port for the non-TLS TCP socket, controlled via the ListenStream parameter in
the libvirtd-tcp.socket unit file.

* tIs_port - Port for the TLS TCP socket, controlled via the ListenStream parameter in the
libvirtd-tls.socket unitfile.

e listen_addr - IP address to listen on, independently controlled via the ListenStream
parameter in the Libvirtd-tcp.socket or libvirtd-tls.socket unitfiles.

* unix_sock_group - UNIX socket group owner, controlled via the SocketGroup parameter in
the libvirtd.socket and libvirtd-ro.socket unit files.

* unix_sock_ro_perms - Read-only UNIX socket permissions, controlled via the SocketMode
parameter in the Libvirtd-ro.socket unit file.

* unix_sock_rw_perms - Read-write UNIX socket permissions, controlled via the SocketMode
parameter in the Libvirtd.socket unit file.
* unix_sock_admin_perms - Admin UNIX socket permissions, controlled via the SocketMode

parameter in the libvirtd-admin. socket unit file.

 unix_sock_dir - Directory in which all UNIX sockets are created, independently controlled via
the ListenStream parameter in any of the libvirtd.socket, libvirtd-ro.socket
and libvirtd-admin.socket unit files.

36

Conflicting services: Libvirtd and xendomains

0 If Libvirtd fails to start, check if the service xendomains is loaded:

>systemctl is-active xendomains active

If the command returns active, you need to stop xendomains before you can start
the libvirtd daemon. If you want libvirtd to also start after rebooting,
additionally prevent xendomains from starting automatically. Disable the service:
>sudo systemctl stop xendomains

>sudo systemctl disable xendomains

>sudo systemctl start libvirtd

xendomains and libvirtd provide the same service and when used in parallel,
may interfere with one another. As an example, xendomains may attempt to start a
domU already started by libvirtd.

8.3. Switching to the monolithic daemon

Several services need to be changed when switching from modular to the monolithic daemon. It is

recommended to stop or evict any running virtual machines before switching between the daemon

options.

37

1. Stop the modular daemons and their sockets. The following example disables the QEMU

daemon for KVM and several secondary daemons.

for drv in gemu network nodedev nwfilter secret storage
do

>sudo systemctl stop virt${drv}d.service

>sudo systemctl stop virt${drv}d{,-ro,-admin}.socket
done

. Disable future start of the modular daemons

for drv in gemu network nodedev nwfilter secret storage
do

>sudo systemctl disable virt${drv}d.service

>sudo systemctl disable virt${drv}d{,-ro,-admin}.socket
done

. Enable the monolithic Libvirtd service and sockets

>sudo systemctl enable libvirtd.service
>sudo systemctl enable libvirtd{,-ro,-admin}.socket

. Start the monolithic Libvirtd sockets

>sudo systemctl start libvirtd{,-ro,-admin}.socket

CHAPTER 9. PREPARING THE VM HOST SERVER

Chapter 9. Preparing the VM Host Server

Before you can install guest virtual machines, you need to prepare the VM Host Server to provide
the guests with the resources that they need for their operation. Specifically, you need to configure:

» Networking so that guests can make use of the network connection provided the host.

« A storage pool reachable from the host so that the guests can store their disk images.
9.1. Configuring networks
There are two common network configurations to provide a VM Guest with a network connection:

* A network bridge. This is the default and recommended way of providing the guests with
network connection.

* Avirtual network with forwarding enabled.

9.1.1. Network bridge

The network bridge configuration provides a Layer 2 switch for VM Guests, switching Layer 2
Ethernet packets between ports on the bridge based on MAC addresses associated with the ports.
This gives the VM Guest Layer 2 access to the VM Host Server's network. This configuration is
analogous to connecting the VM Guest's virtual Ethernet cable into a hub that is shared with the
host and other VM Guests running on the host. The configuration is often referred to as shared
physical device.

The network bridge configuration is the default configuration of SUSE Linux Enterprise Server
when configured as a KVM or Xen hypervisor. It is the preferred configuration when you simply
want to connect VM Guests to the VM Host Server's LAN.

Which tool to use to create the network bridge depends on the service you use to manage the
network connection on the VM Host Server:

« If a network connection is managed by wicked, use either YaST or the command line to
create the network bridge. wicked is the default on server hosts.

*If a network connection is managed by NetworkManager, use the NetworkManager
command line tool nmcli to create the network bridge. NetworkManager is the default on
desktop and laptops.

9.1.1.1. Managing network bridges with YaST

This section includes procedures to add or remove network bridges with YaST.

38

9.1.1.1.1. Adding a network bridge
To add a network bridge on VM Host Server, follow these steps:

1. Start YaST > System > Network Settings.
2. Activate the Overview tab and click Add.

3. Select Bridge from the Device Type list and enter the bridge device interface name in the
Configuration Name entry. Click the Next button to proceed.

4. In the Address tab, specify networking details such as DHCP/static IP address, subnet mask
or host name.

Using Dynamic Address is only useful when also assigning a device to a bridge that is
connected to a DHCP server.

If you intend to create a virtual bridge that has no connection to a real network device, use
Statically assigned IP Address. In this case, it is a good idea to use addresses from the
private IP address ranges, for example, 192.168.0.0/16, 172.16.0.0/12, or
10.0.0.0/8.

To create a bridge that should only serve as a connection between the different guests
without connection to the host system, set the IP address to 0.0.0.0 and the subnet mask
to 255.255.255.255. The network scripts handle this special address as an unset IP
address.

5. Activate the Bridged Devices tab and activate the network devices you want to include in the
network bridge.

6. Click Next to return to the Overview tab and confirm with OK. The new network bridge
should now be active on VM Host Server.

9.1.1.1.2. Deleting a network bridge
To delete an existing network bridge, follow these steps:

1. Start YaST > System > Network Settings.
2. Select the bridge device you want to delete from the list in the Overview tab.

3. Delete the bridge with Delete and confirm with OK.

9.1.1.2. Managing network bridges from the command line

This section includes procedures to add or remove network bridges using the command line.

39

CHAPTER 9. PREPARING THE VM HOST SERVER

9.1.1.2.1. Adding a network bridge
To add a new network bridge device on VM Host Server, follow these steps:
1. Log in as root on the VM Host Server where you want to create a new network bridge.
2. Choose a name for the new bridge—virbr_test in our example—and run
#ip link add name VIRBR TEST type bridge
3. Check if the bridge was created on VM Host Server:
#bridge vlan
[...]
virbr test 1 PVID Egress Untagged

virbr test is present, but is not associated with any physical network interface.

4. Bring the network bridge up and add a network interface to the bridge:

#ip link set virbr test up
#ip link set ethl master virbr test

Network interface must be unused

o You can only assign a network interface that is not yet used by another network
bridge.

5. Optionally, enable STP (see Spanning Tree Protocol):

#bridge link set dev virbr test cost 4

9.1.1.2.2. Deleting a network bridge

To delete an existing network bridge device on VM Host Server from the command line, follow

these steps:
1. Login as root on the VM Host Server where you want to delete an existing network bridge.
2. List existing network bridges to identify the name of the bridge to remove:

#bridge vlan
I
virbr test 1 PVID Egress Untagged

3. Delete the bridge:

#ip link delete dev virbr test

40

https://en.wikipedia.org/wiki/Spanning_Tree_Protocol

9.1.1.3. Adding a network bridge with nmcli

This section includes procedures to add a network bridge with NetworkManager's command line
tool nmcli.

1. List active network connections:

>sudo nmcli connection show --active

NAME UUID TYPE

DEVICE

Ethernet connection 1 84bad4c22-0cfe-46b6-87bb-909bebcbl1214 ethernet eth0

2. Add a new bridge device named br0 and verify its creation:

>sudo nmcli connection add type bridge ifname br0

Connection 'bridge-br0' (36ellb95-8d5d-4a8f-9ca3-ff4180eb89f7) \
successfully added.

>sudo nmcli connection show --active

NAME UuID TYPE
DEVICE
bridge-bro 36e11b95-8d5d-4a8f-9ca3-ff4180eb89f7 bridge bro

Ethernet connection 1 84bad4c22-0cfe-46b6-87bb-909bebcb1214 ethernet ethO
3. Optionally, you can view the bridge settings:

>sudo nmcli -f bridge connection show bridge-br0

bridge.mac-address: --
bridge.stp: yes
bridge.priority: 32768
bridge.forward-delay: 15
bridge.hello-time: 2
bridge.max-age: 20
bridge.ageing-time: 300
bridge.group-forward-mask: 0
bridge.multicast-snooping: yes
bridge.vlan-filtering: no
bridge.vlan-default-pvid: 1
bridge.vlans: --

4. Link the bridge device to the physical Ethernet device eth0:
>sudo nmcli connection add type bridge-slave ifname ethO master bro0
5. Disable the eth0 interface and enable the new bridge

>sudo nmcli connection down "Ethernet connection 1"

>sudo nmcli connection up bridge-br0

Connection successfully activated (master waiting for slaves) \

(D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/9)

9.1.1.4. Using VLAN interfaces

Sometimes it is necessary to create a private connection either between two VM Host Servers or
between VM Guest systems. For example, to migrate a VM Guest to hosts in a different network
segment. Or to create a private bridge that only VM Guest systems may connect to (even when
running on different VM Host Server systems). An easy way to build such connections is to set up
VLAN networks.

41

CHAPTER 9. PREPARING THE VM HOST SERVER

VLAN interfaces are commonly set up on the VM Host Server. They either interconnect the
different VM Host Server systems, or they may be set up as a physical interface to an otherwise
virtual-only bridge. It is even possible to create a bridge with a VLAN as a physical interface that
has no IP address in the VM Host Server. That way, the guest systems have no possibility to
access the host over this network.

Run the YaST module System > Network Settings. Follow this procedure to set up the VLAN
device:

Procedure 9.1. Setting up VLAN interfaces with YaST

1. Click Add to create a new network interface.
2. In the Hardware Dialog, select Device TypeVLAN.

3. Change the value of Configuration Name to the ID of your VLAN. Be aware VLAN ID 1 is
commonly used for management purposes.

4. Click Next.

5. Select the interface that the VLAN device should connect to below Real Interface for VLAN.
If the desired interface does not appear in the list, first set up this interface without an IP
address.

6. Select the desired method for assigning an IP address to the VLAN device.

7. Click Next to finish the configuration.

It is also possible to use the VLAN interface as a physical interface of a bridge. This makes it
possible to connect several VM Host Server-only networks and allows live migration of VM Guest
systems that are connected to such a network.

YaST does not always allow setting no IP address. However, this may be a desired feature,
especially if VM Host Server-only networks should be connected. In this case, use the special
address 0.0.0.0 with netmask 255.255.255.255. The system scripts handle this address as
no IP address set.

9.1.2. Virtual networks

libvirt-managed virtual networks are similar to bridged networks, but typically have no Layer 2
connection to the VM Host Server. Connectivity to the VM Host Server's physical network is
accomplished with Layer 3 forwarding, which introduces additional packet processing on the VM
Host Server as compared to a Layer 2 bridged network. Virtual networks also provide DHCP and
DNS services for VM Guests. For more information on 1ibvirt virtual networks, see the Network
XML format documentation at https:/libvirt.org/formatnetwork.html.

A standard libvirt installation on SUSE Linux Enterprise Server already comes with a
predefined virtual network named default. It provides DHCP and DNS services for the network,

42

https://libvirt.org/formatnetwork.html

along with connectivity to the VM Host Server's physical network using the network address
translation (NAT) forwarding mode. Although it is predefined, the default virtual network needs to
be explicitly enabled by the administrator. For more information on the forwarding modes
supported by libvirt, see the Connectivity section of the Network XML format documentation at

https://libvirt.org/formatnetwork.html#elementsConnect.

libvirt-managed virtual networks can be used to satisfy a wide range of use cases, but are
commonly used on VM Host Servers that have a wireless connection or dynamic/sporadic network
connectivity, such as laptops. Virtual networks are also useful when the VM Host Server's network
has limited IP addresses, allowing forwarding of packets between the virtual network and the VM
Host Server's network. However, most server use cases are better suited for the network bridge
configuration, where VM Guests are connected to the VM Host Server's LAN.

Enabling forwarding mode

Enabling forwarding mode in a libvirt virtual network enables forwarding in the
VM Host Server by setting /proc/sys/net/ipv4/ip forward and /proc/sys/
net/ipv6/conf/all/forwarding to 1, which turns the VM Host Server into a
router. Restarting the VM Host Server's network may reset the values and disable
forwarding. To avoid this behavior, explicitly enable forwarding in the VM Host Server
by editing the /etc/sysctl. conf file and adding:

net.ipv4.ip forward =1

net.ipv6.conf.all.forwarding = 1

9.1.2.1. Managing virtual networks with Virtual Machine Manager

You can define, configure and operate virtual networks with Virtual Machine Manager.

9.1.2.1.1. Defining virtual networks

1. Start Virtual Machine Manager. In the list of available connections, right-click the name of the
connection for which you need to configure the virtual network, and then select Details.

2. In the Connection Details window, click the Virtual Networks tab. You can see the list of all
virtual networks available for the current connection. On the right, there are details of the
selected virtual network.

43

https://libvirt.org/formatnetwork.html#elementsConnect

CHAPTER 9. PREPARING THE VM HOST SERVER

Figure 9.1. Connection details

File
Overview VirtualNetworks Storage
Detalls i

Name: vnetl

Device: virbrO
State: [l Active
Autostart: (@ OnBoot
Domain: vnetl

~ IPv4 configuration
Network: 192.168.100.0/24

DHCP range: 192.168.100.128 - 192.168.100.254
Forwarding: <6 NAT

3. To add a new virtual network, click Add.
4. Specify a name for the new virtual network.

Figure 9.2. Create virtual network

[5" Create virtual network

Details XML

Name: [vnetZJ

Mode: = NAT v
Forwardto: Any physical device v

~ IPv4 configuration
Enable IPv4

Network: 192.168.100.0/24

Enable DHCPv4
Start: 192.168.100.128

End: 192.168.100.254

¥ IPv6 configuration
Enable IPv6

~ DNS domain name
O Use network name

Custom

Cancel Finish

5. Specify the networking mode. For the NAT and Routed types, you can specify to which
device to forward network communications. While NAT (network address translation) remaps
the virtual network address space and allows sharing a single IP address, Routed forwards
packets from the virtual network to the VM Host Server's physical network with no
translation.

6. If you need IPv4 networking, activate Enable IPv4 and specify the IPv4 network address. If
you need a DHCP server, activate Enable DHCPv4 and specify the assignable IP address
range.

44

7. If you need IPv6 networking, activate Enable IPv6 and specify the IPv6 network address. If
you need a DHCP server, activate Enable DHCPv6 and specify the assignable IP address
range.

8. To specify a different domain name than the name of the virtual network, select Custom
under DNS domain name and enter it here.

9. Click Finish to create the new virtual network. On the VM Host Server, a new virtual network
bridge virbrXis available, which corresponds to the newly created virtual network. You can
check with bridge link. Libvirt automatically adds iptables rules to allow traffic to/from
guests attached to the new virbrX device.

9.1.2.1.2. Starting virtual networks
To start a virtual network that is temporarily stopped, follow these steps:

1. Start Virtual Machine Manager. In the list of available connections, right-click the name of the
connection for which you need to configure the virtual network, and then select Details.

2. In the Connection Details window, click the Virtual Networks tab. You can see the list of all
virtual networks available for the current connection.

3. To start the virtual network, click Start.

9.1.2.1.3. Stopping virtual networks
To stop an active virtual network, follow these steps:

1. Start Virtual Machine Manager. In the list of available connections, right-click the name of the
connection for which you need to configure the virtual network, and then select Details.

2. In the Connection Details window, click the Virtual Networks tab. You can see the list of all
virtual networks available for the current connection.

3. Select the virtual network to be stopped, then click Stop.

9.1.2.1.4. Deleting virtual networks
To delete a virtual network from VM Host Server, follow these steps:

1. Start Virtual Machine Manager. In the list of available connections, right-click the name of the
connection for which you need to configure the virtual network, and then select Details.

2. In the Connection Details window, click the Virtual Networks tab. You can see the list of all
virtual networks available for the current connection.

3. Select the virtual network to be deleted, then click Delete.

45

CHAPTER 9. PREPARING THE VM HOST SERVER

9.1.2.1.5. Obtaining IP addresses with nsswitch for NAT networks (in KVM)
* On VM Host Server, install libvirt-nss, which provides NSS support for libvirt:
>sudo zypper in libvirt-nss

* Add libvirtto /etc/nsswitch.conf:
hosts: files libvirt mdns_minimal [NOTFOUND=return] dns

« If NSCD is running, restart it:

>sudo systemctl restart nscd

Now you can reach the guest system by name from the host.

The NSS module has limited functionality. It reads /var/lib/libvirt/dnsmasq/*.status
files to find the host name and corresponding IP addresses in a JSON record describing each
lease provided by dnsmasq. Host name translation can only be done on those VM Host Servers
using a libvirt-managed bridged network backed by dnsmasq.

9.1.2.2. Managing virtual networks with virsh

You can manage libvirt-provided virtual networks with the virsh command line tool. To view
all network related virsh commands, run

>sudo virsh help network
Networking (help keyword 'network'):

net-autostart autostart a network
net-create create a network from an XML file
net-define define (but don't start) a network from
an XML file
net-destroy destroy (stop) a network
net-dumpxml network information in XML
net-edit edit XML configuration for a network
net-event Network Events
net-info network information
net-list list networks
net-name convert a network UUID to network name
net-start start a (previously defined) inactive
network
net-undefine undefine an inactive network
net-update update parts of an existing network's
configuration
net-uuid convert a network name to network UUID

To view brief help information for a specific virsh command, run virsh help VIRSH_COMMAND:

46

>sudo virsh help net-create
NAME
net-create - create a network from an XML file

SYNOPSIS
net-create <file>

DESCRIPTION
Create a network.

OPTIONS
[--file] <string> file containing an XML network description

9.1.2.2.1. Creating a network

To create a new running virtual network, run
>sudo virsh net-create VNET DEFINITION.xml

The VNET_DEFINITION.xml XML file includes the definition of the virtual network that Libvirt
accepts.

To define a new virtual network without activating it, run
>sudo virsh net-define VNET DEFINITION.xml

The following examples illustrate definitions of different types of virtual networks.
Example 9.1. NAT-based network

The following configuration allows VM Guests outgoing connectivity if it is available on the VM Host
Server. Without VM Host Server networking, it allows guests to talk directly to each other.

<network>
<name>vnet nated</name>@
<bridge name="virbrl"/>@
<forward mode="nat"/>©
<ip address="192.168.122.1" netmask="255.255.255.0">0
<dhcp>
<range start="192.168.122.2" end="192.168.122.254"/>©
<host mac="52:54:00:c7:92:da" name="hostl.testing.com" \
ip="192.168.1.101"/>0
<host mac="52:54:00:c7:92:db" name="host2.testing.com" \
ip="192.168.1.102"/>
<host mac="52:54:00:c7:92:dc" name="host3.testing.com" \
ip="192.168.1.103"/>
</dhcp>
</ip>
</network>

O The name of the new virtual network.

® The name of the bridge device used to construct the virtual network. When defining a new
network with a <forward> mode of "nat" or "route" (or an isolated network with no

47

CHAPTER 9. PREPARING THE VM HOST SERVER

<forward> element), libvirt automatically generates a unique name for the bridge device if

none is given.

© Inclusion of the <forward> element indicates that the virtual network is connected to the physical
LAN. The mode attribute specifies the forwarding method. The most common modes are "nat"
(Network Address Translation, the default), "route" (direct forwarding to the physical network,
no address translation), and "bridge" (network bridge configured outside of libvirt). If the
<forward> element is not specified, the virtual network is isolated from other networks. For a

complete list of forwarding modes, see https://libvirt.org/formatnetwork.html#elementsConnect.

O The IP address and netmask for the network bridge.

© Enable DHCP server for the virtual network, offering IP addresses ranging from the specified
start and end attributes.

O The optional <host> elements specify hosts that are given names and predefined IP addresses
by the built-in DHCP server. Any IPv4 host element must specify the following: the MAC address
of the host to be assigned a given name, the IP to be assigned to that host, and the name to be
given to that host by the DHCP server. An IPv6 host element differs slightly from that for IPv4:
there is no mac attribute since a MAC address has no defined meaning in IPv6. Instead, the
name attribute is used to identify the host to be assigned the IPv6 address. For DHCPv6, the
name is the plain name of the client host sent by the client to the server. This method of
assigning a specific IP address can also be used instead of the mac attribute for IPv4.

Example 9.2. Routed network

The following configuration routes traffic from the virtual network to the LAN without applying any
NAT. The IP address range must be preconfigured in the routing tables of the router on the VM
Host Server network.

<network>

<name>vnet routed</name>

<bridge name="virbrl"/>

<forward mode="route" dev="ethl"/>@

<ip address="192.168.122.1" netmask="255.255.255.0">
<dhcp>
<range start="192.168.122.2" end="192.168.122.254"/>
</dhcp>

</ip>

</network>

O The guest traffic may only go out via the eth1 network device on the VM Host Server.
Example 9.3. Isolated network

This configuration provides an isolated private network. The guests can talk to each other, and to
VM Host Server, but cannot reach any other machines on the LAN, as the <forward> element is
missing in the XML description.

48

https://libvirt.org/formatnetwork.html#elementsConnect

<network>

<name>vnet isolated</name>

<bridge name="virbr3"/>

<ip address="192.168.152.1" netmask="255.255.255.0">
<dhcp>
<range start="192.168.152.2" end="192.168.152.254"/>
</dhcp>

</ip>

</network>

Example 9.4. Using an existing bridge on VM Host Server

This configuration shows how to use an existing VM Host Server's network bridge br@. VM Guests
are directly connected to the physical network. Their IP addresses are all on the subnet of the
physical network, and there are no restrictions on incoming or outgoing connections.
<network>

<name>host-bridge</name>

<forward mode="bridge"/>

<bridge name="bro"/>
</network>

9.1.2.2.2. Listing networks

To list all virtual networks available to Libvirt, run:

>sudo virsh net-list --all

Name State Autostart Persistent
crowbar active yes yes
vnet nated active yes yes
vnet routed active yes yes
vnet isolated inactive yes yes

To list available domains, run:

>sudo virsh list
Id Name State

1 nated slesl2sp3 running

To get a list of interfaces of a running domain, run domifaddr DOMAIN, or optionally specify the
interface to limit the output to this interface. By default, it additionally outputs their IP and MAC
addresses:

>sudo virsh domifaddr nated slesl2sp3 --interface vnet@ --source lease

Name MAC address Protocol Address
vnet0O 52:54:00:9e:0d:2b ipv6 fd00:dead:beef:55::140/64
- - ipv4 192.168.100.168/24

To print brief information of all virtual interfaces associated with the specified domain, run:

>sudo virsh domiflist nated slesl2sp3
Interface Type Source Model MAC

vneto network vnet nated virtio 52:54:00:9e:0d:2b

49

CHAPTER 9. PREPARING THE VM HOST SERVER

9.1.2.2.3. Getting details about a network

To get detailed information about a network, run:

>sudo virsh net-info vnet routed

Name: vnet routed

UUID: 756b48ff-d0c6-4cOa-804c-86c4c832a498
Active: yes

Persistent: yes

Autostart: yes

Bridge: virbr5

9.1.2.2.4. Starting a network

To start an inactive network that was already defined, find its name (or unique identifier, UUID)
with:

>sudo virsh net-list --inactive

Name State Autostart Persistent
vnet isolated inactive yes yes
Then run:

>sudo virsh net-start vnet isolated
Network vnet isolated started

9.1.2.2.5. Stopping a network

To stop an active network, find its name (or unique identifier, UUID) with:

>sudo virsh net-list --inactive

Name State Autostart Persistent
vnet isolated active yes yes
Then run:

>sudo virsh net-destroy vnet isolated
Network vnet isolated destroyed

9.1.2.2.6. Removing a network

To remove the definition of an inactive network from VM Host Server permanently, run:

>sudo virsh net-undefine vnet isolated
Network vnet isolated has been undefined

9.2. Configuring a storage pool

When managing a VM Guest on the VM Host Server itself, you can access the complete file
system of the VM Host Server to attach or create virtual hard disks or to attach existing images to
the VM Guest. However, this is not possible when managing VM Guests from a remote host. For

50

this reason, libvirt supports so called “Storage Pools”, which can be accessed from remote

machines.

CD/DVD ISO images

@ To be able to access CD/DVD ISO images on the VM Host Server from remote

clients, they also need to be placed in a storage pool.

libvirt knows two different types of storage: volumes and pools.

Storage volume

A storage volume is a storage device that can be assigned to a guest—a virtual disk or a CD/
DVD/floppy image. Physically, it can be a block device, for example, a partition or a logical
volume, or a file on the VM Host Server.

Storage pool

51

A storage pool is a storage resource on the VM Host Server that can be used for storing
volumes, similar to network storage for a desktop machine. Physically it can be one of the
following types:

File system directory (dir)

A directory for hosting image files. The files can be either one of the supported disk
formats (raw or gcow?2), or ISO images.

Physical disk device (disk)

Use a complete physical disk as storage. A patrtition is created for each volume that is
added to the pool.

Pre-formatted block device (fs)

Specify a partition to be used in the same way as a file system directory pool (a
directory for hosting image files). The only difference to using a file system directory is
that Libvirt takes care of mounting the device.

iSCSI target (iscsi)

Set up a pool on an iSCSI target. You need to have been logged in to the volume once
before to use it with Libvirt. Use the YaST iSCSI Initiator to detect and log in to a
volume, see Storage Administration Guide in “Storage Administration Guide” for
details. Volume creation on iSCSI pools is not supported; instead, each existing
Logical Unit Number (LUN) represents a volume. Each volume/LUN also needs a valid

https://fsteimke.github.io/xsltng-docs/suse/book-storage.pdf

CHAPTER 9. PREPARING THE VM HOST SERVER

(empty) partition table or disk label before you can use it. If missing, use fdisk to add
it:

>sudo fdisk -cu /dev/disk/by-path/ip-192.168.2.100:3260-iscsi-iqgn.
2010-10.com.example:[...]-lun-2

Device contains neither a valid DOS partition table, nor Sun, SGI

or OSF disklabel

Building a new DOS disklabel with disk identifier Oxcl5cdc4e.

Changes will remain in memory only, until you decide to write them.
After that, of course, the previous content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by
w(rite)

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

LVM volume group (logical)

Use an LVM volume group as a pool. You can either use a predefined volume group,
or create a group by specifying the devices to use. Storage volumes are created as
partitions on the volume.

Deleting the LVM-based pool

When the LVM-based pool is deleted in the Storage Manager, the
volume group is deleted as well. This results in a non-recoverable loss of
all data stored on the pool.

Multipath devices (mpath)

At the moment, multipathing support is limited to assigning existing devices to the
guests. Volume creation or configuring multipathing from within libvirt is not
supported.

Network exported directory (netfs)

Specify a network directory to be used in the same way as a file system directory pool
(a directory for hosting image files). The only difference to using a file system directory
is that Libvirt takes care of mounting the directory. The supported protocol is NFS.

SCSI host adapter (scsi)

Use an SCSI host adapter in almost the same way as an iSCSI target. We recommend
to use a device name from /dev/disk/by-* rather than /dev/sdX. The latter can
change, for example, when adding or removing hard disks. Volume creation on iSCSI

52

pools is not supported. Instead, each existing LUN (Logical Unit Number) represents a
volume.

Security considerations

To avoid data loss or data corruption, do not attempt to use resources such as LVM
volume groups, iSCSI targets, etc., that are also used to build storage pools on the
VM Host Server. There is no need to connect to these resources from the VM Host
Server or to mount them on the VM Host Server—1ibvirt takes care of this.

Do not mount partitions on the VM Host Server by label. Under certain circumstances
it is possible that a partition is labeled from within a VM Guest with a name existing
on the VM Host Server.

9.2.1. Managing storage with virsh

Managing storage from the command line is also possible by using virsh. However, creating
storage pools is currently not supported by SUSE. Therefore, this section is restricted to
documenting functions such as starting, stopping and deleting pools, and volume management.

A list of all virsh subcommands for managing pools and volumes is available by running virsh
help pool and virsh help volume, respectively.

9.2.1.1. Listing pools and volumes

List all pools currently active by executing the following command. To also list inactive pools, add
the option - -all:

>virsh pool-list --details
Details about a specific pool can be obtained with the pool-info subcommand:
>virsh pool-info POOL

By default, volumes can only be listed per pool. To list all volumes from a pool, enter the following
command.

>virsh vol-list --details POOL

At the moment virsh offers no tools to show whether a volume is used by a guest or not. The
following procedure describes a way to list volumes from all pools that are currently used by a VM
Guest.

Procedure 9.2. Listing all storage volumes currently used on a VM Host Server

1. Create an XSLT stylesheet by saving the following content to a file, for example, ~/libvirt/
guest_storage_list.xsl:

53

CHAPTER 9. PREPARING THE VM HOST SERVER

<?xml version="1.0" encoding="UTF-8"7?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="text"/>
<xsl:template match="text()"/>
<xsl:strip-space elements="*"/>
<xsl:template match="disk">
<xsl:text> </xsl:text>
<xsl:value-of select="(source/@file|source/@dev|source/@dir)[1]"/>
<xsl:text>
</xsl:text>
</xsl:template>
</xsl:stylesheet>
2. Run the following commands in a shell. It is assumed that the guest's XML definitions are all
stored in the default location (/etc/libvirt/gemu). xsltproc is provided by the
package libxslt.
SSHEET="$HOME/libvirt/guest storage list.xsl"
cd /etc/libvirt/qgemu
for FILE in *.xml; do
basename $FILE .xml

xsltproc $SSHEET $FILE
done

9.2.1.2. Starting, stopping, and deleting pools

Use the virsh pool subcommands to start, stop or delete a pool. Replace POOL with the pool's
name or its UUID in the following examples:

Stopping a pool
>virsh pool-destroy POOL
A pool's state does not affect attached volumes

@ Volumes from a pool attached to VM Guests are always available, regardless
of the pool's state (Active (stopped) or Inactive (started)). The state of the pool
solely affects the ability to attach volumes to a VM Guest via remote
management.

Deleting a pool

>virsh pool-delete POOL

Deleting storage pools

See Deleting storage pools

Starting a pool

>virsh pool-start POOL

54

Enable autostarting a pool

>virsh pool-autostart POOL

Only pools that are marked to autostart are automatically started if the VM Host Server
reboots.

Disable autostarting a pool

>virsh pool-autostart POOL --disable

9.2.1.3. Adding volumes to a storage pool

virsh offers two ways to add volumes to storage pools: either from an XML definition with vol -
create and vol-create-from or via command line arguments with vol-create-as. The first
two methods are currently not supported by SUSE, therefore this section focuses on the
subcommand vol-create-as.

To add a volume to an existing pool, enter the following command:
>virsh vol-create-as POOL@NAME® 12G --format®raw|qcow2@ --allocation 4GO

© Name of the pool to which the volume should be added
© Name of the volume

© Size of the image, in this example 12 gigabytes. Use the suffixes k, M, G, T for kilobyte,
megabyte, gigabyte, and terabyte, respectively.

O Format of the volume. SUSE currently supports raw and qcow2.

© Optional parameter. By default, virsh creates a sparse image file that grows on demand.
Specify the amount of space that should be allocated with this parameter (4 gigabytes in this
example). Use the suffixes k, M, G, T for kilobyte, megabyte, gigabyte, and terabyte,
respectively.

When not specifying this parameter, a sparse image file with no allocation is generated. To
create a non-sparse volume, specify the whole image size with this parameter (would be 12G in
this example).

9.2.1.3.1. Cloning existing volumes

Another way to add volumes to a pool is to clone an existing volume. The new instance is always
created in the same pool as the original.

>virsh vol-clone NAME EXISTING VOLUME@NAME NEW VOLUME@® --pool POOL®

O Name of the existing volume that should be cloned

55

CHAPTER 9. PREPARING THE VM HOST SERVER

© Name of the new volume

© Optional parameter. libvirt tries to locate the existing volume automatically. If that fails,
specify this parameter.

9.2.1.4. Deleting volumes from a storage pool

To permanently delete a volume from a pool, use the subcommand vol-delete:
>virsh vol-delete NAME --pool POOL

--pool is optional. Libvirt tries to locate the volume automatically. If that fails, specify this
parameter.

No checks upon volume deletion

A volume is deleted in any case, regardless of whether it is currently used in an
active or inactive VM Guest. There is no way to recover a deleted volume.

Whether a volume is used by a VM Guest can only be detected by using by the
method described in Procedure 9.2, “Listing all storage volumes currently used on a
VM Host Server”.

9.2.1.5. Attaching volumes to a VM Guest

After you create a volume as described in the section called “Adding volumes to a storage pool”,
you can attach it to a virtual machine and use it as a hard disk:

>virsh attach-disk DOMAINSOURCE IMAGE FILETARGET DISK DEVICE

For example:

>virsh attach-disk slesl2sp3 /virt/images/example disk.qcow2 sda2

To check if the new disk is attached, inspect the result of the virsh dumpxml command:

#virsh dumpxml slesl2sp3

[...
<disk type='file' device='disk'>

<driver name='gemu' type='raw'/>

<source file='/virt/images/example disk.qcow2'/>
<backingStore/>

<target dev='sda2' bus='scsi'/>

<alias name='scsi0-0-0'/>

<address type='drive' controller='0' bus='0' target='0' unit='0"'/>
</disk>

[...]

56

9.2.1.5.1. Hotplug or persistent change

You can attach disks to both active and inactive domains. The attachment is controlled by the - -
live and - -config options:

--live

Hotplugs the disk to an active domain. The attachment is not saved in the domain
configuration. Using - - Live on an inactive domain is an error.

--config

Changes the domain configuration persistently. The attached disk is then available after the
next domain start.

--live --config

Hotplugs the disk and adds it to the persistent domain configuration.

virsh attach-device

@ virsh attach-device is the more generic form of virsh attach-disk. You
can use it to attach other types of devices to a domain.

9.2.1.6. Detaching volumes from a VM Guest

To detach a disk from a domain, use virsh detach-disk:
#virsh detach-disk DOMAINTARGET DISK DEVICE

For example:

#virsh detach-disk slesl2sp3 sda2

You can control the attachment with the --1live and --config options as described in the
section called “Attaching volumes to a VM Guest”.

9.2.2. Managing storage with Virtual Machine Manager

The Virtual Machine Manager provides a graphical interface—the Storage Manager—to manage
storage volumes and pools. To access it, either right-click a connection and choose Details, or
highlight a connection and choose Edit > Connection Details. Select the Storage tab.

57

CHAPTER 9. PREPARING THE VM HOST SERVER

File

Overview Virtual Networks Storage

0% Source_ISO Name: images2
Filesystem Direct
135, boot-scratch Size: 590.24 GiB Free / 108.05 GiB In Use
Filesystem Directory Location: /mnt/extra
oy data State: (K3 Active
Filesystem Direct —
o Autostart: [+ On Boot
139, default
Filesystem Directory Volumes | # | @)
G| ®

65, IMages

 Filesystem Directory Volumes v Size Format Used By
doc-alex-ses-master.qcow2 20.00 GiB qcow2 alex-ses-master
lssystenDirectony doc-alex-ses-min1-osd.qcow2 16.00 GiB qcow2 alex-ses-minl
% '5_05 : doc-alex-ses-minl.qcow2 20.00 GiB qcow2 alex-ses-minl
Filesystem Directory
kernel doc-alex-ses-min2-osd.qcow2 16.00 GiB qcow2 alex-ses-min2
oaz, kernels
Filesystem Directory doc-alex-ses-min2.qcow2 20.00 GiB qcow2 alex-ses-min2
q q
4o, Vit doc-alex-ses-min3-osd.qcow2 16.00 GiB qcow2 alex-ses-min3
Fil Di
flesystem Directory doc-alex-ses-min3.qcow2 20.00 GiB qcow2 alex-ses-min3

4+ ® ® Apply

9.2.2.1. Adding a storage pool
To add a storage pool, proceed as follows:

1. Click Add in the bottom left corner. The dialog Add a New Storage Pool appears.

2. Provide a Name for the pool (consisting of only alphanumeric characters and , - or .) and
select a Type.

‘ Create storage pool

Details XML

Name: | pool

Type: | dir: Filesystem Directory v

Target Path: | /var/lib/libvirt/images/pool Browse

Cancel Finish

3. Specify the required details below. They depend on the type of pool you are creating.

Important

0 ZFS pools are not supported.

Type dir

o Target Path: specify an existing directory.

58

Type disk

o Format: format of the device's partition table. Using auto should normally work. If
not, get the required format by running the command parted- 1 on the VM Host
Server.

o Source Path: path to the device. It is recommended to use a device name from
/dev/disk/by-* rather than the simple /dev/sdX, since the latter can
change, for example, when adding or removing hard disks. You need to specify
the path that resembles the whole disk, not a partition on the disk (if existing).

Type fs
o Target Path: mount point on the VM Host Server file system.
o Format: file system format of the device. The default value auto should work.
> Source Path: path to the device file. It is recommended to use a device name
from /dev/disk/by-* rather than /dev/sdX, because the latter can change,
for example, when adding or removing hard disks.
Type iscsi

Get the necessary data by running the following command on the VM Host Server:
>sudo iscsiadm --mode node

It returns a list of iISCSI volumes with the following format. The elements in bold text
are required:

IP_ADDRESS:PORT,TPGT TARGET_NAME_(IQN)

o Target Path: the directory containing the device file. Use /dev/disk/by-path
(default) or /dev/disk/by-id.

o Host Name: host name or IP address of the iISCSI server.

o Source IQN: the iISCSI target name (iISCSI Qualified Name).

o Initiator IQN: the iISCSI initiator name.
Type logical

> Volgroup Name: specify the device path of an existing volume group.
Type mpath

o Target Path: support for multipathing is currently limited to making all multipath
devices available. Therefore, specify an arbitrary string here. The path is
required, otherwise the XML parser fails.

Type netfs

o Target Path: mount point on the VM Host Server file system.

o Host Name: IP address or host name of the server exporting the network file
system.

59

CHAPTER 9. PREPARING THE VM HOST SERVER

o Source Path: directory on the server that is being exported.
Type rbd

> Host Name: host name of the server with an exported RADOS block device.

o Source Name: name of the RADOS block device on the server.
Type scsi

o Target Path: directory containing the device file. Use /dev/disk/by-path
(default) or /dev/disk/by-id.

o Source Path: name of the SCSI adapter.

File browsing

@ Using the file browser by clicking Browse is not possible when operating
remotely.

4. Click Finish to add the storage pool.

9.2.2.2. Managing storage pools

Virtual Machine Manager's Storage Manager lets you create or delete volumes in a pool. You may
also temporarily deactivate or permanently delete existing storage pools. Changing the basic
configuration of a pool is currently not supported by SUSE.

9.2.2.2.1. Starting, stopping, and deleting pools

The purpose of storage pools is to provide block devices located on the VM Host Server that can
be added to a VM Guest when managing it from remote. To make a pool temporarily inaccessible
from remote, click Stop in the bottom left corner of the Storage Manager. Stopped pools are
marked with State: Inactive and are grayed out in the list pane. By default, a newly created pool is
automatically started On Boot of the VM Host Server.

To start an inactive pool and make it available from remote again, click Start in the bottom left
corner of the Storage Manager.

A pool's state does not affect attached volumes

@ Volumes from a pool attached to VM Guests are always available, regardless of the
pool's state (Active (stopped) or Inactive (started)). The state of the pool solely affects
the ability to attach volumes to a VM Guest via remote management.

To permanently make a pool inaccessible, click Delete in the bottom left corner of the Storage
Manager. You can only delete inactive pools. Deleting a pool does not physically erase its contents

60

on VM Host Server—it only deletes the pool configuration. However, you need to be extra careful

when deleting pools, especially when deleting LVM volume group-based tools:

Deleting storage pools

Deleting storage pools based on local file system directories, local partitions or disks
has no effect on the availability of volumes from these pools currently attached to VM
Guests.

Volumes located in pools of type iSCSI, SCSI, LVM group or Network Exported
Directory become inaccessible from the VM Guest if the pool is deleted. Although the
volumes themselves are not deleted, the VM Host Server can no longer access the
resources.

Volumes on iSCSI/SCSI targets or Network Exported Directory become accessible
again when creating an adequate new pool or when mounting/accessing these
resources directly from the host system.

When deleting an LVM group-based storage pool, the LVM group definition is erased
and the LVM group no longer exists on the host system. The configuration is not
recoverable and all volumes from this pool are lost.

9.2.2.2.2. Adding volumes to a storage pool

Virtual Machine Manager lets you create volumes in all storage pools, except in pools of types

Multipath, iSCSI or SCSI. A volume in these pools is equivalent to a LUN and cannot be changed

from within Libvirt.

61

1. A new volume can either be created using the Storage Manager or while adding a new

storage device to a VM Guest. In either case, select a storage pool from the left panel, then
click Create new volume.

. Specify a Name for the image and choose an image format.

SUSE currently only supports raw or gcow2 images. The latter option is not available on
LVM group-based pools.

Next to Max Capacity, specify the maximum size that the disk image is allowed to reach.
Unless you are working with a gcow2 image, you can also set an amount for Allocation that
should be allocated initially. If the two values differ, a sparse image file is created, which
grows on demand.

For qcow2 images, you can use a Backing Store (also called “backing file”), which
constitutes a base image. The newly created qcow2 image then only records the changes
that are made to the base image.

CHAPTER 9. PREPARING THE VM HOST SERVER

3. Start the volume creation by clicking Finish.

9.2.2.2.3. Deleting volumes from a storage pool

Deleting a volume can only be done from the Storage Manager, by selecting a volume and clicking
Delete Volume. Confirm with Yes.

Volumes can be deleted even while in use

Volumes can be deleted even if they are currently used in an active or inactive VM
Guest. There is no way to recover a deleted volume.

Whether a volume is used by a VM Guest is indicated in the Used By column in the
Storage Manager.

62

Chapter 10. Guest installation

A VM Guest consists of an image containing an operating system and data files and a
configuration file describing the VM Guest's virtual hardware resources. VM Guests are hosted on
and controlled by the VM Host Server. This section provides generalized instructions for installing a
VM Guest. For a list of supported VM Guests refer to Chapter 7, Virtualization limits and support.

Virtual machines have few if any requirements above those required to run the operating system. If
the operating system has not been optimized for the virtual machine host environment, it can only
run on hardware-assisted virtualization computer hardware, in full virtualization mode, and requires
specific device drivers to be loaded. The hardware that is presented to the VM Guest depends on
the configuration of the host.

You should be aware of any licensing issues related to running a single licensed copy of an
operating system on multiple virtual machines. Consult the operating system license agreement for
more information.

10.1. GUI-based guest installation

Changing default options for new virtual machines

@ You can change default values that are applied when creating new virtual machines.
For example, to set UEFI as the default firmware type for new virtual machines,
select Edit > Preferences from Virtual Machine Manager's main menu, click New VM
and set UEFI as the firmware default.

Figure 10.1. Specifying default options for new VMs

General Polling New VM Console Feedback

New VM Defaults
Graphics type: | Spice v

4

Storage format: = System default (qcow2)
CPU default: Application default v

x86 Firmware: UEFI v

Close

The New VM wizard helps you through the steps required to create a virtual machine and install its
operating system. To start it, open the Virtual Machine Manager and select File > New Virtual
Machine. Alternatively, start YaST and select Virtualization > Create Virtual Machines.

1. Start the New VM wizard either from YaST or Virtual Machine Manager.

63

CHAPTER 10. GUEST INSTALLATION

2. Choose an installation source—either a locally available media or a network installation
source. To set up your VM Guest from an existing image, choose import existing disk image.

On a VM Host Server running the Xen hypervisor, you can choose whether to install a
paravirtualized or a fully virtualized guest. The respective option is available under
Architecture Options. Depending on this choice, not all installation options may be available.

3. Depending on your choice in the previous step, you need to provide the following data:
Local install media (ISO image or COROM)
Specify the path on the VM Host Server to an ISO image containing the installation

data. If it is available as a volume in a libvirt storage pool, you can also select it using
Browse. For more information, see Chapter 13, Advanced storage topics.

Alternatively, choose a physical CD-ROM or DVD inserted in the optical drive of the
VM Host Server.

Network install (HTTP, HTTPS or FTP)

Provide the URL pointing to the installation source. Valid URL prefixes are, for
example, ftp://, http:// and https://.

Under URL Options, provide a path to an auto-installation file (AutoYaST or Kickstart,
for example) and kernel parameters. Having provided a URL, the operating system
should be automatically detected correctly. If this is not the case, deselect
Automatically Detect Operating System Based on Install-Media and manually select
the OS Type and Version.

Import existing disk image
To set up the VM Guest from an existing image, you need to specify the path on the
VM Host Server to the image. If it is available as a volume in a libvirt storage pool, you
can also select it using Browse. For more information, see Chapter 13, Advanced
storage topics.
Manual install
This installation method is suitable to create a virtual machine, manually configure its
components and install its OS later. To adjust the VM to a specific product version,
start typing its name, for example, sles—and select the desired version when a
match appears.
4. Choose the memory size and number of CPUs for the new virtual machine.
5. This step is omitted when Import an Existing Image is chosen in the first step.
Set up a virtual hard disk for the VM Guest. Either create a new disk image or choose an
existing one from a storage pool (for more information, see Chapter 13, Advanced storage
topics). If you choose to create a disk, a gcow2 image is created and stored under /var/
lib/libvirt/images by default.
Setting up a disk is optional. If you are running a live system directly from CD or DVD, for
example, you can omit this step by deactivating Enable Storage for this Virtual Machine.

64

6. On the last screen of the wizard, specify the name for the virtual machine. To be offered the
possibility to review and make changes to the virtualized hardware selection, activate
Customize configuration before install. Specify the network device under Network Selection.
When using Bridge device, the first bridge found on the host is pre-filled. To use a different
bridge, manually update the text box with its name.

Click Finish.

7. If you kept the defaults in the previous step, the installation starts. If you selected Customize
configuration before install, a VM Guest configuration dialog opens. For more information
about configuring VM Guests, see Chapter 14, Configuring virtual machines with Virtual
Machine Manager.

When you are done configuring, click Begin Installation.

Passing key combinations to virtual machines

@ The installation starts in a Virtual Machine Manager console window. Certain key
combinations, such as Ctrl-Alt—F1, are recognized by the VM Host Server but are
not passed to the virtual machine. To bypass the VM Host Server, Virtual Machine
Manager provides the “sticky key” functionality. Pressing Ctrl, Alt, or Shift three
times makes the key sticky, then you can press the remaining keys to pass the
combination to the virtual machine.

For example, to pass Ctrl-Alt—F2 to a Linux virtual machine, press Ctrl three
times, then press A1t—F2. You can also press Alt three times, then press Ctrl—F2.

The sticky key functionality is available in the Virtual Machine Manager during and
after installing a VM Guest.

10.1.1. Configuring the virtual machine for PXE boot

PXE boot enables your virtual machine to boot from the installation media via the network, instead

of from a physical medium or an installation disk image. Refer to Chapter 19, Preparing network

boot environment in “Deployment Guide” for more details about setting up a PXE boot

environment.

To let your VM boot from a PXE server, follow these steps:

65

1. Start the installation wizard as described in the section called “GUI-based guest installation”.
2. Select the Manual Install method.

3. Proceed to the last step of the wizard and activate Customize configuration before install.
Confirm with Finish.

4. On the Customize screen, select Boot Options.

https://fsteimke.github.io/xsltng-docs/suse/book-deployment.pdf

CHAPTER 10. GUEST INSTALLATION

5. Inspect Boot device order and select Enable boot menu.

> To retain VirtlO Disk as the default boot option, confirm with Apply.

> To force the virtual machine to use PXE as the default boot option:

1. Select the NIC device in the boot menu configuration.
2. Move it to the top using the arrow signs on the right.
3. Confirm with Apply.

6. Start the installation by clicking Begin Installation. Now press Esc for boot menu and choose
1. IPXE. If a PXE server is properly configured, the PXE menu screen appeatrs.

10.2. Installing from the command line with virt-install

virt-install is a command-line tool that helps you create new virtual machines using the
libvirt library. It is useful if you cannot use the graphical user interface, or need to automatize
the process of creating virtual machines.

virt-install is a complex script with a lot of command line switches. The following are
required. For more information, see the man page of virt-install (1).

General options

e --name VM GUEST NAME: Specify the name of the new virtual machine. The name
must be unigue across all guests known to the hypervisor on the same connection. It
is used to create and name the guest’s configuration file and you can access the guest
with this name from virsh. Alphanumeric and - . : + characters are allowed.

e --memory REQUIRED MEMORY: Specify the amount of memory to allocate for the
new virtual machine in megabytes.

» --vcpus NUMBER _OF CPUS: Specify the number of virtual CPUs. For best
performance, the number of virtual processors should be less than or equal to the
number of physical processors.

Virtualization type

» --paravirt: set up a paravirtualized guest. This is the default if the VM Host Server
supports paravirtualization and full virtualization.

e - -hvm: set up a fully virtualized guest.

e --virt-type HYPERVISOR: Specify the hypervisor. Supported values are kvm or

xen.

Guest storage

Specify one of - -disk, --filesystem or - -nodisks the type of the storage for the new
virtual machine. For example, - -disk size=10 creates 10 GB disk in the default image
location for the hypervisor and uses it for the VM Guest. --filesystem /export/path/

66

on/vmhost specifies the directory on the VM Host Server to be exported to the guest. And
--nodisks sets up a VM Guest without a local storage (good for Live CDs).

Installation method

Specify the installation method using one of - -location, --cdrom, - -pxe, --import, or
--boot.

Accessing the installation

Use the --graphics VALUE option to specify how to access the installation. SUSE Linux
Enterprise Server supports the values vnc or none.

If using VNC, virt-install tries to launch virt-viewer. If it is not installed or cannot
be run, connect to the VM Guest manually with your preferred viewer. To explicitly prevent
virt-install from launching the viewer, use - -noautoconsole. To define a password
for accessing the VNC session, use the following syntax: - -graphics

vnc, password=PASSWORD.

In case you are using - -graphics none, you can access the VM Guest through operating
system supported services, such as SSH or VNC. Refer to the operating system installation
manual on how to set up these services in the installation system.

Passing kernel and initrd files

It is possible to directly specify the Kernel and Initrd of the installer, for example, from a
network source. To set up a network source, see the section called “Setting up an HTTP

repository manually” in “Deployment Guide”.

To pass additional boot parameters, use the --extra-args option. This can be used to
specify a network configuration. For details, see Chapter 9, Boot parameters in “Deployment
Guide”.

Example 10.1. Loading kernel and initrd from HTTP server

#virt-install --location "http://example.tld/REPOSITORY/DVD1/" \
--extra-args="textmode=1" --name "SLES15" --memory 2048 --virt-type kvm\
--connect gemu:///system --disk size=10 --graphics vnc \

--network network=vnet nated

Enabling the console

67

By default, the console is not enabled for new virtual machines installed using virt-
install. To enable it, use --extra-args="console=ttyS0O textmode=1" as in the
following example:

>virt-install --virt-type kvm --name slesl2 --memory 1024 \

--disk /var/lib/libvirt/images/diskl.qcow2 --os-variant slesl2
--extra-args="console=ttyS0O textmode=1" --graphics none

https://fsteimke.github.io/xsltng-docs/suse/book-deployment.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-deployment.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-deployment.pdf

CHAPTER 10. GUEST INSTALLATION

After the installation finishes, the /etc/default/grub file in the VM image is updated with
the console=ttySO option on the GRUB_CMDLINE LINUX DEFAULT line.

Using UEFI Secure Boot

Note

@ SUSE supports UEFI Secure Boot on AMDG64/Intel 64 KVM guests only. Xen
HVM guests support booting with UEFI firmware, but they do not support UEFI
Secure Boot.

By default, new virtual machines installed using virt-install are configured with a
legacy BIOS. They can be configured to use UEFI with --boot firmware=efi. A
firmware that supports UEFI Secure Boot and has Microsoft keys enrolled will be selected. If
secure boot is undesirable, the option --boot
firmware=efi, firmware.feature0.name=secure-

boot, firmware.feature0.enabled=no can be used to select a UEFI firmware without
secure boot support.

It is also possible to explicitly specify a UEFI firmware image. See the section called
“Advanced UEFI configuration” for advanced information and examples on using UEFI with
virtual machines.

Example 10.2. Example of a virt-install command line

The following command line example creates a new SUSE Linux Enterprise 15 SP2 virtual

machine with a virtio accelerated disk and network card. It creates a new 10 GB gcow?2 disk image
as a storage, the source installation media being the host CD-ROM drive. It uses VNC graphics,
and it automatically launches the graphical client.

KVM

Xen

>virt-install --connect gemu:///system --virt-type kvm \

--name slel5sp2 --memory 1024 --disk size=10 --cdrom /dev/cdrom --graphics
vnc \

--0s-variant slel5sp2

>virt-install --connect xen:// --virt-type xen --hvm \

--name slel5sp2 --memory 1024 --disk size=10 --cdrom /dev/cdrom --graphics
vnc \

--0s-variant slel5sp2

68

10.3. Advanced guest installation scenarios

This section provides instructions for operations exceeding the scope of a normal installation, such
as manually configuring UEFI firmware, memory ballooning and installing add-on products.

10.3.1. Advanced UEFI configuration

The UEFI firmware used by virtual machines is provided by OVMF (Open Virtual Machine
Firmware). The gemu-ovmf-x86 64 package contains firmwares for AMD64/Intel 64 VM Guests.
Firmwares for AArch64 VM Guests are provided by the qemu-uefi-aarch64 package. Both
packages contain several firmwares, each supporting a different set of features and capabilities.
The packages also include JSON firmware descriptor files, which describe the features and
capabilities of individual firmwares.

libvirt supports two methods of selecting virtual machine UEFI firmware: automatic and
manual. With automatic selection, libvirt will select a frmware based on an optional set of
features specified by the user. If no explicit features are specified, Libvirt will select a firmware
with secure boot enabled and Microsoft keys enrolled. When using manual selection, the full path
of the firmware and any optional settings must be explicitly specified. Users can reference the
JSON descriptor files to find a firmware that satisfies their requirements.

Tip

@ The directory /usr/share/qgemu/firmware contains all the JSON files used by
libvirt. This file gives you detailed information about the firmwares, including the
capabilities of the features.

When using virt-install, automatic firmware selection is enabled by specifying the
firmware=efi parameter to the boot option, for example, - -boot firmware=efi. The selection
process can be influenced by requesting the presence or absence of firmware features. The
following example illustrates automatic firmware selection with UEFI Secure Boot disabled.
>virt-install --connect qemu:///system --virt-type kvm \

--name slel5sp5 --memory 1024 --disk size=10 --cdrom /dev/cdrom --graphics vnc \
--boot firmware=efi,firmware.feature@.name=secure-

boot, firmware.feature0.enabled=no \
--0s-variant slel5sp5

69

CHAPTER 10. GUEST INSTALLATION

Note

@ To ensure persistent VM Guests use the same firmware and variable store
throughout their lifetime, 1ibvirt will record automatically selected firmware in the
VM Guest XML configuration. Automatic firmware selection is a one-time activity.
Once firmware has been selected, it will only change if the VM Guest administrator
explicitly does so using the manual firmware selection method.

The loader and nvram parameters are used for manual firmware selection. loader is required, and
nvram defines an optional UEFI variable store. The following example illustrates manual firmware
selection with secure boot enabled.

>virt-install --connect gemu:///system --virt-type kvm \

--name slel5sp5 --memory 1024 --disk size=10 --cdrom /dev/cdrom --graphics vnc \
--boot loader=/usr/share/qemu/ovmf-x86 64-smm-

code.bin, loader. readonly=yes, loader.type=pflash, loader.secure=yes,nvram.template

=/usr/share/qgemu/ovmf-x86 64-smm-vars.bin \
--0s-variant slel5sp5

Note

@ libvirt cannot modify any characteristics of the UEFI firmwares. For example, it
cannot disable UEFI Secure Boot in a firmware that has UEFI Secure Boot enabled,
even when specifying loader.secure=no. 1ibvirt will ensure the specified firmware
can satisfy any specified features. For example, it will reject configuration that
disables secure boot with loader.secure=no, but specifies a firmware that has UEFI
Secure Boot enabled.

The gemu-ovmf-x86 64 package contains several UEFI firmware images. For example, the
following subset supports SMM, UEFI Secure Boot, and has either Microsoft, openSUSE or SUSE
UEFI CA keys enrolled:

#rpm -ql qemu-ovmf-x86_64
I

/usr/share/qemu/ovmf-x86 64-smm-ms-code.bin
/usr/share/gemu/ovmf-x86 64-smm-ms-vars.bin
/usr/share/qemu/ovmf-x86 64-smm-opensuse-code.bin
/usr/share/qemu/ovmf-x86 64-smm-opensuse-vars.bin
/usr/share/qemu/ovmf-x86 64-smm-suse-code.bin
/usr/share/gemu/ovmf-x86 64-smm-suse-vars.bin

[...]

For the AArch64 architecture, the package is named gemu-uefi-aarch32:

70

#rpm -ql gemu-uefi-aarch32
]

/Qé%/share/qemu/aavmf—aarch32—c0de.bin

/usr/share/qemu/aavmf-aarch32-vars.bin

/usr/share/gemu/firmware

/usr/share/gemu/firmware/60-aavmf-aarch32.json
/usr/share/qemu/gemu-uefi-aarch32.bin

The *-code.bin files are the UEFI firmware files. The *-vars.bin files are corresponding
variable store images that can be used as a template for a per-VM non-volatile store. libvirt
copies the specified vars template to a per-VM path under /var/lib/libvirt/gemu/nvram/
when first creating the VM. Files without code or vars in the name can be used as a single UEFI

image. They are not as useful, since no UEFI variables persist across power cycles of the VM.

The *-ms*.bin files contain UEFI CA keys as found on real hardware. Therefore, they are
configured as the default in Libvirt. Likewise, the *-suse*.bin files contain preinstalled SUSE
keys. There is also a set of files with no preinstalled keys.

For more details on OVMF, see http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-
Cc770f8c.txt.

10.3.2. Memory ballooning with Windows guests

Memory ballooning is a method to change the amount of memory used by VM Guest at runtime.
Both the KVM and Xen hypervisors provide this method, but it needs to be supported by the guest
as well.

While openSUSE and SLE-based guests support memory ballooning, Windows guests need the
Virtual Machine Driver Pack (VMDP) to provide ballooning. To set the maximum memory greater

than the initial memory configured for Windows guests, follow these steps:

1. Install the Windows guest with the maximum memory equal or less than the initial value.
2. Install the Virtual Machine Driver Pack in the Windows guest to provide required drivers.
3. Shut down the Windows guest.

4. Reset the maximum memory of the Windows guest to the required value.

5. Start the Windows guest again.

10.3.3. Including add-on products in the installation

Certain operating systems, such as SUSE Linux Enterprise Server, offer to include add-on
products in the installation process. If the add-on product installation source is provided via SUSE
Customer Center, no special VM Guest configuration is needed. If it is provided via CD/DVD or ISO
image, it is necessary to provide the VM Guest installation system with both the standard
installation medium image and the image of the add-on product.

71

http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt
http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt
https://www.suse.com/products/vmdriverpack/

CHAPTER 10. GUEST INSTALLATION

If you are using the GUI-based installation, select Customize Configuration Before Install in the last
step of the wizard and add the add-on product ISO image via Add Hardware > Storage. Specify the
path to the image and set the Device Type to CD-ROM.

If you are installing from the command line, you need to set up the virtual CD/DVD drives with the
- -disk parameter rather than with - -cdrom. The device that is specified first is used for booting.
The following example installs SUSE Linux Enterprise Server 15 together with SUSE Enterprise
Storage extension:

>virt-install \

--name slesl5+storage \

--memory 2048 --disk size=10 \

--disk /path/to/SLE-15-SP7-Full-ARCH-GM-medial.iso-x86 64-GM-
DVD1.iso,device=cdrom \

--disk /path/to/SUSE-Enterprise-Storage-VERSION-DVD-ARCH-
Medial.iso,device=cdrom \

--graphics vnc --os-variant slel5

72

Chapter 11. Basic VM Guest management

Most management tasks, such as starting or stopping a VM Guest, can either be done using the

graphical application Virtual Machine Manager or on the command line using virsh. Connecting

to the graphical console via VNC is only possible from a graphical user interface.

S

Managing VM Guests on a remote VM Host Server

If started on a VM Host Server, the Libvirt tools Virtual Machine Manager, virsh,
and virt-viewer can be used to manage VM Guests on the host. However, it is
also possible to manage VM Guests on a remote VM Host Server. This requires
configuring remote access for libvirt on the host. For instructions, see
Chapter 12, Connecting and authorizing.

To connect to such a remote host with Virtual Machine Manager, you need to set up a
connection as explained in the section called “Managing connections with Virtual
Machine Manager”. If connecting to a remote host using virsh or virt-viewer,
you need to specify a connection URI with the parameter - c, for example, virsh -c
gemu+tls://saturn.example.com/system or virsh -c xen+ssh://. The
form of connection URI depends on the connection type and the hypervisor—see the
section called “Connecting to a VM Host Server” for details.

Examples in this chapter are all listed without a connection URI.

11.1. Listing VM Guests

The VM Guest listing shows all VM Guests managed by Libvirt on a VM Host Server.

11.1.1. Listing VM Guests with Virtual Machine Manager

The main window of the Virtual Machine Manager lists all VM Guests for each VM Host Server it is
connected to. Each VM Guest entry contains the machine's name, its status (Running, Paused, or

Shutoff) displayed as an icon and literally, and a CPU usage bar.

11.1.2. Listing VM Guests with virsh

Use the command virshlist to get a list of VM Guests:

List all running guests

>virsh list

List all running and inactive guests

>virsh list --all

73

CHAPTER 11. BASIC VM GUEST MANAGEMENT

For more information and further options, see virsh help list orman 1 virsh.
11.2. Accessing the VM Guest via console

VM Guests can be accessed via a VNC connection (graphical console) or, if supported by the
guest operating system, via a serial console.

11.2.1. Opening a graphical console

Opening a graphical console to a VM Guest lets you interact with the machine like a physical host
via a VNC connection. If accessing the VNC server requires authentication, you are prompted to
enter a user name (if applicable) and a password.

When you click into the VNC console, the cursor is “grabbed” and cannot be used outside the
console anymore. To release it, press ALt—Ctrl.

Seamless (absolute) cursor movement

@ To prevent the console from grabbing the cursor and to enable seamless cursor
movement, add a tablet input device to the VM Guest. See the section called “Input
devices” for more information.

Certain key combinations such as Ctrl-Alt-Delete are interpreted by the host system and are
not passed to the VM Guest. To pass such key combinations to a VM Guest, open the Send Key
menu from the VNC window and choose the desired key combination entry. The Send Key menu is
only available when using Virtual Machine Manager and virt-viewer. With Virtual Machine
Manager, you can alternatively use the “sticky key” feature as explained in Passing key
combinations to virtual machines.

Supported VNC viewers

@ Principally all VNC viewers can connect to the console of a VM Guest. However, if
you are using SASL authentication and/or TLS/SSL connection to access the guest,
the options are limited. Common VNC viewers such as tightvnc or tigervnc
support neither SASL authentication nor TLS/SSL. The only supported alternative to
Virtual Machine Manager and virt-viewer is Remmina (refer to the section called
“Remmina: the remote desktop client” in “Administration Guide”).

11.2.1.1. Opening a graphical console with Virtual Machine Manager

1. In the Virtual Machine Manager, right-click a VM Guest entry.

2. Choose Open from the pop-up menu.

74

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

11.2.1.2. Opening a graphical console with virt-viewer

virt-viewer is a simple VNC viewer with added functionality for displaying VM Guest consoles.
For example, it can be started in “wait” mode, where it waits for a VM Guest to start before it
connects. It also supports automatically reconnecting to a VM Guest that is rebooted.

virt-viewer addresses VM Guests by name, by ID or by UUID. Use virshlist --all to get
this data.

To connect to a guest that is running or paused, use either the ID, UUID or name. VM Guests that
are shut off do not have an ID—you can only connect to them by UUID or name.

Connect to guest with the ID 8
>virt-viewer 8

Connect to the inactive guest named sles12; the connection window opens once the guest
starts

>virt-viewer --wait slesl2

With the - -wait option, the connection is upheld even if the VM Guest is not running at the
moment. When the guest starts, the viewer is launched.

For more information, see virt-viewer--helporman 1 virt-viewer.

Password input on remote connections with SSH

@ When using virt-viewer to open a connection to a remote host via SSH, the SSH
password needs to be entered twice. The first time for authenticating with Libvirt,
the second time for authenticating with the VNC server. The second password needs
to be provided on the command line where virt-viewer was started.

11.2.2. Opening a serial console

Accessing the graphical console of a virtual machine requires a graphical environment on the client
accessing the VM Guest. As an alternative, virtual machines managed with libvirt can also be
accessed from the shell via the serial console and virsh. To open a serial console to a VM Guest
named “sles12”, run the following command:

>virsh console slesl12

virsh console takes two optional flags: - -safe ensures exclusive access to the console, - -
force disconnects any existing sessions before connecting. Both features need to be supported
by the guest operating system.

75

CHAPTER 11. BASIC VM GUEST MANAGEMENT

Being able to connect to a VM Guest via serial console requires that the guest operating system
supports serial console access and is properly supported. Refer to the guest operating system
manual for more information.

Enabling serial console access for SUSE Linux Enterprise and openSUSE

@ guests

Serial console access in SUSE Linux Enterprise and openSUSE is disabled by
default. To enable it, proceed as follows:

SLES 12, 15 and openSUSE

Launch the YaST Boot Loader module and switch to the Kernel Parameters
tab. Add console=ttyS0O to the field Optional Kernel Command Line
Parameter.

SLES 11

Launch the YaST Boot Loader module and select the boot entry for which to
activate serial console access. Choose Edit and add console=ttyS0 to the
field Optional Kernel Command Line Parameter. Additionally, edit /etc/
inittab and uncomment the line with the following content:

#50:12345: respawn:/sbhin/agetty -L 9600 ttySO vt102

11.3. Changing a VM Guest's state: start, stop, pause

Starting, stopping or pausing a VM Guest can be done with either Virtual Machine Manager or
virsh. You can also configure a VM Guest to be automatically started when booting the VM Host
Server.

When shutting down a VM Guest, you may either shut it down gracefully, or force the shutdown.
The latter is equivalent to pulling the power plug on a physical host and is only recommended if
there are no alternatives. Forcing a shutdown may cause file system corruption and loss of data on
the VM Guest.

76

Graceful shutdown

@ To be able to perform a graceful shutdown, the VM Guest must be configured to
support ACPI. If you have created the guest with the Virtual Machine Manager, ACPI
should be available in the VM Guest.

Depending on the guest operating system, availability of ACPI may not be sufficient
to perform a graceful shutdown. It is strongly recommended to test shutting down and
rebooting a guest before using it in production. openSUSE or SUSE Linux Enterprise
Desktop, for example, can require Polkit authorization for shutdown and reboot. Make
sure this policy is turned off on all VM Guests.

If ACPI was enabled during a Windows XP/Windows Server 2003 guest installation,
turning it on in the VM Guest configuration only is not sufficient. For more information,
see:

« https://support.microsoft.com/en-us/kb/314088

« https://support.microsoft.com/en-us/kb/309283

Regardless of the VM Guest's configuration, a graceful shutdown is always possible
from within the guest operating system.

11.3.1. Changing a VM Guest's state with Virtual Machine Manager

Changing a VM Guest's state can be done either from Virtual Machine Manager's main window, or
from a VNC window.

Procedure 11.1. State change from the Virtual Machine Manager window
1. Right-click a VM Guest entry.
2. Choose Run, Pause, or one of the Shutdown options from the pop-up menu.

Procedure 11.2. State change from the VNC window

1. Open a VNC Window as described in the section called “Opening a graphical console with
Virtual Machine Manager”.

2. Choose Run, Pause, or one of the Shut Down options either from the toolbar or from the
Virtual Machine menu.

77

https://support.microsoft.com/en-us/kb/314088
https://support.microsoft.com/en-us/kb/309283

CHAPTER 11. BASIC VM GUEST MANAGEMENT

11.3.1.1. Automatically starting a VM Guest

You can automatically start a guest when the VM Host Server boots. This feature is not enabled by
default and needs to be enabled for each VM Guest individually. There is no way to activate it
globally.

1. Double-click the VM Guest entry in Virtual Machine Manager to open its console.
2. Choose View > Details to open the VM Guest configuration window.
3. Choose Boot Options and check Start virtual machine on host boot up.

4. Save the new configuration with Apply.

11.3.2. Changing a VM Guest's state with virsh
In the following examples, the state of a VM Guest named “sles12” is changed.

Start

>virsh start slesl2
Pause

>virsh suspend slesl2
Resume (a suspended VM Guest)

>virsh resume slesl2
Reboot

>virsh reboot slesl2
Graceful shutdown

>virsh shutdown slesl2
Force shutdown

>virsh destroy slesl2
Turn on automatic start

>virsh autostart slesl2
Turn off automatic start

>virsh autostart --disable slesl2

11.4. Saving and restoring the state of a VM Guest

Saving a VM Guest preserves the exact state of the guest’'s memory. The operation is similar to
hibernating a computer. A saved VM Guest can be quickly restored to its previously saved running
condition.

78

When saved, the VM Guest is paused, its current memory state is saved to disk, and then the
guest is stopped. The operation does not make a copy of any portion of the VM Guest’s virtual
disk. The amount of time taken to save the virtual machine depends on the amount of memory
allocated. When saved, a VM Guest's memory is returned to the pool of memory available on the
VM Host Server.

The restore operation loads a VM Guest's previously saved memory state file and starts it. The
guest is not booted but instead resumed at the point where it was previously saved. The operation
is similar to coming out of hibernation.

The VM Guest is saved to a state file. Make sure there is enough space on the partition you are
going to save to. For an estimation of the file size in megabytes to be expected, issue the following
command on the guest:

>free -mh | awk '/“Mem:/ {print $3}'

Always restore saved guests

After using the save operation, do not boot or start the saved VM Guest. Doing so
would cause the machine's virtual disk and the saved memory state to get out of
synchronization. This can result in critical errors when restoring the guest.

To be able to work with a saved VM Guest again, use the restore operation. If you
used virsh to save a VM Guest, you cannot restore it using Virtual Machine
Manager. In this case, make sure to restore using virsh.

Synchronize VM Guest's time after restoring it

o If you restore the VM Guest after a long pause (hours) since it was saved, its time
synchronization service, for example, chronyd, may refuse to synchronize its time.
In this case, manually synchronize VM Guest's time. For example, for KVM hosts,
you can use the QEMU guest agent and instruct the guest with the guest-set-
time. Refer to Chapter 22, QEMU guest agent for more details.

Only for VM Guests with disk types raw, gcow2

o Saving and restoring VM Guests is only possible if the VM Guest is using a virtual
disk of the type raw (.img), or gcow?2.

79

CHAPTER 11. BASIC VM GUEST MANAGEMENT

11.4.1. Saving/restoring with Virtual Machine Manager
Procedure 11.3. Saving a VM Guest

1. Open a VNC connection window to a VM Guest. Make sure the guest is running.
2. Choose Virtual Machine > Shutdown > Save.
Procedure 11.4. Restoring a VM Guest
1. Open a VNC connection window to a VM Guest. Make sure the guest is not running.

2. Choose Virtual Machine > Restore.

If the VM Guest was previously saved using Virtual Machine Manager, you are not offered an
option to Run the guest. However, note the caveats on machines saved with virsh outlined
in Always restore saved guests.

11.4.2. Saving and restoring with virsh
Save a running VM Guest with the command virshsave and specify the file which it is saved to.

Save the guest named opensusel3
>virsh save opensusel3 /virtual/saves/opensusel3.vmsav
Save the guest with the ID 37
>virsh save 37 /virtual/saves/opensusel3.vmsave
To restore a VM Guest, use virshrestore:
>virsh restore /virtual/saves/opensusel3.vmsave

11.5. Creating and managing snapshots

VM Guest snapshots are snapshots of the complete virtual machine including the state of CPU,
RAM, devices and the content of all writable disks. To use virtual machine snapshots, all the
attached hard disks need to use the gcow?2 disk image format, and at least one of them needs to
be writable.

Snapshots let you restore the state of the machine at a particular point in time. This is useful when
undoing a faulty configuration or the installation of a lot of packages. After starting a snapshot that
was created while the VM Guest was shut off, you need to boot it. Any changes written to the disk
afterward are lost when starting the snapshot.

Note

@ Snapshots are supported on KVM VM Host Servers only.

80

11.5.1. Terminology

There are several specific terms used to describe the types of snapshots:

Internal snapshots

Snapshots that are saved into the gcow? file of the original VM Guest. The file holds both the
saved state of the snapshot and the changes made since the snapshot was taken. The main
advantage of internal snapshots is that they are all stored in one file and therefore it is easy
to copy or move them across multiple machines.

External snapshots

When creating an external snapshot, the original gcow? file is saved and made read-only,
while a new gcow? file is created to hold the changes. The original file is sometimes called a
backing or base file, while the new file with all the changes is called an overlay or derived
file. External snapshots are useful when performing backups of VM Guests. However,
external snapshots are not supported by Virtual Machine Manager, and cannot be deleted by
virsh directly. For more information on external snapshots in QEMU, refer to the section
called “Manipulate disk images effectively”.

Live shapshots

Snapshots created when the original VM Guest is running. Internal live snapshots support
saving the devices, and memory and disk states, while external live snapshots with virsh
support saving either the memory state, or the disk state, or both.

Offline snapshots

Snapshots created from a VM Guest that is shut off. This ensures data integrity as all the
guest's processes are stopped and no memory is in use.

11.5.2. Creating and managing snapshots with Virtual Machine Manager

Internal snapshots only

o Virtual Machine Manager supports only internal snapshots, either live or offline.

To open the snapshot management view in Virtual Machine Manager, open the VNC window as
described in the section called “Opening a graphical console with Virtual Machine Manager”. Now
either choose View > Snapshots or click Manage VM Snapshots in the toolbar.

81

CHAPTER 11. BASIC VM GUEST MANAGEMENT

File Virtual Machine View Send Key

- w (o) v |

Basic installation incl. SMT fini... Snapshot 'Basic installation incl. SMT for CLOUD4":

VM State: Shutoff . This was the most recently applied snapshot.

Basic installation incl. SMT for ... X
" VM State: Shutoff Timestamp: 2014-07-07 11:27:47

g Basic installation incl. SMT for ... VM State: SHES Shutoff
VM State: Shutoff Description;
Basic installation incl. SMT... v
VM State: Shutoff
g Betal Running
VM State: Shutoff Screenshot: No screenshot available

Beta2 prepared
VM State: Shutoff

Beta2 running
VM State: Shutoff

Beta3 admin node deployed
VM State: Shutoff

Beta3 prepared
VM State: Shutoff

Beta3 running
VM State: Shutoff

Cloud2 GM running

+ ®

The list of existing snapshots for the chosen VM Guest is displayed in the left-hand part of the
window. The snapshot that was last started is marked with a green tick. The right-hand part of the
window shows details of the snapshot currently marked in the list. These details include the
snapshot's title and time stamp, the state of the VM Guest at the time the snapshot was taken and
a description. Snapshots of running guests also include a screenshot. The Description can be
changed directly from this view. Other snapshot data cannot be changed.

11.5.2.1. Creating a snapshot
To take a new snapshot of a VM Guest, proceed as follows:

1. Optionally, shut down the VM Guest to create an offline snapshot.
2. Click Add in the bottom left corner of the VNC window.
The window Create Snapshot opens.

3. Provide a Name and, optionally, a description. The name cannot be changed after the
shapshot has been taken. To be able to identify the snapshot later easily, use a “speaking
name”.

4. Confirm with Finish.

11.5.2.2. Deleting a snapshot
To delete a snapshot of a VM Guest, proceed as follows:

1. Click Delete in the bottom left corner of the VNC window.

2. Confirm the deletion with Yes.

82

11.5.2.3. Starting a snapshot
To start a snapshot, proceed as follows:

1. Click Run in the bottom left corner of the VNC window.

2. Confirm the start with Yes.

11.5.3. Creating and managing snapshots with virsh

To list all existing snapshots for a domain (admin_server in the following), run the snapshot-
list command:

>virsh snapshot-1list --domain sle-ha-nodel
Name Creation Time State
sleha 12 sp2 b2 two node cluster 2016-06-06 15:04:31 +0200 shutoff
sleha 12 sp2 b3 two node cluster 2016-07-04 14:01:41 +0200 shutoff
sleha 12 sp2 b4 two node cluster 2016-07-14 10:44:51 +0200 shutoff
sleha 12 sp2 rc3 two node cluster 2016-10-10 09:40:12 +0200 shutoff
sleha 12 sp2 gmc two node cluster 2016-10-24 17:00:14 +0200 shutoff
sleha 12 sp3 gm two node cluster 2017-08-02 12:19:37 +0200 shutoff
sleha 12 sp3 rcl two node cluster 2017-06-13 13:34:19 +0200 shutoff
sleha 12 sp3 rc2 two node cluster 2017-06-30 11:51:24 +0200 shutoff
sleha 15 b6 two node cluster 2018-02-07 15:08:09 +0100 shutoff
sleha 15 rcl one-node 2018-03-09 16:32:38 +0100 shutoff

The snapshot that was last started is shown with the snapshot-current command:

>virsh snapshot-current --domain admin server
Basic installation incl. SMT for CLOUD4

Details about a particular snapshot can be obtained by running the snapshot-info command:

>virsh snapshot-info --domain admin server \
-name "Basic installation incl. SMT for CLOUD4"

Name: Basic installation incl. SMT for CLOUD4
Domain: admin server

Current: yes

State: shutoff

Location: internal

Parent: Basic installation incl. SMT for CLOUD3-HA
Children: 0

Descendants: 0

Metadata: yes

11.5.3.1. Creating internal snapshots

To take an internal snapshot of a VM Guest, either a live or offline, use the snapshot-create-
as command as follows:

>virsh snapshot-create-as --domain admin server@ --name "Snapshot 1"@® \
--description "First snapshot"®©

© Domain name. Mandatory.

2]

83

CHAPTER 11. BASIC VM GUEST MANAGEMENT

Name of the snapshot. It is recommended to use a “speaking name”, since that makes it easier
to identify the snapshot. Mandatory.

© Description for the snapshot. Optional.

11.5.3.2. Creating external snapshots
With virsh, you can take external snapshots of the guest's memory state, disk state, or both.

To take both live and offline external snapshots of the guest's disk, specify the --disk-only
option:

>virsh snapshot-create-as --domain admin server --name \
"0ffline external snapshot" --disk-only

You can specify the - -diskspec option to control how the external files are created:

>virsh snapshot-create-as --domain admin server --name \
"0ffline external snapshot" \
--disk-only --diskspec vda,snapshot=external, file=/path/to/snapshot file

To take a live external snapshot of the guest's memory, specify the --live and --memspec
options:

>virsh snapshot-create-as --domain admin server --name \
"0ffline external snapshot" --live \
--memspec snapshot=external, file=/path/to/snapshot file

To take a live external snapshot of both the guest's disk and memory states, combine the - -live,
--diskspec, and - -memspec options:

>virsh snapshot-create-as --domain admin server --name \
"0ffline external snapshot" --live \
--memspec snapshot=external, file=/path/to/snapshot file
--diskspec vda,snapshot=external, file=/path/to/snapshot file

Refer to the SNAPSHOT COMMANDS section inman 1 virsh for more details.

11.5.3.3. Deleting a snapshot

External snapshots cannot be deleted with virsh. To delete an internal snapshot of a VM Guest
and restore the disk space it occupies, use the snapshot-delete command:

>virsh snapshot-delete --domain admin server --snapshotname "Snapshot 2"

11.5.3.4. Starting a snapshot

To start a snapshot, use the snapshot-revert command:
>virsh snapshot-revert --domain admin server --snapshotname "Snapshot 1"

To start the current snapshot (the one the VM Guest was started off), it is sufficient to use - -
current rather than specifying the snapshot name:

84

>virsh snapshot-revert --domain admin server --current

11.6. Deleting a VM Guest

By default, deleting a VM Guest using virsh removes only its XML configuration. Since attached
storage is not deleted by default, you can reuse it with another VM Guest. With Virtual Machine
Manager, you can also delete a guest's storage files as well.

11.6.1. Deleting a VM Guest with Virtual Machine Manager

1. In the Virtual Machine Manager, right-click a VM Guest entry.
2. From the context menu, choose Delete.

3. A confirmation window opens. Clicking Delete permanently erases the VM Guest. The
deletion is not recoverable.

You can also permanently delete the guest's virtual disk by activating Delete Associated
Storage Files. The deletion is not recoverable either.

11.6.2. Deleting a VM Guest with virsh

To delete a VM Guest, it needs to be shut down first. It is not possible to delete a running guest.
For information on shutting down, see the section called “Changing a VM Guest's state: start, stop,
pause”.

To delete a VM Guest with virsh, run virshundefinevVM_ NAME.

>virsh undefine slesl2

There is no option to automatically delete the attached storage files. If they are managed by libvirt,
delete them as described in the section called “Deleting volumes from a storage pool”.

11.7. Monitoring

11.7.1. Monitoring with Virtual Machine Manager

After starting Virtual Machine Manager and connecting to the VM Host Server, a CPU usage graph
of all the running guests is displayed.

It is also possible to get information about disk and network usage with this tool, however, you
must first activate this in Preferences:

1. Run virt-manager.
2. Select Edit > Preferences.
3. Change the tab from General to Polling.

4. Activate the check boxes for the kind of activity you want to see: Poll Disk I/O, Poll Network I/
O, and Poll Memory stats.

85

CHAPTER 11. BASIC VM GUEST MANAGEMENT

5. If desired, also change the update interval using Update status every n seconds.
6. Close the Preferences dialog.

7. Activate the graphs that should be displayed under View > Graph.

Afterward, the disk and network statistics are also displayed in the main window of the Virtual
Machine Manager.

More precise data is available from the VNC window. Open a VNC window as described in the
section called “Opening a graphical console”. Choose Details from the toolbar or the View menu.
The statistics are displayed from the Performance entry of the left-hand tree menu.

11.7.2. Monitoring with virt-top

virt-top is a command-line tool similar to the well-known process monitoring tool top. virt-
top uses libvirt and therefore is capable of showing statistics for VM Guests running on different
hypervisors. It is recommended to use virt-top instead of hypervisor-specific tools like xentop.

By default virt-top shows statistics for all running VM Guests. Among the data that is displayed
is the percentage of memory used (SMEM) and CPU (%CPU) and the uptime of the guest (TIME).
The data is updated regularly (every three seconds by default). The following shows the output on
a VM Host Server with seven VM Guests, four of them inactive:

virt-top 13:40:19 - x86 64 8/8CPU 1283MHz 16067MB 7.6% 0.5%

7 domains, 3 active, 3 running, 0 sleeping, O paused, 4 inactive D:0 0:0 X:0

CPU: 6.1% Mem: 3072 MB (3072 MB by guests)

ID S RDRQ WRRQ RXBY TXBY %CPU %MEM TIME NAME

7 R 123 1 18K 196 5.8 6.0 0:24.35 sledl2 spl

6 R 1 0 18K 0 0.2 6.0 0:42.51 slesl2 spl

5R 0 0 18K 0 0.1 6.0 85:45.67 opensuse leap

- (Ubuntu T1410)
(debian 780)

- (fedora 21)
(slesllsp3)

By default the output is sorted by ID. Use the following key combinations to change the sort field:

Shift— P : CPU usage

Shift— M: Total memory allocated by the guest
Shift—T:time

Shift-I:ID

To use any other field for sorting, press Shift—F and select a field from the list. To toggle the sort
order, use Shift-R.

virt-top also supports different views on the VM Guests data, which can be changed on-the-fly
by pressing the following keys:

0: default view

86

1: show physical CPUs

2: show network interfaces

3: show virtual disks

virt-top supports more hot keys to change the view of the data and many command line
switches that affect the behavior of the program. For more information, see man 1 virt-top.

11.7.3. Monitoring with kvm_stat

kvm_stat can be used to trace KVM performance events. It monitors /sys/kernel/debug/
kvm, so it needs the debugfs to be mounted. On SUSE Linux Enterprise Server it should be
mounted by default. In case it is not mounted, use the following command:

>sudo mount -t debugfs none /sys/kernel/debug

kvm_stat can be used in three different modes:

kvm stat
kvm stat -1

kvm stat -1 > kvmstats.log

update in 1 second intervals

1 second snapshot

update in 1 second intervals in log format
can be imported to a spreadsheet

Example 11.1. Typical output of kvm_stat

kvm statistics

efer reload
exits

fpu reload

halt exits

halt wakeup

host state reload
hypercalls
insn_emulation
insn _emulation fail
invlpg

io_exits
irq_exits

irg injections
irg window
largepages

mmio exits
mmu_cache miss
mmu_flooded
mmu_pde zapped
mmu_pte updated
mmu_pte write
mmu_recycled
mmu_shadow zapped
mmu_unsync

nmi injections
nmi window

pf fixed

pf guest
remote tlb flush
request irq
signal exits

tlb flush

87

0
11378946
62144
414866
260358
539650
0
6227331
0
227281
113148
168474
482804
51270

0

6925
71820
35420
64763

0
213782
0
128690
46

0

0
1553821
1018832
174007
0

0
394182

0
218130
152
100
50
249
0
173067
0
47
18
127
123
18
0

0
19
9
20
0
29
0
17
-1
0

0
857
562
37
0

0
148

CHAPTER 11. BASIC VM GUEST MANAGEMENT

See https://clalance.blogspot.com/2009/01/kvm-performance-tools.html for further information on
how to interpret these values.

88

https://clalance.blogspot.com/2009/01/kvm-performance-tools.html

Chapter 12. Connecting and authorizing

Managing several VM Host Servers, each hosting multiple VM Guests, quickly becomes difficult.
One benefit of Libvirt is the ability to connect to several VM Host Servers at once, providing a
single interface to manage all VM Guests and to connect to their graphical console.

To ensure only authorized users can connect, Libvirt offers several connection types (via TLS,
SSH, Unix sockets, and TCP) that can be combined with different authorization mechanisms
(socket, Polkit, SASL and Kerberos).

12.1. Authentication

The power to manage VM Guests and to access their graphical console is something that should
be restricted to a well-defined circle of persons. To achieve this goal, you can use the following
authentication techniques on the VM Host Server:

» Access control for Unix sockets with permissions and group ownership. This method is
available for Libvirtd connections only.

» Access control for Unix sockets with Polkit. This method is available for local 1ibvirtd
connections only.

« User name and password authentication with SASL (Simple Authentication and Security
Layer). This method is available for both libvirtd and VNC connections. Using SASL
does not require real user accounts on the server, since it uses its own database to store
user names and passwords. Connections authenticated with SASL are encrypted.

« Kerberos authentication. This method, available for libvirtd connections only, is not
covered in this manual. Refer to https://libvirt.org/auth.html#ACL_server kerberos for details.

« Single password authentication. This method is available for VNC connections only.
Authentication for Libvirtd and VNC needs to be configured separately

o Access to the VM Guest's management functions (via Libvirtd) and to its graphical
console always needs to be configured separately. When restricting access to the
management tools, these restrictions do not automatically apply to VNC connections.

When accessing VM Guests from remote via TLS/SSL connections, access can be indirectly
controlled on each client by restricting read permissions to the certificate's key file to a certain
group. See the section called “Restricting access (security considerations)” for details.

12.1.1. 1ibvirtd authentication

libvirtd authentication is configured in /etc/libvirt/libvirtd.conf. The configuration
made here applies to all Libvirt tools such as the Virtual Machine Manager or virsh.

89

https://libvirt.org/auth.html#ACL_server_kerberos

CHAPTER 12. CONNECTING AND AUTHORIZING

libvirt offers two sockets: a read-only socket for monitoring purposes and a read-write socket to
be used for management operations. Access to both sockets can be configured independently. By
default, both sockets are owned by root.root. Default access permissions on the read-write
socket are restricted to the user root (0700) and fully open on the read-only socket (0777).

The following instructions describe how to configure access permissions for the read-write socket.
The same instructions also apply to the read-only socket. All configuration steps need to be carried
out on the VM Host Server.

Default authentication settings on SUSE Linux Enterprise Server

@ The default authentication method on SUSE Linux Enterprise Server is access
control for Unix sockets. Only the user root may authenticate. When accessing the
libvirt tools as a non-root user directly on the VM Host Server, you need to
provide the root password through Polkit once. You are then granted access for the
current and for future sessions.

Alternatively, you can configure Libvirt to allow “system” access to non-privileged
users. See the section called “ “system” access for non-privileged users” for details.

Recommended authorization methods

Local connections

the section called “Local access control for Unix sockets with Polkit”

the section called “Access control for Unix sockets with permissions and group ownership”
Remote tunnel over SSH

the section called “Access control for Unix sockets with permissions and group ownership”
Remote TLS/SSL connection

the section called “User name and password authentication with SASL”

none (access controlled on the client side by restricting access to the certificates)

12.1.1.1. Access control for Unix sockets with permissions and group ownership

To grant access for non-root accounts, configure the sockets to be owned and accessible by a
certain group (libvirt in the following example). This authentication method can be used for
local and remote SSH connections.

1. In case it does not exist, create the group that should own the socket:

>sudo groupadd libvirt

90

Group needs to exist

0 The group must exist before restarting Libvirtd. If not, the restart fails.

2. Add the desired users to the group:
>sudo usermod --append --groups libvirt tux

3. Change the configuration in /etc/libvirt/libvirtd. conf as follows:
unix_sock group = "libvirt"@
unix_sock rw perms = "0770"@®

auth unix rw = "none"©

O Group ownership is set to the group libvirt.
© Sets the access permissions for the socket (s rwxrwx- - -).

© Disables other authentication methods (Polkit or SASL). Access is solely controlled by the
socket permissions.

4. Restart Libvirtd:

>sudo systemctl start libvirtd

12.1.1.2. Local access control for Unix sockets with Polkit

Access control for Unix sockets with Polkit is the default authentication method on SUSE Linux
Enterprise Server for non-remote connections. Therefore, no libvirt configuration changes are
needed. With Polkit authorization enabled, permissions on both sockets default to 0777 and each
application trying to access a socket needs to authenticate via Polkit.

Polkit authentication for local connections only
o Authentication with Polkit can only be used for local connections on the VM Host
Server itself, since Polkit does not handle remote authentication.
Two policies for accessing Libvirt's sockets exist:

« org.libvirt.unix.monitor: accessing the read-only socket

« org.libvirt.unix.manage: accessing the read-write socket

By default, the policy for accessing the read-write socket is to authenticate with the root password
once and grant the privilege for the current and for future sessions.

To grant users access to a socket without having to provide the root password, you need to
create a rule in /etc/polkit-1/rules.d. Create the file /etc/polkit-1/rules.d/10-

91

CHAPTER 12. CONNECTING AND AUTHORIZING

grant-libvirt with the following content to grant access to the read-write socket to all
members of the group libvirt:

polkit.addRule(function(action, subject) {
if (action.id == "org.libvirt.unix.manage" && subject.isInGroup("libvirt")) {
return polkit.Result.YES;

b
12.1.1.3. User name and password authentication with SASL

SASL provides user name and password authentication and data encryption (digest-md>5, by
default). Since SASL maintains its own user database, the users do not need to exist on the VM
Host Server. SASL is required by TCP connections and on top of TLS/SSL connections.

Plain TCP and SASL with digest-md5 encryption

o Using digest-md5 encryption on an otherwise not encrypted TCP connection does
not provide enough security for production environments. It is recommended to only
use it in testing environments.

SASL authentication on top of TLS/SSL

@ Access from remote TLS/SSL connections can be indirectly controlled on the client
side by restricting access to the certificate's key file. However, this may prove error-
prone when dealing with many clients. Using SASL with TLS adds security by
additionally controlling access on the server side.

To configure SASL authentication, proceed as follows:

1. Change the configuration in /etc/libvirt/libvirtd. conf as follows:
1. To enable SASL for TCP connections:
auth tcp = "sasl"
2. To enable SASL for TLS/SSL connections:
auth tls = "sasl"
2. Restart Libvirtd:
>sudo systemctl restart libvirtd

3. The libvirt SASL configuration file is located at /etc/sasl2/1libvirtd.conf. Normally,
there is no need to change the defaults. However, if using SASL on top of TLS, you may turn
off session encryption to avoid additional overhead (TLS connections are already encrypted)

92

by commenting the line setting the mech_1ist parameter. Only do this for TLS/SASL. For
TCP connections, this parameter must be set to digest-md>5.

#mech list: digest-md5

4. By default, no SASL users are configured, so no logins are possible. Use the following
commands to manage users:

Add the user tux

saslpasswd2 -a libvirt tux
Delete the user tux

saslpasswd2 -a libvirt -d tux
List existing users

sasldblistusers2 -f /etc/libvirt/passwd.db

virsh and SASL authentication

@ When using SASL authentication, you are prompted for a user name and password
every time you issue a virsh command. Avoid this by using virsh in shell mode.

12.1.2. VNC authentication

Since access to the graphical console of a VM Guest is not controlled by libvirt, but by the
specific hypervisor, it is always necessary to additionally configure VNC authentication. The main
configuration file is /etc/libvirt/<hypervisor>.conf. This section describes the QEMU/
KVM hypervisor, so the target configuration file is /etc/libvirt/qemu. conf.

VNC authentication for Xen

@ In contrast with KVM, Xen does not yet offer VNC authentication more sophisticated
than setting a password on a per-VM basis. See the <graphics
type='vnc'...libvirt configuration option below.

Two authentication types are available: SASL and single-password authentication. If you are using
SASL for 1ibvirt authentication, it is strongly recommended to use it for VNC authentication as
well—it is possible to share the same database.

A third method to restrict access to the VM Guest is to enable the use of TLS encryption on the
VNC server. This requires the VNC clients to have access to x509 client certificates. By restricting
access to these certificates, access can indirectly be controlled on the client side. Refer to the
section called “VNC over TLS/SSL: client configuration” for details.

93

CHAPTER 12. CONNECTING AND AUTHORIZING

12.1.2.1. User name and password authentication with SASL

SASL provides user name and password authentication and data encryption. Since SASL
maintains its own user database, the users do not need to exist on the VM Host Server. As with
SASL authentication for Libvirt, you may use SASL on top of TLS/SSL connections. Refer to the
section called “YNC over TLS/SSL: client configuration” for details on configuring these
connections.

To configure SASL authentication for VNC, proceed as follows:

1. Create a SASL configuration file. It is recommended to use the existing Libvirt file. If you
have already configured SASL for libvirt and are planning to use the same settings,
including the same user name and password database, a simple link is suitable:

>sudo ln -s /etc/sasl2/libvirt.conf /etc/sasl2/gemu.conf

If are setting up SASL for VNC only or you are planning to use a different configuration than
for Libvirt, copy the existing file to use as a template:

>sudo cp /etc/sasl2/libvirt.conf /etc/sasl2/qemu.conf

Then edit it according to your needs.

2. Change the configuration in /etc/libvirt/qemu. conf as follows:

vnc_listen = "0.0.0.0"
vnc sasl =1
sasldb path: /etc/libvirt/gemu passwd.db

The first parameter enables VNC to listen on all public interfaces (rather than to the local
host only), and the second parameter enables SASL authentication.

3. By default, no SASL users are configured, so no logins are possible. Use the following
commands to manage users:

Add the user tux
>saslpasswd2 -f /etc/libvirt/qemu passwd.db -a gemu tux
Delete the user tux
>saslpasswd2 -f /etc/libvirt/qemu passwd.db -a gemu -d tux
List existing users
>sasldblistusers2 -f /etc/libvirt/gemu passwd.db
4. Restart libvirtd:
>sudo systemctl restart libvirtd

5. Restart all VM Guests that have been running before changing the configuration. VM Guests
that have not been restarted cannot use SASL authentication for VNC connects.

94

Supported VNC viewers

@ SASL authentication is currently supported by Virtual Machine Manager and virt-
viewer. Both viewers also support TLS/SSL connections.

12.1.2.2. Single password authentication

Access to the VNC server may also be controlled by setting a VNC password. You can either set a
global password for all VM Guests or set individual passwords for each guest. The latter requires
editing the VM Guest's configuration files.

Always set a global password

@ If you are using single password authentication, it is good practice to set a global
password even if setting passwords for each VM Guest. This protects your virtual
machines with a “fallback” password if you forget to set a per-machine password. The
global password is only used if no other password is set for the machine.

Procedure 12.1. Setting a global VNC password

1. Change the configuration in /etc/libvirt/qgemu. conf as follows:

vnc_listen = "0.0.0.0"
vnc_password = "PASSWORD"

The first parameter enables VNC to listen on all public interfaces (rather than to the local
host only), and the second parameter sets the password. The maximum length of the
password is eight characters.

2. Restart libvirtd:
>sudo systemctl restart libvirtd

3. Restart all VM Guests that have been running before changing the configuration. VM Guests
that have not been restarted cannot use password authentication for VNC connects.

Procedure 12.2. Setting a VM Guest specific VNC password

1. Change the configuration in /etc/libvirt/qgemu.conf as follows to enable VNC to listen
on all public interfaces (rather than to the local host only).

vnc_listen = "0.0.0.0"

2. Open the VM Guest's XML configuration file in an editor. Replace VM_NAME in the following
example with the name of the VM Guest. The editor that is used defaults to $EDITOR. If that
variable is not set, vi is used.

>virsh edit VM NAME

95

CHAPTER 12. CONNECTING AND AUTHORIZING

3. Search for the element <graphics> with the attribute type="vnc"', for example:
<graphics type='vnc' port='-1' autoport='yes'/>

4. Add the passwd=PASSWORD attribute, save the file and exit the editor. The maximum length
of the password is eight characters.

<graphics type='vnc' port='-1' autoport='yes' passwd='PASSWORD'/>
5. Restart libvirtd:
>sudo systemctl restart libvirtd

6. Restart all VM Guests that have been running before changing the configuration. VM Guests
that have not been restarted cannot use password authentication for VNC connects.

Security of the VNC protocol

The VNC protocol is not considered to be safe. Although the password is sent
encrypted, it may be vulnerable when an attacker can sniff both the encrypted
password and the encryption key. Therefore, it is recommended to use VNC with
TLS/SSL or tunneled over SSH. virt-viewer, Virtual Machine Manager and
Remmina (refer to the section called “Remmina: the remote desktop client” in
“Administration Guide”) support both methods.

12.2. Connecting to a VM Host Server

To connect to a hypervisor with 1ibvirt, you need to specify a uniform resource identifier (URI).
This URI is needed with virsh and virt-viewer (except when working as root on the VM
Host Server) and is optional for the Virtual Machine Manager. Although the latter can be called with
a connection parameter (for example, virt-manager -c gemu:///system), it also offers a
graphical interface to create connection URIs. See the section called “Managing connections with
Virtual Machine Manager” for details.

HYPERVISOR@+PROTOCOL®: //USERGREMOTE®/CONNECTION TYPE®

O Specify the hypervisor. SUSE Linux Enterprise Server currently supports the following
hypervisors: test (testing purposes), gemu (KVM), and xen (Xen). This parameter is
mandatory.

® When connecting to a remote host, specify the protocol here. It can be one of: ssh (connection
via SSH tunnel), tcp (TCP connection with SASL/Kerberos authentication), tls (TLS/SSL
encrypted connection with authentication via x509 certificates).

© When connecting to a remote host, specify the user name and the remote host name. If no user
name is specified, the user name that has called the command ($USER) is used. See below for

96

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

more information. For TLS connections, the host name needs to be specified exactly as in the
x509 certificate.

O When connecting to the QEMU/KVM hypervisor, two connection types are accepted: system for
full access rights, or session for restricted access. Since session access is not supported on
SUSE Linux Enterprise Server, this documentation focuses on system access.

Example hypervisor connection URIs
test:///default
Connect to the local testing hypervisor.
gemu:///systemor xen:///system
Connect to the QEMU/Xen hypervisor on the local host having full access (type system).

gemu+ssh://tux@mercury.example.com/system or xen+ssh://
tux@mercury.example.com/system

Connect to the QEMU/Xen hypervisor on the remote host mercury.example.com. The
connection is established via an SSH tunnel.

gemu+tls://saturn.example.com/system or xen+tls://saturn.example.com/
system

Connect to the QEMU/Xen hypervisor on the remote host mercury.example.com. The
connection is established using TLS/SSL.

For more details and examples, refer to the 1ibvirt documentation at https://libvirt.org/uri.html.

User names in URIs

@ A user name needs to be specified when using Unix socket authentication
(regardless of whether using the user/password authentication scheme or Polkit).
This applies to all SSH and local connections.

There is no need to specify a user name when using SASL authentication (for TCP or
TLS connections) or when doing no additional server-side authentication for TLS
connections. With SASL, the user name is not evaluated—you are prompted for an
SASL user/password combination in any case.

12.2.1. “system” access for non-privileged users

As mentioned above, a connection to the QEMU hypervisor can be established using two different
protocols: session and system. A “session” connection is spawned with the same privileges as

97

https://libvirt.org/uri.html

CHAPTER 12. CONNECTING AND AUTHORIZING

the client program. Such a connection is intended for desktop virtualization, since it is restricted, for
example, no USB/PCI device assignments, no virtual network setup, limited remote access to
libvirtd.

The “system” connection intended for server virtualization has no functional restrictions but is, by
default, only accessible by root. However, with the addition of the DAC (Discretionary Access
Control) driver to libvirt, it is now possible to grant non-privileged users “system” access. To
grant “system” access to the user tux, proceed as follows:

Procedure 12.3. Granting “system” access to a regular user

1. Enable access via Unix sockets, as described in the section called “Access control for Unix
sockets with permissions and group ownership”. In that example, access to libvirt is granted
to all members of the group libvirt and tux made a member of this group. This ensures
that tux can connect using virsh or Virtual Machine Manager.

2. Edit /etc/libvirt/gemu. conf and change the configuration as follows:

user = "tux"
group = "libvirt"
dynamic ownership = 1

This ensures that the VM Guests are started by tux and that resources bound to the guest,
for example, virtual disks, can be accessed and modified by tux.

3. Make tux a member of the group kvm:
>sudo usermod --append --groups kvm tux

This step is needed to grant access to /dev/kvm, which is required to start VM Guests.

4. Restart Libvirtd:

>sudo systemctl restart libvirtd
12.2.2. Managing connections with Virtual Machine Manager

The Virtual Machine Manager uses a Connection for every VM Host Server it manages. Each
connection contains all VM Guests on the respective host. By default, a connection to the local
host is already configured and connected.

All configured connections are displayed in the Virtual Machine Manager main window. Active
connections are marked with a small triangle, which you can click to fold or unfold the list of VM
Guests for this connection.

Inactive connections are listed gray and are marked with Not Connected. Either double-click or
right-click it and choose Connect from the context menu. You can also Delete an existing
connection from this menu.

98

Editing existing connections

@ It is not possible to edit an existing connection. To change a connection, create a new
one with the desired parameters and delete the “old” one.

To add a new connection in the Virtual Machine Manager, proceed as follows:

1. Choose File > Add Connection
2. Choose the host's Hypervisor (Xen or QEMU/KVM)

3. To set up a remote connection, choose Connect to remote host. For more information, see
the section called “Configuring remote connections”.

In case of a remote connection, specify the Hostname of the remote machine in the format
USERNAME@REMOTE HOST.

Specifying a user name

o There is no need to specify a user name for TCP and TLS connections: in
these cases, it is not evaluated. However, for SSH connections, specifying a
user name is necessary when you want to connect as a user other than root.

4. If you do not want the connection to be automatically started when starting the Virtual
Machine Manager, deactivate Autoconnect.

5. Finish the configuration by clicking Connect.

12.3. Configuring remote connections

A major benefit of Libvirt is the ability to manage VM Guests on different remote hosts from a
central location. This section gives detailed instructions on how to configure server and client to
allow remote connections.

12.3.1. Remote tunnel over SSH (gemu+ssh or xen+ssh)

Enabling a remote connection that is tunneled over SSH on the VM Host Server only requires the
ability to accept SSH connections. Make sure the SSH daemon is started (systemctl status
sshd) and that the ports for service SSH are opened in the firewall.

User authentication for SSH connections can be done using traditional file user/group ownership
and permissions as described in the section called “Access control for Unix sockets with
permissions and group ownership”. Connecting as user tux (gemu+ssh://tuxsIVname;/
system or xen+ssh://tuxsIVname;/system) works out of the box and does not require
additional configuration on the libvirt side.

99

CHAPTER 12. CONNECTING AND AUTHORIZING

When connecting via SSH gemu+ssh://USERQ@SYSTEM or xen+ssh://USER@SYSTEM you need
to provide the password for USER. This can be avoided by copying your public key to
~USER/ .ssh/authorized keys on the VM Host Server as explained in the section called
“Public key authentication” in “Security and Hardening Guide”. Using gnome-keyring on the
machine from which you are connecting adds even more convenience. For more information, see
the section called “Automated public key logins with gnome-keyring” in “Security and Hardening
Guide”.

12.3.2. Remote TLS/SSL connection with x509 certificate (qemu+t1ls or xen+t1ls)

Using TCP connections with TLS/SSL encryption and authentication via x509 certificates is much
more complicated to set up than SSH, but it is a lot more scalable. Use this method if you need to
manage several VM Host Servers with a varying number of administrators.

12.3.2.1. Basic concept

TLS (Transport Layer Security) encrypts the communication between two computers by using
certificates. The computer starting the connection is always considered the “client”, using a “client
certificate”, while the receiving computer is always considered the “server”, using a “server
certificate”. This scenario applies, for example, if you manage your VM Host Servers from a central
desktop.

If connections are initiated from both computers, each needs to have a client and a server
certificate. This is the case, for example, if you migrate a VM Guest from one host to another.

Each x509 certificate has a matching private key file. Only the combination of certificate and
private key file can identify itself correctly. To assure that a certificate was issued by the assumed
owner, it is signed and issued by a central certificate called certificate authority (CA). Both the
client and the server certificates must be issued by the same CA.

User authentication

o Using a remote TLS/SSL connection only ensures that two computers are allowed to
communicate in a certain direction. Restricting access to certain users can indirectly
be achieved on the client side by restricting access to the certificates. For more
information, see the section called “Restricting access (security considerations)”.

libvirt also supports user authentication on the server with SASL. For more
information, see the section called “Central user authentication with SASL for TLS
sockets”.

100

https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf

12.3.2.2. Configuring the VM Host Server

The VM Host Server is the machine receiving connections. Therefore, the server certificates need
to be installed. The CA certificate needs to be installed, too. When the certificates are in place, TLS
support can be turned on for Libvirt.

1. Create the server certificate and export it together with the respective CA certificate.
2. Create the following directories on the VM Host Server:

>sudo mkdir -p /etc/pki/CA/ /etc/pki/libvirt/private/

Install the certificates as follows:

>sudo /etc/pki/CA/cacert.pem
>sudo /etc/pki/libvirt/servercert.pem
>sudo /etc/pki/libvirt/private/serverkey.pem

Restrict access to certificates

o Make sure to restrict access to certificates, as explained in the section called
“Restricting access (security considerations)”.

3. Enable TLS support by enabling the relevant socket and restarting Libvirtd:

>sudo systemctl stop libvirtd.service
>sudo systemctl enable --now libvirtd-tls.socket
>sudo systemctl start libvirtd.service

4. By default, Libvirt uses the TCP port 16514 for accepting secure TLS connections. Open
this port in the firewall.

Restarting Libvirtd with TLS enabled

o If you enable TLS for Libvirt, the server certificates need to be in place, otherwise
restarting Libvirtd fails. You also need to restart Libvirtd in case you change
the certificates.

12.3.2.3. Configuring the client and testing the setup

The client is the machine initiating connections. Therefore the client certificates need to be
installed. The CA certificate needs to be installed, too.

1. Create the client certificate and export it together with the respective CA certificate.
2. Create the following directories on the client:
>sudo mkdir -p /etc/pki/CA/ /etc/pki/libvirt/private/

Install the certificates as follows:

101

CHAPTER 12. CONNECTING AND AUTHORIZING

>sudo /etc/pki/CA/cacert.pem
>sudo /etc/pki/libvirt/clientcert.pem
>sudo /etc/pki/libvirt/private/clientkey.pem

Restrict access to certificates

o Make sure to restrict access to certificates, as explained in the section called
“Restricting access (security considerations)”.

3. Test the client/server setup by issuing the following command. Replace
mercury.example.com with the name of your VM Host Server. Specify the same fully
gualified host name as used when creating the server certificate.

#QEMU/KVM
virsh -c gemu+tls://mercury.example.com/system list --all

#Xen
virsh -c xen+tls://mercury.example.com/system list --all

If your setup is correct, you can see a list of all VM Guests registered with Libvirt on the
VM Host Server.

12.3.2.4. Enabling VNC for TLS/SSL connections

Currently, VNC communication over TLS is only supported by a few tools. Common VNC viewers
such as tightvnc or tigervnc do not support TLS/SSL. The only supported alternative to
Virtual Machine Manager and virt-viewer is remmina (refer to the section called “Remmina:
the remote desktop client” in “Administration Guide”).

12.3.2.4.1. VNC over TLS/SSL: VM Host Server configuration

To access the graphical console via VNC over TLS/SSL, you need to configure the VM Host Server
as follows:

1. Open ports for the service VNC in your firewall.
2. Create a directory /etc/pki/libvirt-vnc and link the certificates into this directory as

follows:

>sudo mkdir -p /etc/pki/libvirt-vnc && cd /etc/pki/libvirt-vnc
>sudo ln -s /etc/pki/CA/cacert.pem ca-cert.pem

>sudo ln -s /etc/pki/libvirt/servercert.pem server-cert.pem

>sudo ln -s /etc/pki/libvirt/private/serverkey.pem server-key.pem

3. Edit /etc/libvirt/qgemu. conf and set the following parameters:

vnc_listen = "0.0.0.0"
vnc tls =1
vnc tls x509 verify =1

4. Restart the Libvirtd:

102

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

>sudo systemctl restart libvirtd

VM Guests need to be restarted

o The VNC TLS setting is only set when starting a VM Guest. Therefore, you
need to restart all machines that have been running before making the
configuration change.

12.3.2.4.2. VNC over TLS/SSL: client configuration

The only action needed on the client side is to place the x509 client certificates in a location
recognized by the client of choice. However, Virtual Machine Manager and virt-viewer expect
the certificates in a different location. Virtual Machine Manager can either read from a system-wide
location applying to all users, or from a per-user location. Remmina (refer to the section called
“Remmina: the remote desktop client” in “Administration Guide”) asks for the location of certificates
when initializing the connection to the remote VNC session.

Virtual Machine Manager (virt-manager)

To connect to the remote host, Virtual Machine Manager requires the setup explained in the
section called “Configuring the client and testing the setup”. To be able to connect via VNC,
the client certificates also need to be placed in the following locations:

System-wide location
/etc/pki/CA/cacert.pem
/etc/pki/libvirt-vnc/clientcert.pem
/etc/pki/libvirt-vnc/private/clientkey.pem
Per-user location
/etc/pki/CA/cacert.pem
~/.pki/libvirt-vnc/clientcert.pem
~/.pki/libvirt-vnc/private/clientkey.pem
virt-viewer

virt-viewer only accepts certificates from a system-wide location:

/etc/pki/CA/cacert.pem
/etc/pki/libvirt-vnc/clientcert.pem
/etc/pki/libvirt-vnc/private/clientkey.pem

Restrict access to certificates

o Make sure to restrict access to certificates, as explained in the section called
“Restricting access (security considerations)”.

103

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

CHAPTER 12. CONNECTING AND AUTHORIZING

12.3.2.5. Restricting access (security considerations)

Each x509 certificate consists of two pieces: the public certificate and a private key. A client can
only authenticate using both pieces. Therefore, any user that has read access to the client
certificate and its private key can access your VM Host Server. On the other hand, an arbitrary
machine equipped with the full server certificate can pretend to be the VM Host Server. Since this
is not desirable, access to at least the private key files needs to be restricted as much as possible.
The easiest way to control access to a key file is to use access permissions.

Server certificates

Server certificates need to be readable for QEMU processes. On SUSE Linux Enterprise
Server QEMU, processes started from Libvirt tools are owned by root, so it is sufficient
if the root can read the certificates:

>chmod 700 /etc/pki/libvirt/private/

>chmod 600 /etc/pki/libvirt/private/serverkey.pem

If you change the ownership for QEMU processes in /etc/libvirt/gemu. conf, you also
need to adjust the ownership of the key file.

System-wide client certificates

To control access to a key file that is available system-wide, restrict read access to a certain
group, so that only members of that group can read the key file. In the following example, a
group libvirt is created, and group ownership of the clientkey.penm file and its parent
directory is set to libvirt. Afterward, the access permissions are restricted to owner and
group. Finally, the user tux is added to the group Llibvirt, and thus can access the key
file.

CERTPATH="/etc/pki/libvirt/"

create group libvirt

groupadd libvirt

change ownership to user root and group libvirt

chown root.libvirt $CERTPATH/private $CERTPATH/clientkey.pem

restrict permissions

chmod 750 $CERTPATH/private

chmod 640 $CERTPATH/private/clientkey.pem

add user tux to group libvirt
usermod --append --groups libvirt tux

Per-user certificates

User-specific client certificates for accessing the graphical console of a VM Guest via VNC
need to be placed in the user's home directory in ~/ . pki. Contrary to SSH, for example, the
VNC viewer using these certificates does not check the access permissions of the private
key file. Therefore, it is solely the user's responsibility to make sure the key file is not
readable by others.

104

12.3.2.5.1. Restricting access from the server side

By default, every client that is equipped with appropriate client certificates may connect to a VM
Host Server accepting TLS connections. Therefore, it is possible to use additional server-side
authentication with SASL as described in the section called “User name and password
authentication with SASL”.

It is also possible to restrict access with a allowlist of DNs (distinguished names), so only clients
with a certificate matching a DN from the list can connect.

Add a list of allowed DNs to tls _allowed dn listin /etc/libvirt/libvirtd.conf. This
list may contain wild cards. Do not specify an empty list, since that would result in refusing all
connections.

tls allowed dn list = [
"C=US,L=Provo,0=SUSE Linux Products GmbH,0U=*,CN=venus.example.com, EMAIL=*",
"C=DE, L=Nuremberg,0=SUSE Linux Products GmbH,OU=Documentation, CN=*"]

Get the distinguished name of a certificate with the following command:
>certtool -i --infile /etc/pki/libvirt/clientcert.pem | grep "Subject:"
Restart Libvirtd after having changed the configuration:

>sudo systemctl restart libvirtd

12.3.2.6. Central user authentication with SASL for TLS sockets

A direct user authentication via TLS is not possible—this is handled indirectly on each client via the
read permissions for the certificates as explained in the section called “Restricting access (security
considerations)”. However, if a central, server-based user authentication is needed, libvirt also
allows to use SASL (Simple Authentication and Security Layer) on top of TLS for direct user
authentication. See the section called “User name and password authentication with SASL” for
configuration details.

12.3.2.7. Troubleshooting

12.3.2.7.1. Virtual Machine Manager/virsh cannot connect to server
Check the following in the given order:

Is it a firewall issue (TCP port 16514 needs to be open on the server)?

Is the client certificate (certificate and key) readable by the user that has started Virtual Machine
Manager/ virsh?

Has the same full qualified host name as in the server certificate been specified with the
connection?

105

CHAPTER 12. CONNECTING AND AUTHORIZING

Is TLS enabled on the server (Listen tls = 1)?
Has libvirtd been restarted on the server?

12.3.2.7.2. VNC connection fails

Ensure that you can connect to the remote server using Virtual Machine Manager. If so, check
whether the virtual machine on the server has been started with TLS support. The virtual machine's
name in the following example is sles.

>ps ax | grep gemu | grep "\-name sles" | awk -F" -vnc " '{ print FS $2 }'

If the output does not begin with a string similar to the following, the machine has not been started
with TLS support and must be restarted.

-vnc 0.0.0.0:0,tls,x509verify=/etc/pki/libvirt

106

Chapter 13. Advanced storage topics

This chapter introduces advanced topics about manipulating storage from the perspective of the
VM Host Server.

13.1. Locking disk files and block devices with virtlockd

Locking block devices and disk files prevents concurrent writes to these resources from different
VM Guests. It provides protection against starting the same VM Guest twice, or adding the same
disk to two different virtual machines. This reduces the risk of a virtual machine's disk image
becoming corrupted because of a wrong configuration.

The locking is controlled by a daemon called virtlockd. Since it operates independently from
the libvirtd daemon, locks endure a crash or a restart of Libvirtd. Locks even persist during
an update of the virtlockd itself, since it can re-execute itself. This ensures that VM Guests do
not need to be restarted upon a virtlockd update. virtlockd is supported for KVM, QEMU,
and Xen.

13.1.1. Enable locking

Locking virtual disks is not enabled by default on SUSE Linux Enterprise Server. To enable and
automatically start it upon rebooting, perform the following steps:

1. Edit /etc/libvirt/qgemu. conf and set
lock manager = "lockd"
2. Start the virtlockd daemon with the following command:
>sudo systemctl start virtlockd
3. Restart the libvirtd daemon with:
>sudo systemctl restart libvirtd
4. Make sure virtlockd is automatically started when booting the system:

>sudo systemctl enable virtlockd
13.1.2. Configure locking

By default virtlockd is configured to automatically lock all disks configured for your VM Guests.
The default setting uses a “direct” lockspace, where the locks are acquired against the actual file
paths associated with the VM Guest <disk> devices. For example, flock(2) is called directly on
/var/lib/libvirt/images/my-server/disk0.raw when the VM Guest contains the
following <disk> device:

107

CHAPTER 13. ADVANCED STORAGE TOPICS

<disk type='file' device='disk'>
<driver name='gemu' type='raw'/>
<source file='/var/lib/libvirt/images/my-server/disk0.raw'/>
<target dev='vda' bus='virtio'/>
</disk>
The virtlockd configuration can be changed by editing the file /etc/libvirt/qgemu-
lockd. conf. It also contains detailed comments with further information. Make sure to activate

configuration changes by reloading virtlockd:

>sudo systemctl reload virtlockd

13.1.2.1. Enabling an indirect lockspace

The default configuration of virtlockd uses a “direct” lockspace. This means that the locks are
acquired against the actual file paths associated with the <disk> devices.

If the disk file paths are not accessible to all hosts, virtlockd can be configured to allow an
“indirect” lockspace. This means that a hash of the disk image path is used to create a file in the
indirect lockspace directory. The locks are then held on these hash files instead of the actual disk
file paths. Indirect lockspace is also useful if the file system containing the disk files does not
support fcntl() locks. An indirect lockspace is specified with the file lockspace dir
setting:

file lockspace dir = "/MY LOCKSPACE DIRECTORY"

13.1.2.2. Enable locking on LVM or iSCSI volumes

When wanting to lock virtual disks placed on LVM or iSCSI volumes shared by several hosts,
locking needs to be done by UUID rather than by path (which is used by default). Furthermore, the
lockspace directory needs to be placed on a shared file system accessible by all hosts sharing the
volume. Set the following options for LVM and/or iSCSI:

lvm lockspace dir = "/MY LOCKSPACE DIRECTORY"
iscsi lockspace dir = "/MY LOCKSPACE DIRECTORY"

13.2. Online resizing of guest block devices

Sometimes you need to change—extend or shrink—the size of the block device used by your
guest system. For example, when the disk space originally allocated is no longer enough, it is time
to increase its size. If the guest disk resides on a logical volume, you can resize it while the guest
system is running. This is a big advantage over an offline disk resizing (see the virt-resize
command from the the section called “Guestfs tools” package) as the service provided by the guest
is not interrupted by the resizing process. To resize a VM Guest disk, follow these steps:

Procedure 13.1. Online resizing of guest disk

1. Inside the guest system, check the current size of the disk (for example /dev/vda).

108

#fdisk -1 /dev/vda
Disk /dev/sda: 160.0 GB, 160041885696 bytes, 312581808 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes
2. On the host, resize the logical volume holding the /dev/vda disk of the guest to the
required size, for example, 200 GB.
#lvresize -L 200G /dev/mapper/vg00-home
Extending logical volume home to 200 GiB
Logical volume home successfully resized
3. On the host, resize the block device related to the disk /dev/mapper/vg00-home of the
guest. You can find the DOMAIN_ID with virsh list.

#virsh blockresize --path /dev/vg00/home --size 200G DOMAIN ID
Block device '/dev/vg00/home' is resized

4. Check that the new disk size is accepted by the guest.

#fdisk -1 /dev/vda

Disk /dev/sda: 200.0 GB, 200052357120 bytes, 390727260 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

13.3. Sharing directories between host and guests (file system pass-through)

libvirt allows to share directories between host and guests using QEMU's file system pass-through
(also called VirtFS) feature. Such a directory can be also be accessed by several VM Guests at
once and therefore be used to exchange files between VM Guests.

Windows guests and file system pass-through

@ Sharing directories between VM Host Server and Windows guests via File System
Pass-Through does not work, because Windows lacks the drivers required to mount
the shared directory.

To make a shared directory available on a VM Guest, proceed as follows:

1. Open the guest's console in Virtual Machine Manager and either choose View > Details from
the menu or click Show virtual hardware details in the toolbar. Choose Add Hardware >
Filesystem to open the Filesystem Passthrough dialog.

2. Driver allows you to choose between a Handle or Path base driver. The default setting is
Path. Mode lets you choose the security model, which influences the way file permissions
are set on the host. Three options are available:

Passthrough (default)

Files on the file system are directly created with the client-user's credentials. This is
similar to what NFSv3 is using.

109

CHAPTER 13. ADVANCED STORAGE TOPICS

Squash

Same as Passthrough, but failure of privileged operations like chown are ignored. This
is required when KVM is not run with root privileges.

Mapped

Files are created with the file server's credentials (qemu.gemu). The user credentials
and the client-user's credentials are saved in extended attributes. This model is
recommended when host and guest domains should be kept isolated.

3. Specify the path to the directory on the VM Host Server with Source Path. Enter a string at
Target Path to be used as a tag to mount the shared directory. The string of this field is a tag
only, not a path on the VM Guest.

4. Apply the setting. If the VM Guest is currently running, you need to shut it down to apply the
new setting (rebooting the guest is not sufficient).

5. Boot the VM Guest. To mount the shared directory, enter the following command:
>sudo mount -t 9p -o trans=virtio,version=9p2000.L,rw TAG /MOUNT POINT

To make the shared directory permanently available, add the following line to the /etc/
fstab file:

TAG /MOUNT POINT 9p trans=virtio,version=9p2000.L, rw 0 0

13.4. Using RADOS block devices with Libvirt

RADOS Block Devices (RBD) store data in a Ceph cluster. They allow snapshotting, replication
and data consistency. You can use an RBD from your libvirt-managed VM Guests similarly to
how you use other block devices.

For more details, refer to the SUSE Enterprise Storage Administration Guide, chapter Using libvirt
with Ceph. The SUSE Enterprise Storage documentation is available from https:/
documentation.suse.com/ses/.

110

https://documentation.suse.com/ses/
https://documentation.suse.com/ses/

Chapter 14. Configuring virtual machines with Virtual Machine
Manager

Figure 14.1. Details view of a VM Guest

File VirtualMachine View SendKey

=y [LI G - |

Detais

g 0S information) y

Performance Basic Details

i} CPUs Name: sles12sp5

=5 Memory uuID: 41e60515-473e-458e-b7ae-06fcf045f21e
ﬁ} Boot Options Status: B Shutoff

|| VirtlODisk1 Title:

[.#] Tablet
) Mouse

Description:

== Keyboard

B Display Spice Hypervisor Details

Eiif Soundich9 Hypervisor: KVM

e Seriall Architecture: x86_64

¢ Channelgemu-ga Emulator: /usr/bin/qgemu-system-x86_64
@ Channel spice Chipset: Q35

[video QXL Firmware: BIOS

[Controller USB 0

B controller SATA O

m Controller PCle 0

[Controller VirtiO Serial 0
@ UsB Redirector1

Add Hardware Cancel Apply

The left panel of the window lists VM Guest overview and already installed hardware. After clicking
an item on the list, you can access its detailed settings in the details view. You can change the
hardware parameters to match your needs, then click Apply to confirm them. Certain changes take
effect immediately, while others need a reboot of the machine—and virt-manager warns you
about that fact.

To remove installed hardware from a VM Guest, select the appropriate list entry in the left panel
and then click Remove in the bottom right of the window.

To add new hardware, click Add Hardware below the left panel, then select the type of the
hardware you want to add in the Add New Virtual Hardware window. Modify its parameters and
confirm with Finish.

The following sections describe configuration options for the specific hardware type being added.
They do not focus on modifying an existing piece of hardware, as the options are identical.

14.1. Machine setup

This section describes the setup of the virtualized processor and memory hardware. These
components are vital to a VM Guest, therefore you cannot remove them. It also shows how to view
the overview and performance information, and how to change boot parameters.

111

CHAPTER 14. CONFIGURING VIRTUAL MACHINES WITH VIRTUAL MACHINE MANAGER

14.1.1. Overview

Overview shows basic details about VM Guest and the hypervisor.

Figure 14.2. Overview details

=

ile VirtualMachine View SendKey

-y o -~ @

= 05 information Basic Details

Performance

{:} CPUs Name: sles12sp5

=5 Memory UuID: 41e60515-473e-458e-b7ae-06fcf045f21e
3% Boot Options Status: . Shutoff

(g Virtio Disk1 Title: SLES125P5

@ NIC :77:ae:0a . B

\L/‘ Tablet Description: VM for testing supported upgrade paths.
™) Mouse

== Keyboard

B Display Spice Hypervisor Details

m Soundich9 Hypervisor: KVM

G Seriall Architecture: x86_64

@ Channel gemu-ga Emulator: Jusr/bin/qemu-system-x86_64

G Channelspice Chipset: Q35

8 vigeo QXL Firmware: BIOS

[Controller USB 0

BB Controller SATAQ

m Controller PCle 0

[Controller VirtiO Serial 0
@ UsB Redirector 1

Add Hardware

Apply

Name, Title, and Description are editable and help you identify VM Guest in the Virtual Machine

Manager list of machines.

Figure 14.3. VM Guest title and description

¥ QEMU/KVM

SLES12SP5
Shutoff
VM for testing supported upgrade paths

UUID shows the universally unique identifier of the virtual machine, while Status shows its current

status—Running, Paused, or Shutoff.

The Hypervisor Details section shows the hypervisor type, CPU architecture, used emulator, and

chipset type. None of the hypervisor parameters can be changed.

14.1.2. Performance

Performance shows regularly updated charts of CPU and memory usage, and disk and network I/

0.

112

Figure 14.4. Performance

File Virtual Machine

B Overview
g OS information
Performance
{J cpus

&5 Memory

&% Boot Options
| VirtlODisk1
:Lf} NIC :77:ae:0a
(#) Tablet

) Mouse

== Keyboard
tg' Display Spice
ﬁf Soundich9

G Seriall

&= Channelgemu-ga

& Channel spice
[video QXL

[Controller sB 0
m Controller SATA

View Send Key

1 - @

Details

CPUusage

49 %
Memory usage |

936 MiB of 1024 MiB

Disk /0

0KiB/s read 0 KiB/s write

Network /0

0

1l
[Controller PCle 0 /”L

B Controller virtio
9@ USB Redirector 1

Serial 0 - 16 KiBJs in 8 KiB/s out

Add Hardware

9

Figure 14.

Stats Options
Update status eve
Poll CPU usage
Poll Disk I/0
Poll Network /O
Poll Memory stat

Polling New VM

Enabling disabled charts

Not all the charts in the Graph view are enabled by default. To enable these charts,
go to File > View Manager, then select Edit > Preferences > Polling, and check the
charts that you want to see regularly updated.

5. Statistics charts

ery | 3 - + |seconds

ACURAUY

s

Close

14.1.3. Processor

CPU includes detailed information about VM Guest processor configuration.

113

CHAPTER 14. CONFIGURING VIRTUAL MACHINES WITH VIRTUAL MACHINE MANAGER

Figure 14.6. Processor view

File Virtual Machine View Send Key

- : =
g Overview Details
g OS information

&% Performance

CPUs

Logical host CPUs: 48
M crus
Memory vCPU allocation: 8 - | +
jES Boot Options

Configuration
| VirtlO Disk 1

=P NIC :61:54:c4
=2 NIC :dd:44:55
@ Tablet Enable available CPU security flaw mitigations

Copy host CPU configuration

Model: = host-model v

) Mouse ~ Topology

== Keyboard Manually set CPU topology
QJ Display Spice

Eif soundich9

G Serial 1

= Channel gemu-ga

= Channel spice

B video QXL

[Controller USB 0

[} Controller SATA 0

m Controller PCle 0

B Controller VirtlO Serial 0

Add Hardware Cancel Apply

In the CPUs section, you can configure the number of virtual CPUs allocated to the VM Guest.
Logical host CPUs shows the number of online and usable CPUs on the VM Host Server.

The Configuration section lets you configure the CPU model and topology.

When activated, the Copy host CPU configuration option uses the host CPU model for VM Guest.
You can see the details of the host CPU model in the output of the virsh capabilities
command. When deactivated, the CPU model needs to be specified from the models available in
the drop-down box.

The host CPU model provides a good trade-off between CPU features and the ability to migrate
the VM Guest. Libvirt does not model every aspect of each CPU, so the VM Guest CPU does
not match the VM Host Server CPU exactly. But the ABI provided to the VM Guest is reproducible
and during migration the complete CPU model definition is transferred to the destination VM Host
Server, ensuring the migrated VM Guest can see the exact same CPU model on the destination.

The host-passthrough model provides the VM Guest with a CPU that is exactly the same as
the VM Host Server CPU. This can be useful when the VM Guest workload requires CPU features
not available in Libvirt's simplified host-model CPU. The host-passthrough model comes
with the disadvantage of reduced migration capability. A VM Guest with host-passthrough
model CPU can only be migrated to a VM Host Server with identical hardware.

114

For more information on libvirt's CPU model and topology options, see the CPU model and
topology documentation at https://libvirt.org/formatdomain.html#cpu-model-and-topology.

After you activate Manually set CPU topology, you can specify a custom number of sockets, cores
and threads for the CPU.

14.1.4. Memory

Memory contains information about the memory that is available to VM Guest.
Figure 14.7. Memory view

File VirtualMachine View SendKey

L o v @
B Overview Details XML
B 05 information v
= emo|
Performance v _
Total host memory: 1664 MiB
{3} crus
Current allocation: = 1024 — 4+ MiB
@% Boot Options Maximum allocation: 1024 + MiB
VirtlO Disk 1
Z‘ Tablet Enable shared memory

7 Mouse

== Keyboard

Q Display Spice

Eiif Soundicho

G Seriall

@ Channel (qemu-ga)
= Channel (spice)
B video Virtio
B controlier UsB 0
m Controller PCle 0
[Controller SATAO
BB Controller Virtio Serial 0
‘@‘ USB Redirector 1
@ UsBRedirector2
{3 PMv20

Add Hardware Cancel Apply

Total host memory

Total amount of memory installed on VM Host Server.

Current allocation

The amount of memory currently available to VM Guest. You can hotplug more memory by
increasing this value up to the value of Maximum allocation.

Enable shared memory
Specify if the virtual machine can use shared memory via the memfd backed. It is a

requirement for using the virtiofs file system. Find more details in https://libvirt.org/kbase/
virtiofs.html.

115

https://libvirt.org/formatdomain.html#cpu-model-and-topology
https://libvirt.org/kbase/virtiofs.html
https://libvirt.org/kbase/virtiofs.html

CHAPTER 14. CONFIGURING VIRTUAL MACHINES WITH VIRTUAL MACHINE MANAGER

Maximum allocation

The maximum value to which you can hotplug the currently available memory. Any change to
this value takes effect after the next VM Guest reboot.

Enable launch security

If the VM Host Server supports AMD-SEV technology, activating this option enables a
secured guest with encrypted memory. This option requires a virtual machine with chipset
type Q35. For more details, refer to AMD Secure Encrypted Virtualization (AMD-SEV) Guide.

Large memory VM Guests

o VM Guests with memory requirements of 4 TB or more must either use the host-
passthrough CPU mode, or explicitly specify the virtual CPU address size when
using host-model or custom CPU modes. The default virtual CPU address size for
these modes may not be sufficient for memory configurations of 4 TB or more. The
address size can only be specified by editing the VM Guests XML configuration. See
the section called “Configuring memory allocation” for more information on specifying

virtual CPU address size.
14.1.5. Boot options
Boot Options introduces options affecting the VM Guest boot process.
Figure 14.8. Boot options

File VirtualMachine View SendKey

§

‘
- B

Overview Details XML

/w)E

OS information

— Autostart
Performance

Startvirtual machine on host boot up
{} cpus
=5 Memory Boot device order
=5 Boot Options 2 Enable boot menu
|| VirtlODisk1

| VirtlO Disk 1

=P NIC :35:26:47 ENIC :35:26:47

[# Tablet

™) Mouse

== Keyboard

LE] Display Spice

m} Sound ich9 ~ Direct kernel boot

2 Seriall &2 Enable direct kernel boot

G Channelgemu-ga Kernel path: | /boot/vmlinuz-5.3.18-57-default Browse
G Channel spice
I video QXL
[Controller UsB 0 Kernelargs:
[Controller SATAO
MF Controller PCle 0
m Controller VirtlO Serial 0

Initrd path: | /boot/initrd-5.3.18-57-default Browse

Add Hardware Cancel Apply

116

In the Autostart section, you can specify whether the virtual machine should automatically start
during the VM Host Server boot phase.

In the Boot device order, activate the devices used for booting VM Guest. You can change their
order with the up and down arrow buttons on the right side of the list. To choose from a list of
bootable devices on VM Guest start, activate Enable boot menu.

To boot a different kernel than the one on the boot device, activate Enable direct kernel boot and
specify the paths to the alternative kernel and initrd placed on the VM Host Server file system. You
can also specify kernel arguments that are passed to the loaded kernel.

14.2. Storage

This section gives you a detailed description of configuration options for storage devices. It
includes both hard disks and removable media, such as USB or CD-ROM drives.

Procedure 14.1. Adding a new storage device

1. Below the left panel, click Add Hardware to open the Add New Virtual Hardware window.
There, select Storage.

Figure 14.9. Add a new storage

B Controller

Network Details XML

G Input O Create a diskimage for the virtual machine
B Graphi

= Sraphcs 20.0 — +/cB
B Sound

& Serial

& Parallel Select or create custom storage
& Console

& Channel

@ USBHost Device Device type: = || Disk device v

B PClHost Device
B MDEVHostDevice Bustype: Virtlo v

B Video
B Watchdo ¥ Advanced options
B Fil J Readonly:
i t
resystem Shareable:
&» Smartcard
USBRedirection Serial:
g ™M Cache mode: = writeback v
& RNG
& Panic Notifier Discard mode: | ignore v

Virtlo VSOCK

Cancel Finish

2. To create a gqcow?2 disk image in the default location, activate Create a disk image for the
virtual machine and specify its size in gigabytes.

To gain more control over the disk image creation, activate Select or create custom storage
and click Manage to manage storage pools and images. The window Choose Storage

117

CHAPTER 14. CONFIGURING VIRTUAL MACHINES WITH VIRTUAL MACHINE MANAGER

Volume opens, which has almost identical functionality as the Storage tab described in the
section called “Managing storage with Virtual Machine Manager”.

Supported storage formats

SUSE only supports the following storage formats: raw and qcow?2.

3. After you create and specify the disk image file, specify the Device type. It can be one of the
following options:

o Disk device
> CDROM device: does not allow using Create a disk image for the virtual machine.
> Floppy device: does not allow using Create a disk image for the virtual machine.

o LUN Passthrough: required to use an existing SCSI storage directly without adding it
into a storage pool.

4. Select the Bus type for your device. The list of available options depends on the device type
you selected in the previous step. The types based on VirtIO use paravirtualized drivers.

5. In the Advanced options section, select the preferred Cache mode. For more information on
cache modes, see Chapter 19, Disk cache modes.

6. Confirm your settings with Finish. A new storage device appears in the left panel.
14.3. Controllers
This section focuses on adding and configuring new controllers.

Procedure 14.2. Adding a new controller

1. Below the left panel, click Add Hardware to open the Add New Virtual Hardware window.
There, select Controller.

118

Figure 14.10. Add a new controller

_storge

w| Controller
Network Details XML

Input

Graphics Type: = SCSI v
Sound Model: = VirtlO SCSI v
Serial

Parallel

Console

Channel

USB Host Device

PCl Host Device

Video

Watchdog

Filesystem

AR W ES W W NN W

Smartcard

USB Redirection
TPM

RNG

Panic Notifier
VirtlO VSOCK

W& & 0 & 0

Cancel Finish

2. Select the type of the controller. You can choose from IDE, Floppy, SCSI, SATA, VirtlO Serial
(paravirtualized), USB, or CCID (smart card devices).

3. Optionally, for a USB or SCSI controller, select a controller model.

4. Confirm your settings with Finish. A new controller appears in the left panel.
14.4. Networking
This section describes how to add and configure new network devices.

Procedure 14.3. Adding a new network device

1. Below the left panel, click Add Hardware to open the Add New Virtual Hardware window.
There, select Network.

119

CHAPTER 14. CONFIGURING VIRTUAL MACHINES WITH VIRTUAL MACHINE MANAGER

Figure 14.11. Add a new network interface

_ storage

® Controller

® Input
B Graphics
B Sound Device name: = br1
& Serial

& Parallel MAC address: 52:54:00:e2:3e:b5

& Console

Network source: | Bridge device... ¥

2 Channel Device model: virtio v

@ USBHost Device
B PClHostDevice
@ MDEV Host Device
B video

B Watchdog

[7] Filesystem

& Smartcard

@ USB Redirection
o TPM

& RNG

&% Panic Notifier
& Virtlo VSOCK

Cancel Finish

2. From the Network source list, select the source for the network connection. The list includes
VM Host Server's available physical network interfaces, network bridges, or network bonds.
You can also assign the VM Guest to an already defined virtual network. See the section
called “Configuring networks” for more information on setting up virtual networks with Virtual
Machine Manager.

3. Specify a MAC address for the network device. While Virtual Machine Manager pre-fills a
random value for your convenience, it is recommended to supply a MAC address
appropriate for your network environment to avoid network conflicts.

4. Select a device model from the list. You can either leave the Hypervisor default, or specify
one of e1000, rtl8139, or virtio models. virtio uses paravirtualized drivers.

5. Confirm your settings with Finish. A new network device appears in the left panel.
14.5. Input devices

This section focuses on adding and configuring new input devices, such as a mouse, a keyboard
or a tablet.

Procedure 14.4. Adding a new input device

1. Below the left panel, click Add Hardware to open the Add New Virtual Hardware window.
There, select Input.

120

Figure 14.12. Add a new input device

B Controller
Network Details XML

Type: | VirtlO Keyboard v
Graphics ype ir eyboar

Sound
Serial
Parallel
Console

AAAAM@E

Channel

USB Host Device
PCl Host Device
Video

Watchdog
Filesystem

Y & /@

Smartcard

USB Redirection
TPM

RNG

Panic Notifier
VirtlO VSOCK

% 0@ 0

B % %

[

Cancel Finish

2. Select a device type from the list.

3. Confirm your settings with Finish. A new input device appears in the left panel.

Enabling seamless and synchronized mouse pointer movement

@ When you click within a VM Guest's console with the mouse, the pointer is captured
by the console window and cannot be used outside the console unless it is explicitly
released (by pressing ALt—Ctr1l). To prevent the console from grabbing the key and
to enable seamless pointer movement between host and guest instead, follow the
instructions in Procedure 14.4, “Adding a new input device” to add an EvTouch USB
Graphics Tablet to the VM Guest.

Adding a tablet has the additional advantage of synchronizing the mouse pointer
movement between VM Host Server and VM Guest when using a graphical
environment on the guest. With no tablet configured on the guest, you may often see
two pointers with one dragging behind the other.

14.6. Video

This section describes how to add and configure new video devices.

121

CHAPTER 14. CONFIGURING VIRTUAL MACHINES WITH VIRTUAL MACHINE MANAGER

Procedure 14.5. Adding a video device

1. Below the left panel, click Add Hardware to open the Add New Virtual Hardware window.
There, select Video.

2. Figure 14.13. Add a new video device

= storage

Controller
Network Details XML

Input o

Graphics Model: = Virtio v
Sound

Serial

Parallel

Console

Channel

USB Host Device

& PClHost Device

=) Video

B Watchdog

[7] Filesystem

& Smartcard

@ USB Redirection
o TPM

& RNG

43 Panic Notifier
VirtlO VSOCK

bhddAE@end

Py

Cancel Finish

3. Select a model from the drop-down box.

Secondary video devices

@ Only QXL and Virtio can be added as secondary video devices.

4. Confirm your settings with Finish. A new video device appears in the left panel.

14.7. USB redirectors

USB devices that are connected to the client machine can be redirected to the VM Guest by using
USB Redirectors.

Procedure 14.6. Adding a USB redirector

1. Below the left panel, click Add Hardware to open the Add New Virtual Hardware window.
There, select USB Redirection.

122

Figure 14.14. Add a new USB redirector

Input

B@cemAi

A A

N

&

R N R

Storage

Graphics

Sound

Serial

Parallel
Console
Channel

USB Host Device
PClHost Device
Video
Watchdog
Filesystem

USB Redirection

Details XML

Controller
Network

Type: | Spice channel v

& Smartcard

USB Redirection

©

TPM
% RNG
=

a
Panic Notifier
& Virtlo VSOCK

Cancel Finish

2. Select a device type from the list. Depending on your configuration, you can either select a

Spice channel or a TCP redirector.

3. Confirm your settings with Finish. A new USB redirector appears in the left panel.

14.8. Miscellaneous

Smartcard

Smartcard functionality can be added via the Smartcard element. A physical USB smartcard
reader can then be passed through to the VM Guest.

Watchdog

Virtual watchdog devices are also supported. They can be created via the Watchdog

element. The model and the action of the device can be specified.

9

TPM

Requirements for virtual watchdog devices

QA virtual watchdog devices require a specific driver and daemon to be
installed in the VM Guest. Otherwise, the virtual watchdog device does not
work.

You can use the Host TPM device in the VM Guest by adding TPM functionality via the TPM

element.

123

CHAPTER 14. CONFIGURING VIRTUAL MACHINES WITH VIRTUAL MACHINE MANAGER

Virtual TPMs

@ The Host TPM can only be used in one VM Guest at a time.

14.9. Adding a CD/DVD-ROM device with Virtual Machine Manager

KVM supports CD or DVD-ROMs in VM Guest either by directly accessing a physical drive on the
VM Host Server or by accessing ISO images. To create an ISO image from an existing CD or DVD,
use dd:

>sudo dd if=/dev/CD DVD DEVICE of=my distro.iso bs=2048

To add a CD/DVD-ROM device to your VM Guest, proceed as follows:

1. Double-click a VM Guest entry in the Virtual Machine Manager to open its console and
switch to the Details view with View > Details.

2. Click Add Hardware and choose Storage in the pop-up window.
3. Change the Device Type to IDE CDROM.
4. Select Select or create custom storage.
1. To assign the device to a physical medium, enter the path to the VM Host Server's CD/
DVD-ROM device, for example, /dev/cdrom) next to Manage. Alternatively, use
Manage to open a file browser and then click Browse Local to select the device.

Assigning the device to a physical medium is only possible when the Virtual Machine
Manager was started on the VM Host Server.

2. To assign the device to an existing image, click Manage to choose an image from a
storage pool. If the Virtual Machine Manager was started on the VM Host Server,
alternatively choose an image from another location on the file system by clicking
Browse Local. Select an image and close the file browser with Choose Volume.

5. Save the new virtualized device with Finish.

6. Reboot the VM Guest to make the new device available. For more information, see the
section called “Ejecting and changing floppy or CD/DVD-ROM media with Virtual Machine
Manager”.

14.10. Adding a floppy device with Virtual Machine Manager

Currently, KVM only supports the use of floppy disk images—using a physical floppy drive is not
supported. Create a floppy disk image from an existing floppy using dd:

>sudo dd if=/dev/fd0 of=/var/lib/libvirt/images/floppy.img

To create an empty floppy disk image, use one of the following commands:

124

Raw image

>sudo dd if=/dev/zero of=/var/lib/libvirt/images/floppy.img bs=512
count=2880

FAT formatted image

>sudo mkfs.msdos -C /var/lib/libvirt/images/floppy.img 1440

To add a floppy device to your VM Guest, proceed as follows:

1.

Double-click a VM Guest entry in the Virtual Machine Manager to open its console and
switch to the Details view with View > Details.

. Click Add Hardware and choose Storage in the pop-up window.
. Change the Device Type to Floppy Disk.

. Choose Select or create custom storage and click Manage to choose an existing image from

a storage pool. If Virtual Machine Manager was started on the VM Host Server, alternatively
choose an image from another location on the file system by clicking Browse Local. Select
an image and close the file browser with Choose Volume.

. Save the new virtualized device with Finish.

. Reboot the VM Guest to make the new device available. For more information, see the

section called “Ejecting and changing floppy or CD/DVD-ROM media with Virtual Machine
Manager”.

14.11. Ejecting and changing floppy or CD/DVD-ROM media with Virtual Machine Manager

Whether you are using the VM Host Server's physical CD/DVD-ROM device or an ISO/floppy

image: before you can change the media or image of an existing device in the VM Guest, you first

need to disconnect the media from the guest.

125

1. Double-click a VM Guest entry in the Virtual Machine Manager to open its console and

switch to the Details view with View > Details.

2. Choose the Floppy or CD/DVD-ROM device and “eject” the medium by clicking Disconnect.

3. To “insert” a new medium, click Connect.

1. If using the VM Host Server's physical CD/DVD-ROM device, first change the media in
the device (this may require unmounting it on the VM Host Server before it can be
ejected). Then choose CD-ROM or DVD and select the device from the drop-down
box.

2. If you are using an ISO image, choose ISO image Location and select an image by
clicking Manage. When connecting from a remote host, you may only choose images
from existing storage pools.

4. Click OK to finish. The new media can now be accessed in the VM Guest.

CHAPTER 14. CONFIGURING VIRTUAL MACHINES WITH VIRTUAL MACHINE MANAGER

14.12. Assigning a host PCI device to a VM Guest

You can directly assign host-PCI devices to guests (PCIl pass-through). When the PCI device is
assigned to one VM Guest, it cannot be used on the host or by another VM Guest unless it is
reassigned. A prerequisite for this feature is a VM Host Server configuration as described in
Requirements for VFIO and SR-IOV.

14.12.1. Adding a PCI device with Virtual Machine Manager

The following procedure describes how to assign a PCI device from the host machine to a VM
Guest using Virtual Machine Manager:

1. Double-click a VM Guest entry in the Virtual Machine Manager to open its console and
switch to the Details view with View > Details.

2. Click Add Hardware and choose the PCI Host Device category in the left panel. A list of
available PCI devices appears in the right part of the window.

Figure 14.15. Adding a PCI device

| Storage PCl Device

B Controller
Network Details XML
U Input Host Device:
& Graphics -
B Sound 0000:00:00:0 Intel Corporation 440FX - 82441FX PMC [Natoma]
4| Serial 0000:00:01:0 Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
:] perlau N 0000:00:01:1 Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]
= Torae 0000:00:01:3 Intel Corporation 82371AB/EB/MB PIIX4 ACPI
| Console " i
0000:00:02:0 Red Hat, Inc. QXL paravirtual graphic card
| Channel

N . 0000:00:03:0 Intel Corporation 82540EM Gigabit Ethernet Controller (Interface eth0)
‘f" USB Host Device 0000:00:04:0 Intel Corporation 82801FB/FBM/FR/FW/FRW (ICHG Family) High Definition Audio Controller
0000:00:05:0 Intel Corporation 828011 (ICHS Family) USB UHCI Controller #1
0000:00:05:1 Intel Corporation 828011 (ICH9 Family) USB UHCI Controller #2
0000:00:05:2 Intel Corporation 828011 (ICH9 Family) USB UHCI Controller #3
0000:00:05:7 Intel Corporation 828011 (ICH9 Family) USB2 EHCI Controller #1
0000:00:06:0 Red Hat, Inc. Virtio console
0000:00:07:0 Red Hat, Inc. Virtio memory balloon

Video

B Watchdog

[Filesystem

@ Smartcard

@ USB Redirection
O TPM

& RNG

<& Panic Notifier
Virtlo VSOCK

Cancel Finish

3. From the list of available PCI devices, choose the one you want to pass to the guest.
Confirm with Finish.

126

SLES 11 SP4 KVM guests

On a newer QEMU machine type (pc-i440fx-2.0 or higher) with SLES 11 SP4 KVM
guests, the acpiphp module is not loaded by default in the guest. This module must
be loaded to enable hotplugging of disk and network devices. To load the module
manually, use the command modprobe acpiphp. It is also possible to autoload the
module by adding install acpiphp /bin/true to the /etc/
modprobe.conf.local file.

KVM guests using QEMU Q35 machine type

KVM guests using the QEMU Q35 machine type have a PCI topology that includes a
pcie-root controller and seven pcie-root-port controllers. The pcie-root
controller does not support hotplugging. Each pcie-root-port controller supports
hotplugging a single PCle device. PCI controllers cannot be hotplugged, so plan
accordingly and add more pcie-root-ports for more than seven hotplugged PCle
devices. A pcie-to-pci-bridge controller can be added to support hotplugging
legacy PCI devices. See https:/libvirt.org/pci-hotplug.html for more information about
PCI topology between QEMU machine types.

14.13. Assigning a host USB device to a VM Guest

Analogous to assigning host PCI devices (see the section called “Assigning a host PCI device to a
VM Guest”), you can directly assign host USB devices to guests. When the USB device is
assigned to one VM Guest, it cannot be used on the host or by another VM Guest unless it is

reassigned.

14.13.1. Adding a USB device with Virtual Machine Manager

To assign a host USB device to VM Guest using Virtual Machine Manager, follow these steps:

127

1. Double-click a VM Guest entry in the Virtual Machine Manager to open its console and
switch to the Details view with View > Details.

2. Click Add Hardware and choose the USB Host Device category in the left panel. A list of
available USB devices appears in the right part of the window.

https://libvirt.org/pci-hotplug.html

CHAPTER 14. CONFIGURING VIRTUAL MACHINES WITH VIRTUAL MACHINE MANAGER

Figure 14.16. Adding a USB device

Storage USB Device
Controller

Network

) Input 001:002 Intel Corp. Integrated Rate Matching Hub

=]
L
=
Yy
& Graphics 001:003 ATEN International Co., Ltd Winbond Hermon
L]
=
=
<

Host Device:

Sound 002:002 Intel Corp. Integrated Rate Matching Hub

Serial
Parallel
Console

| Channel
USB Host Device

PCl Host Device

B Video

B Watchdog

[Filesystem

@ Smartcard
USB Redirection
TPM

RNG

Panic Notifier

‘ Cancel H Finish ‘

3. From the list of available USB devices, choose the one you want to pass to the guest.
Confirm with Finish. The new USB device appears in the left pane of the Details view.

USB device removal

@ To remove the host USB device assignment, click it in the left pane of the
Details view and confirm with Remove.

128

Chapter 15. Configuring virtual machines with virsh
15.1. Editing the VM configuration
The configuration of a VM is stored in an XML file in /etc/libvirt/qemu/ and looks like this:

Example 15.1. Example XML configuration file

<domain type='kvm'>
<name>slesl5</name>
<uuid>ab953e2f-9d16-4955-bb43-1178230ee625</uuid>
<memory unit='KiB'>2097152</memory>
<currentMemory unit='KiB'>2097152</currentMemory>
<vcpu placement='static'>2</vcpu>
<0S>
<type arch='x86 64' machine='pc-q35-2.0'>hvm</type>
</0s>
<features>...</features>
<cpu mode='custom' match='exact' check='partial'>
<model fallback='allow'>Skylake-Client-IBRS</model>
</cpu>
<clock>...</clock>
<on_poweroff>destroy</on poweroff>
<on_reboot>restart</on reboot>
<on_crash>destroy</on crash>
<pm>
<suspend-to-mem enabled='no'/>
<suspend-to-disk enabled='no'/>
</pm>
<devices>
<emulator>/usr/bin/qemu-system-x86 64</emulator>
<disk type='file' device='disk'>...</disk>
</devices>

</déﬁain>

To edit the configuration of a VM Guest, check if it is offline:
>sudovirsh list --inactive

If your VM Guest is in this list, you can safely edit its configuration:
>sudovirsh edit NAME_OF _VM_GUEST

Before saving the changes, virsh validates your input against a RelaxNG schema.
15.2. Changing the machine type

When installing with the virt-install tool, the machine type for a VM Guest is pc-g35 by
default. The machine type is stored in the VM Guest's configuration file in the type element:

<type arch='x86 64' machine='pc-q35-2.3'>hvm</type>

As an example, the following procedure shows how to change this value to the machine type q35.
The value g35 is an Intel* chipset and includes PCle, supports up to 12 USB ports, and has
support for SATA and IOMMU.

129

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

Procedure 15.1. Changing machine type

1. Check whether your VM Guest is inactive:

>sudovirsh list --inactive
Id Name State

- slesl5 shut off
2. Edit the configuration for this VM Guest:
>sudovirsh edit slesl5
3. Replace the value of the machine attribute with pc-q35-2.0 :
<type arch='x86 64' machine='pc-q35-2.0'>hvm</type>
4. Restart the VM Guest:
>sudovirsh start slesl5

5. Check if the machine type has changed. Log in to the VM Guest and run the following
command:

>sudodmidecode | grep Product
Product Name: Standard PC (Q35 + ICH9, 2009)

Machine type update recommendations

@ Whenever the QEMU version on the host system is upgraded, for example, when
upgrading the VM Host Server to a new service pack, upgrade the machine type of
the VM Guests to the latest available version. To check, use the command qemu-
system-x86_64 -M help on the VM Host Server.

The default machine type pc-1440fx, for example, is regularly updated. If your VM
Guest still runs with a machine type of pc-1440fx-1.X, we strongly recommend an
update to pc-1440fx-2.X. This allows taking advantage of the most recent updates
and corrections in machine definitions, and ensures better future compatibility.

15.3. Configuring hypervisor features

libvirt automatically enables a default set of hypervisor features that are sufficient in most
circumstances, but also allows enabling and disabling features as needed. As an example, Xen
does not support enabling PCI pass-through by default. It must be enabled with the passthrough
setting. Hypervisor features can be configured with virsh. Look for the <features> element in
the VM Guest's configuration file and adjust its features as required. Continuing with the Xen pass-
through example:

130

>sudo virsh edit slel5spl
<features>
<xen>
<passthrough/>
</xen>
</features>

Save your changes and restart the VM Guest.

See the Hypervisor features section of the libvirt Domain XML format manual at https:/libvirt.org/
formatdomain.html#elementsFeatures for more information.

15.4. Configuring CPU

Many aspects of the virtual CPUs presented to VM Guests are configurable with virsh. The
number of current and maximum CPUs allocated to a VM Guest can be changed, as well as the
model of the CPU and its feature set. The following subsections describe how to change the
common CPU settings of a VM Guest.

15.4.1. Configuring the number of CPUs

The number of allocated CPUs is stored in the VM Guest's XML configuration file in /etc/
libvirt/qgemu/ in the vcpu element:

<vcpu placement='static'>1</vcpu>

In this example, the VM Guest has only one allocated CPU. The following procedure shows how to
change the number of allocated CPUs for the VM Guest:

1. Check whether your VM Guest is inactive:

>sudovirsh list --inactive
Id Name State

- slesl5 shut off
2. Edit the configuration for an existing VM Guest:
>sudovirsh edit slesl5
3. Change the number of allocated CPUs:
<vcpu placement='static'>2</vcpu>
4. Restart the VM Guest:
>sudovirsh start slesl5

5. Check if the number of CPUs in the VM has changed.

131

https://libvirt.org/formatdomain.html#elementsFeatures
https://libvirt.org/formatdomain.html#elementsFeatures

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

>sudovirsh vcpuinfo sledl5
0

VCPU:

CPU: N/A
State: N/A
CPU time N/A
CPU Affinity: vy
VCPU: 1
CPU: N/A
State: N/A
CPU time N/A

CPU Affinity: vy

You can also change the number of CPUs while the VM Guest is running. CPUs can be
hotplugged until the maximum number configured at VM Guest start is reached. Likewise, they can
be hot-unplugged until the lower limit of 1 is reached. The following example shows changing the
active CPU count from 2 to a predefined maximum of 4.

1. Check the current live vcpu count:

>sudovirsh vcpucount slesl5 | grep live
maximum live 4
current live 2

2. Change the current, or active, number of CPUs to 4:
>sudovirsh setvcpus slesl5 --count 4 --live
3. Check that the current live vcpu count is now 4:

>sudovirsh vcpucount slesl5 | grep live
maximum live 4
current live 4

15.4.2. Configuring the CPU model

The CPU model exposed to a VM Guest can often influence the workload running within it. The
default CPU model is derived from a CPU mode known as host-model.

<cpu mode='host-model'/>

When starting a VM Guest with the CPU mode host-model, libvirt copies its model of the
host CPU into the VM Guest definition. The host CPU model and features copied to the VM Guest
definition can be observed in the output of the virsh capabilities.

Another interesting CPU mode is host-passthrough.
<cpu mode='host-passthrough'/>

When starting a VM Guest with the CPU mode host-passthrough, it is presented with a CPU
that is exactly the same as the VM Host Server CPU. This can be useful when the VM Guest
workload requires CPU features not available in libvirt's simplified host-model CPU. The
host-passthrough CPU mode comes with the disadvantage of reduced migration flexibility. A

132

VM Guest with host-passthrough CPU mode can only be migrated to a VM Host Server with
identical hardware.

When using the host-passthrough CPU mode, it is still possible to disable undesirable
features. The following configuration presents the VM Guest with a CPU that is exactly the same
as the host CPU but with the vmx feature disabled.

<cpu mode='host-passthrough'>
<feature policy='disable' name='vmx'/>
</cpu>

The custom CPU mode is another common mode used to define a normalized CPU that can be
migrated throughout dissimilar hosts in a cluster. For example, in a cluster with hosts containing
Nehalem, IvyBridge and SandyBridge CPUs, the VM Guest can be configured with a custom CPU
mode that contains a Nehalem CPU model.

<cpu mode='custom' match='exact'>
<model fallback='allow'>Nehalem</model>
<feature policy='require' name='vme'/>
<feature policy='require' name='ds'/>
<feature policy='require' name='acpi'/>
<feature policy='require' name='ss'/>
<feature policy='require' name='ht'/>
<feature policy='require' name='tm'/>
<feature policy='require' name='pbe'/>
<feature policy='require' name='dtes64'/>
<feature policy='require' name='monitor'/>
<feature policy='require' name='ds cpl'/>
<feature policy='require' name='vmx'/>
<feature policy='require' name='est'/>
<feature policy='require' name='tm2'/>
<feature policy='require' name='xtpr'/>
<feature policy='require' name='pdcm'/>
<feature policy='require' name='dca'/>
<feature policy='require' name='rdtscp'/>
<feature policy='require' name='invtsc'/>
</cpu>

For more information on libvirt's CPU model and topology options, see the CPU model and
topology documentation at https://libvirt.org/formatdomain.html#cpu-model-and-topology.

15.5. Changing boot options

The boot menu of the VM Guest can be found in the 0s element and looks similar to this example:

<0S>

<type>hvm</type>

<loader>readonly='yes' secure='no' type='rom'/>/usr/lib/xen/boot/hvmloader</
loader>

<nvram template='/usr/share/0OVMF/OVMF VARS.fd'/>/var/lib/libvirt/nvram/
guest VARS.fd</nvram>

<boot dev='hd'/>

<boot dev='cdrom'/>

<bootmenu enable='yes' timeout='3000'/>

<smbios mode='sysinfo'/>

<bios useserial='yes' rebootTimeout='0"'/>

</0s>

133

https://libvirt.org/formatdomain.html#cpu-model-and-topology

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

In this example, two devices are available, hd and cdrom . The configuration also reflects the
actual boot order, so the hd comes before the cdrom .

15.5.1. Changing boot order

The VM Guest's boot order is represented through the order of devices in the XML configuration
file. As the devices are interchangeable, it is possible to change the boot order of the VM Guest.

1. Open the VM Guest's XML configuration.

>sudovirsh edit slesl5

2. Change the sequence of the bootable devices.

ébéot dev="'cdrom'/>
<boot dev='hd'/>

3. Check if the boot order was changed successfully by looking at the boot menu in the BIOS of
the VM Guest.

15.5.2. Using direct kernel boot

Direct Kernel Boot allows you to boot from a kernel and initrd stored on the host. Set the path to
both files in the kernel and initrd elements:

<0S>

<ké%ﬁel>/root/f8—i386—vmlinuz</kerne1>
<initrd>/root/f8-1386-initrd</initrd>

<0S>

To enable Direct Kernel Boot:

1. Open the VM Guest's XML configuration:
>sudovirsh edit slesl5

2. Inside the os element, add a kernel element and the path to the kernel file on the host:
%Rérnel>/root/f8-1386—vmlinuz</kernel>

3. Add an initrd element and the path to the initrd file on the host:
<initrd>/root/f8-1386-initrd</initrd>

4. Start your VM to boot from the new kernel:

>sudovirsh start slesl5

134

15.6. Configuring memory allocation

The amount of memory allocated for the VM Guest can also be configured with virsh. It is stored
in the memory element and defines the maximum allocation of memory for the VM Guest at boot
time. The optional currentMemory element defines the actual memory allocated to the VM
Guest. currentMemory can be less than memory, allowing for increasing (or ballooning) the
memory while the VM Guest is running. If currentMemory is omitted, it defaults to the same
value as the memory element.

You can adjust memory settings by editing the VM Guest configuration, but be aware that changes
do not take place until the next boot. The following steps demonstrate changing a VM Guest to
boot with 4G of memory, but allow later expansion to 8G:

1. Open the VM Guest's XML configuration:
>sudovirsh edit slesl5

2. Search for the memory element and set to 8G:
éﬁémory unit="'KiB'>8388608</memory>

3. If the currentMemory element does not exist, add it below the memory element, or change
its value to 4G:

I
<memory unit='KiB'>8388608</memory>
<currentMemory unit='KiB'>4194304</currentMemory>

[...]

Changing the memory allocation while the VM Guest is running can be done with the setmem
subcommand. The following example shows increasing the memory allocation to 8G:

1. Check VM Guest existing memory settings:

>sudovirsh dominfo slesl5 | grep memory
Max memory: 8388608 KiB
Used memory: 4194608 KiB

2. Change the used memory to 8G:
>sudovirsh setmem slesl5 8388608
3. Check the updated memory settings:

>sudovirsh dominfo slesl5 | grep memory
Max memory: 8388608 KiB
Used memory: 8388608 KiB

135

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

Large memory VM Guests

o VM Guests with memory requirements of 4 TB or more must either use the host-
passthrough CPU mode, or explicitly specify the virtual CPU address size when
using host-model or custom CPU modes. The default virtual CPU address size
may not be sufficient for memory configurations of 4 TB or more. The following
example shows how to use the VM Host Server's physical CPU address size when
using the host-model CPU mode.

I

<cpu mode='host-model' check='partial'>
<maxphysaddr mode='passthrough'>

</cpu>

Lo

For more information on specifying virtual CPU address size, see the maxphysaddr
option in the CPU model and topology documentation at hitps://libvirt.org/

formatdomain.html#cpu-model-and-topology.

15.7. Adding a PCI device
To assign a PCI device to VM Guest with virsh, follow these steps:

1. Identify the host PCI device to assign to the VM Guest. In the following example, we are
assigning a DEC network card to the guest:

>sudolspci -nn

[...]

03:07.0 Ethernet controller [0200]: Digital Equipment Corporation DECchip \
21140 [FasterNet] [1011:0009] (rev 22)

Locod

Write down the device ID, 03:07.0 in this example.

2. Gather detailed information about the device using virsh nodedev-dumpxml ID. To get
the ID, replace the colon and the period in the device ID (03:07.0) with underscores. Prefix
the result with “pci_0000_": pci_ 0000 03 07 0.

>sudovirsh nodedev-dumpxml pci_0000_03_07_0
<device>
<name>pci 0000 03 07 O</name>
<path>/sys/devices/pcif000:00/0000:00:14.4/0000:03:07.0</path>
<parent>pci 0000 00 14 4</parent>
<driver>
<name>tulip</name>
</driver>
<capability type='pci'>
<domain>0</domain> <bus>3</bus> <slot>7</slot> <function>0</function>
<product id='0x0009'>DECchip 21140 [FasterNet]</product>
<vendor id='0x1011'>Digital Equipment Corporation</vendor>
<numa node='0'/>
</capability>
</device>

136

https://libvirt.org/formatdomain.html#cpu-model-and-topology
https://libvirt.org/formatdomain.html#cpu-model-and-topology

Write down the values for domain, bus and function (see the previous XML code printed in
bold).

3. Detach the device from the host system before attaching it to the VM Guest:

>sudovirsh nodedev-detach pci_0000_03_07_0
Device pci 0000 03 07 0 detached

Multi-function PCI devices

@ When using a multi-function PCI device that does not support FLR (function
level reset) or PM (power management) reset, you need to detach all its
functions from the VM Host Server. The whole device must be reset for security
reasons. Libvirt refuses to assign the device if one of its functions is still in
use by the VM Host Server or another VM Guest.

4, Convert the domain, bus, slot, and function value from decimal to hexadecimal. In our
example, domain = 0, bus = 3, slot = 7, and function = 0. Ensure that the values are inserted
in the right order:

>printf "<address domain='0x%x' bus='0x%x' slot='0x%x"' function='0x%x"'/>\n"
0370

This results in:
<address domain='0x0' bus='0x3' slot='0x7' function='0x0'/>

5. Run virsh edit on your domain, and add the following device entry in the <devices>
section using the result from the previous step:
<hostdev mode='subsystem' type='pci' managed='yes'>
<source>
<address domain='0x0' bus='0x03' slot='0x07' function='0x0"'/>

</source>
</hostdev>

managed compared to unmanaged

@ libvirt recognizes two modes for handling PCI devices: they can be
managed or unmanaged. In the managed case, libvirt handles all details
of unbinding the device from the existing driver if needed, resetting the device,
binding it to vfio-pci before starting the domain, etc. When the domain is
terminated or the device is removed from the domain, Libvirt unbinds from
vfio-pci and rebinds to the original driver when using a managed device. If
the device is unmanaged, the user must ensure that all these management
aspects of the device are done before assigning it to a domain, and after the
device is no longer used by the domain.

137

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

In the example above, the managed="'yes' option means that the device is managed. To
switch the device mode to unmanaged, set managed="'no" in the listing above. If you do so,
you need to take care of the related driver with the virsh nodedev-detach and virsh
nodedev-reattach commands. Before starting the VM Guest, you need to detach the
device from the host by running virsh nodedev-detach pci 0000 03 07 0. In case
the VM Guest is not running, you can make the device available for the host by running
virsh nodedev-reattach pci_0000_03 07_0.

6. Shut down the VM Guest and disable SELinux if it is running on the host.
>sudosetsebool -P virt_use_sysfs 1
7. Start your VM Guest to make the assigned PCI device available:

>sudovirsh start slesl5

SLES11 SP4 KVM guests

o On a newer QEMU machine type (pc-i440fx-2.0 or higher) with SLES 11 SP4 KVM
guests, the acpiphp module is not loaded by default in the guest. This module must
be loaded to enable hotplugging of disk and network devices. To load the module
manually, use the command modprobe acpiphp. It is also possible to autoload the
module by adding install acpiphp /bin/true to the /etc/
modprobe.conf.local file.

KVM guests using QEMU Q35 machine type

o KVM guests using the QEMU Q35 machine type have a PCI topology that includes a
pcie-root controller and seven pcie-root-port controllers. The pcie-root
controller does not support hotplugging. Each pcie-root-port controller supports
hotplugging a single PCle device. PCI controllers cannot be hotplugged, so plan
accordingly and add more pcie-root-ports to hotplug more than seven PCle
devices. A pcie-to-pci-bridge controller can be added to support hotplugging
legacy PCI devices. See hitps:/libvirt.org/pci-hotplug.html for more information about
PCI topology between QEMU machine types.

15.7.1. PCI Pass-Through for IBM Z

To support IBM Z, QEMU extended PCI representation by allowing the user to configure extra
attributes. Two more attributes—uid and fid—were added to the <zpci/>libvirt
specification. uid represents user-defined identifier, while fid represents PCI function identifier.
These attributes are optional and if you do not specify them, they are automatically generated with
non-conflicting values.

138

https://libvirt.org/pci-hotplug.html

To include zPCI attribute in your domain specification, use the following example definition:

<controller type='pci' index='0' model='pci-root'/>
<controller type='pci' index='l' model='pci-bridge'>
<model name='pci-bridge'/>
<target chassisNr='1"'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x0"'>
<zpci uid='0x0001' fid='0x00000000'/>
</address>
</controller>
<interface type='bridge'>
<source bridge='virbr0'/>
<model type='virtio'/>
<address type='pci' domain='0x0000' bus='0x01' slot='0x01' function='0x0'>
<zpci uid='0x0007' fid='0x00000003'/>
</address>
</interface>

15.8. Adding a USB device
To assign a USB device to VM Guest using virsh, follow these steps:

1. Identify the host USB device to assign to the VM Guest:

>sudolsusb

[...]
Bus 001 Device 003: ID 0557:2221 ATEN International Co., Ltd Winbond Hermon

[...]

Write down the vendor and product IDs. In our example, the vendor ID is 0557 and the
product ID is 2221.

2. Run virsh edit on your domain, and add the following device entry in the <devices>
section using the values from the previous step:

<hostdev mode='subsystem' type='usb'>
<source startupPolicy='optional'>
<vendor id='0557'/> <product id='2221'/>
</source>

</hostdev>

Vendor/product or device's address

@ Instead of defining the host device with vendor and product IDs, you can
use the address element as described for host PCI devices in the section
called “Adding a PCI device”.

3. Shut down the VM Guest and disable SELinux if it is running on the host:
>sudosetsebool -P virt use sysfs 1
4. Start your VM Guest to make the assigned PCI device available:

>sudovirsh start slesl5

139

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

15.9. Adding SR-IOV devices

Single Root I/O Virtualization (SR-IOV) capable PCle devices can replicate their resources, so they
appear as multiple devices. Each of these “pseudo-devices” can be assigned to a VM Guest.

SR-IOV is an industry specification that was created by the Peripheral Component Interconnect
Special Interest Group (PCI-SIG) consortium. It introduces physical functions (PF) and virtual
functions (VF). PFs are full PCle functions used to manage and configure the device. PFs also can
move data. VFs lack the configuration and management part—they only can move data and a
reduced set of configuration functions. As VFs do not have all PCle functions, the host operating
system or the Hypervisor must support SR-IOV to access and initialize VFs. The theoretical
maximum for VFs is 256 per device (consequently the maximum for a dual-port Ethernet card
would be 512). In practice, this maximum is much lower, since each VF consumes resources.

15.9.1. Requirements
The following requirements must be met to use SR-IOV:

* An SR-IOV-capable network card (as of SUSE Linux Enterprise Serverl5, only network
cards support SR-IOV)

* An AMDG64/Intel 64 host supporting hardware virtualization (AMD-V or Intel VT-X), see the
section called “KVM hardware requirements” for more information

* A chipset that supports device assignment (AMD-Vi or Intel VT-d)
* libvirt 0.9.10 or better
* SR-IOV drivers must be loaded and configured on the host system

A host configuration that meets the requirements listed at Requirements for VFIO and SR-
oV

 Alist of the PCI addresses of the VFs assigned to VM Guests

Checking if a device is SR-IOV-capable

@ The information whether a device is SR-IOV-capable can be obtained from its PCI
descriptor by running lspci. A device that supports SR-IOV reports a capability
similar to the following:

Capabilities: [160 v1] Single Root I/0 Virtualization (SR-IOV)

140

Adding an SR-I0V device at VM Guest creation

@ Before adding an SR-IOV device to a VM Guest when initially setting it up, the VM

Host Server already needs to be configured as described in the section called
“Loading and configuring the SR-IOV host drivers”.

15.9.2. Loading and configuring the SR-IOV host drivers

To access and initialize VFs, an SR-IOV-capable driver needs to be loaded on the host system.

1. Before loading the driver, make sure the card is properly detected by running lspci. The

following example shows the Lspci output for the dual-port Intel 82576NS network card:

>sudo/sbin/lspci | grep 82576

01:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)

01:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)

04:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)

04:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)

In case the card is not detected, the hardware virtualization support in the BIOS/EFI may not
have been enabled. To check if hardware virtualization support is enabled, look at the
settings in the host's BIOS.

. Check whether the SR-IOV driver is already loaded by running lsmod. In the following

example, a check for the igb driver (for the Intel 82576NS network card) returns a result.
That means the driver is already loaded. If the command returns nothing, the driver is not
loaded.

>sudo/sbhin/lsmod | egrep "~igb "
igb 185649 0

. Skip the following step if the driver is already loaded. If the SR-/IOV driver is not yet loaded,

the non-SR-IOV driver needs to be removed first, before loading the new driver. Use rmmod
to unload a driver. The following example unloads the non-SR-IOV driver for the Intel
82576NS network card:

>sudo/sbin/rmmod igbvf

4. Load the SR-IOV driver subsequently using the modprobe command—the VF parameter

(max_vfs) is mandatory:

>sudo/sbin/modprobe igb max_vfs=8

As an alternative, you can also load the driver via SYSFS:

141

1. Find the PCI ID of the physical NIC by listing Ethernet devices:

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

>sudolspci | grep Eth

06:00.0 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk)
(rev 10)

06:00.1 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk)
(rev 10)

2. To enable VFs, echo the number of desired VFs to load to the sriov_numvfs parameter:
>sudoecho 1 > /sys/bus/pci/devices/0000:06:00.1/sriov_numvfs
3. Verify that the VF NIC was loaded:

>sudolspci | grep Eth

06:00.0 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk)
(rev 10)

06:00.1 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk)
(rev 10)

06:08.0 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk)
(rev 10)

4. Obtain the maximum number of VFs available:

>sudolspci -vvv -s 06:00.1 | grep 'Initial VFs'
Initial VFs: 32, Total VFs: 32, Number of VFs: 0,
Function Dependency Link: 01

5. Create a /etc/systemd/system/before.service file which loads VF via SYSFS on
boot:

[Unit]

Before=

[Service]

Type=oneshot

RemainAfterExit=true

ExecStart=/bin/bash -c "echo 1 > /sys/bus/pci/devices/0000:06:00.1/
sriov_numvfs"

beware, executable is run directly, not through a shell, check the man
pages

systemd.service and systemd.unit for full syntax

[Install]

target in which to start the service

WantedBy=multi-user.target

#WantedBy=graphical.target

6. Before starting the VM, it is required to create another service file (after-
local.service) pointing to the /etc/init.d/after.local script that detaches the
NIC. Otherwise the VM would fail to start:

[Unit]

Description=/etc/init.d/after.local Compatibility
After=1libvirtd.service

Requires=libvirtd.service

[Service]

Type=oneshot

ExecStart=/etc/init.d/after.local
RemainAfterExit=true

[Install]
WantedBy=multi-user.target

7. Copy itto /etc/systemd/system.

142

#! /bin/sh
...
virsh nodedev-detach pci 0000 06 08 0

Saveitas /etc/init.d/after.local.

8. Reboot the machine and check if the SR-IOV driver is loaded by re-running the lspci
command from the first step of this procedure. If the SR-IOV driver was loaded successfully
you should see additional lines for the VFs:

01:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)

01:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)

01:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev

01)
01:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
01:10.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)

[...
04:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)

04:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)

04:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev

01)
04:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
04:10.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)

[...]
15.9.3. Adding a VF network device to a VM Guest

When the SR-IOV hardware is properly set up on the VM Host Server, you can add VFs to VM
Guests. To do so, you need to collect specific data first.

Procedure 15.2. Adding a VF network device to an existing VM Guest
The following procedure uses example data. Replace it with appropriate data from your setup.

1. Use the virsh nodedev-1list command to get the PCI address of the VF you want to
assign and its corresponding PF. Numerical values from the lspci output shown in the
section called “Loading and configuring the SR-IOV host drivers”, for example, 01:00.0 or
04:00.1, are transformed by adding the prefix pci 0000 and by replacing colons and
dots with underscores. So a PCl ID listed as 04:00.0 by lspci is listed as
pci 0000 04 00 0 by virsh. The following example lists the PCI IDs for the second port of
the Intel 82576NS network card:

143

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

>sudovirsh nodedev-list | grep 0000 04 pci 0000 _04 00 Opci_ 0000 04 00 1
pci 0000 04 10 0
pci 0000 04 10 1
pci 0000 04 10 2
pci 0000 04 10 3
pci 0000 04 10 4
pci 0000 04 10 5
pci 0000 04 10 6
pci 0000 04 10 7
pci 0000 04 11 0
pci 0000 04 11 1
pci 0000 04 11 2
pci 0000 04 11 3
pci 0000 04 11 4
pci 0000 04 11 5

The first two entries represent the PFs, whereas the other entries represent the VFs.

. Run the following virsh nodedev-dumpxml command on the PCI ID of the VF you want
to add:
>sudovirsh nodedev-dumpxml pci_0000_04_10_0
<device>
<name>pci 0000 04 10 O</name>
<parent>pci 0000 00 02 0</parent>
<capability type='pci'>
<domain>0</domain> <bus>4</bus> <slot>1l6</slot> <function>0</function>
<product id='0x10ca'>82576 Virtual Function</product>
<vendor id='0x8086'>Intel Corporation</vendor>
<capability type='phys function'>
<address domain='0x0000' bus='0x04' slot='0x00' function='0x0'/>
</capability>
</capability>
</device>

The following data is needed for the next step:
o <domain>0</domain>
> <bus>4</bus>
o <slot>16</slot>

o<function>0</function>

. Create a temporary XML file, for example, /tmp/vf-interface.xml, containing the data
necessary to add a VF network device to an existing VM Guest. The minimal content of the
file needs to look like the following:
<interface type='hostdev'>@
<source>
<address type='pci' domain='0' bus='11' slot='16"' function='0'2/>@
</source>
</interface>
O VFs do not get a fixed MAC address; it changes every time the host reboots. When
adding network devices the “traditional” way with hostdev, it would require to reconfigure
the VM Guest's network device after each reboot of the host, because of the MAC
address change. To avoid this kind of problem, libvirt introduced the hostdev value,

which sets up network-specific data before assigning the device.

144

8 Specify the data you acquired in the previous step here.

. In case a device is already attached to the host, it cannot be attached to a VM Guest. To

make it available for guests, detach it from the host first:

>sudovirsh nodedev-detach pci_0000_04_16_0

. Add the VF interface to an existing VM Guest:

>sudovirsh attach-device GUEST /tmp/vf-interface.xml --OPTION

GUEST needs to be replaced by the domain name, ID or UUID of the VM Guest. --OPTION
can be one of the following:

--persistent

This option always adds the device to the domain's persistent XML. If the domain is
running, the device is hotplugged.

--config
This option affects the persistent XML only, even if the domain is running. The device
appears in the VM Guest on next boot.

--live
This option affects a running domain only. If the domain is inactive, the operation fails.
The device is not persisted in the XML and becomes available in the VM Guest on
next boot.

--current

This option affects the current state of the domain. If the domain is inactive, the device
is added to the persistent XML and becomes available on next boot. If the domain is
active, the device is hotplugged but not added to the persistent XML.

6. To detach a VF interface, use the virsh detach-device command, which also takes the

options listed above.

15.9.4. Dynamic allocation of VFs from a pool

If you define the PCI address of a VF into a VM Guest's configuration statically as described in the

section called “Adding a VF network device to a VM Guest”, it is hard to migrate such guest to

another host. The host must have identical hardware in the same location on the PCI bus, or the

VM Guest configuration must be modified before each start.

Another approach is to create a Libvirt network with a device pool that contains all the VFs of

an SR-IOV device. The VM Guest then references this network, and each time it is started, a single

VF is dynamically allocated to it. When the VM Guest is stopped, the VF is returned to the pool,

available for another guest.

145

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

15.9.4.1. Defining network with pool of VFs on VM Host Server

The following example of network definition creates a pool of all VFs for the SR-IOV device with its
physical function (PF) at the network interface eth0 on the host:
<network>
<name>passthrough</name>
<forward mode='hostdev' managed='yes'>
<pf dev='eth0'/>
</forward>
</network>
To use this network on the host, save the above code to a file, for example /tmp/
passthrough.xml, and execute the following commands. Remember to replace eth0 with the
real network interface name of your SR-IOV device's PF:

>sudovirsh net-define /tmp/passthrough.xml>sudovirsh net-autostart passthrough>s
udovirsh net-start passthrough

15.9.4.2. Configuring VM Guests to use VF from the pool

The following example of VM Guest device interface definition uses a VF of the SR-IOV device
from the pool created in the section called “Defining network with pool of VFs on VM Host Server”.
libvirt automatically derives the list of all VFs associated with that PF the first time the guest is
started.

<interface type='network'>
<source network='passthrough'>
</interface>

After the first VM Guest starts that uses the network with the pool of VFs, verify the list of
associated VFs. Do so by running virsh net-dumpxml passthrough on the host.

<network connections='1l"'>

<name>passthrough</name>

<uuid>a6a26429-d483-d4ed-3465-4436ac786437</uuid>

<forward mode='hostdev' managed='yes'>
<pf dev='eth0'/>
<address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0Ox1'/>
<address type='pci' domain='0x0000' bus='0x02' slot='0x10"' function='0x3'/>
<address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x5'/>
<address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x7"'/>
<address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0Ox1'/>
<address type='pci' domain='0x0000' bus='0x02' slot='0x11l"' function='0x3'/>
<address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x5'/>

</forward>

</network>

15.10. Listing attached devices

Although there is no mechanism in virsh to list all VM Host Server's devices that have already
been attached to its VM Guests, you can list all devices attached to a specific VM Guest by running
the following command:

virsh dumpxml VMGUEST NAME | xpath -e /domain/devices/hostdev

146

For example:

>sudo virsh dumpxml slesl2 | -e xpath /domain/devices/hostdev
Found 2 nodes:
-- NODE --
<hostdev mode="subsystem" type="pci" managed="yes">
<driver name="xen" />
<source>
<address domain="0x0000" bus="0x0a" slot="0x10" function="0x1" />
</source>
<address type="pci" domain="0x0000" bus="0x00" slot="0x0a" function="0x0" />
</hostdev>
-- NODE --
<hostdev mode="subsystem" type="pci" managed="yes">
<driver name="xen" />
<source>
<address domain="0x0000" bus="0x0a" slot="0x10" function="0x2" />
</source>
<address type="pci" domain="0x0000" bus="0x00" slot="0x0b" function="0x0" />
</hostdev>

Listing SR-IOV devices attached via <interface type='hostdev'>

@ For SR-IOV devices that are attached to the VM Host Server via <interface
type="hostdev'>, you need to use a different XPath query:

virsh dumpxml VMGUEST NAME | xpath -e /domain/devices/interface/@type

15.11. Configuring storage devices

Storage devices are defined within the disk element. The usual disk element supports several
attributes. The following two attributes are the most important:

» The type attribute describes the source of the virtual disk device. Valid values are file ,
block,dir, network, or volume.

» The device attribute shows how the disk is exposed to the VM Guest OS. As an example,
possible values can include floppy , disk, cdrom, and others.

The following child elements are the most important:

e driver contains the driver and the bus. These are used by the VM Guest to work with the
new disk device.

» The target element contains the device name under which the new disk is shown in the
VM Guest. It also contains the optional bus attribute, which defines the type of bus on which
the new disk should operate.

The following procedure shows how to add storage devices to the VM Guest:

1. Edit the configuration for an existing VM Guest:

>sudovirsh edit slesl5

147

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

2. Add a disk element inside the devices element together with the attributes type and
device:

<disk type='file' device='disk'>
3. Specify a driver element and use the default values:
<driver name='gemu' type='qcow2'/>
4. Create a disk image as a source for the new virtual disk device:
>sudogemu-img create -f qcow2 /var/lib/libvirt/images/slesl5.qcow2 326G
5. Add the path for the disk source:
<source file='/var/lib/libvirt/images/slesl5.qcow2'/>
6. Define the target device name in the VM Guest and the bus on which the disk should work:
<target dev='vda' bus='virtio'/>
7. Restart your VM:

>sudovirsh start slesl5

Your new storage device should be available in the VM Guest OS.
15.12. Configuring controller devices

libvirt manages controllers automatically based on the type of virtual devices used by the VM
Guest. If the VM Guest contains PCIl and SCSI devices, PCIl and SCSI controllers are created and
managed automatically. Libvirt also models controllers that are hypervisor-specific, for example,
a virtio-serial controller for KVM VM Guests or a xenbus controller for Xen VM Guests.
Although the default controllers and their configuration are generally fine, there may be use cases
where controllers or their attributes need to be adjusted manually. For example, a virtio-serial
controller may need more ports, or a xenbus controller may need more memory or more virtual
interrupts.

The xenbus controller is unique in that it serves as the controller for all Xen paravirtual devices. If a
VM Guest has many disk and/or network devices, the controller may need more memory. Xen's
max_grant frames attribute sets how many grant frames, or blocks of shared memory, are
allocated to the xenbus controller for each VM Guest.

The default of 32 is enough in most circumstances, but a VM Guest with multiple I/O devices and
an I/O-intensive workload may experience performance issues because of grant frame exhaustion.
The xen-diag can check the current and maximum max_grant frames values for domO and
your VM Guests. The VM Guests must be running:

148

>sudo virsh list

Id Name State
0 Domain-0 running
3 slel5spl running

>sudo xen-diag gnttab query size 0
domid=0: nr frames=1, max nr frames=256

>sudo xen-diag gnttab query size 3
domid=3: nr frames=3, max nr_ frames=32

The slel5spl guest is using only three frames out of 32. If you are seeing performance issues,
and log entries that point to insufficient frames, increase the value with virsh. Look for the
<controller type='xenbus'> line in the guest's configuration file and add the
maxGrantFrames control element:

>sudo virsh edit slel5spl
<controller type='xenbus' index='0' maxGrantFrames='40"'/>

Save your changes and restart the guest. Now it should show your change:

>sudo xen-diag gnttab query size 3
domid=3: nr frames=3, max nr_ frames=40

Similar to maxGrantFrames, the xenbus controller also supports maxEventChannels. Event
channels are like paravirtual interrupts, and in conjunction with grant frames, form a data transfer
mechanism for paravirtual drivers. They are also used for inter-processor interrupts. VM Guests
with a large number of vCPUs and/or many paravirtual devices may need to increase the
maximum default value of 1023. maxEventChannels can be changed similarly to
maxGrantFrames:

>sudo virsh edit slel5spl
<controller type='xenbus' index='0' maxGrantFrames='128"
maxEventChannels="'2047"'/>

See the Controllers section of the libvirt Domain XML format manual at https:/libvirt.org/
formatdomain.html#elementsControllers for more information.

15.13. Configuring video devices

When using the Virtual Machine Manager, only the Video device model can be defined. The
amount of allocated VRAM or 2D/3D acceleration can only be changed in the XML configuration.

15.13.1. Changing the amount of allocated VRAM

1. Edit the configuration for an existing VM Guest:
>sudovirsh edit slesl5

2. Change the size of the allocated VRAM:

149

https://libvirt.org/formatdomain.html#elementsControllers
https://libvirt.org/formatdomain.html#elementsControllers

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

<video>
<model type='vga' vram='65535' heads='1l'>

%)ﬁodel>
</video>

3. Check if the amount of VRAM in the VM has changed by looking at the amount in the Virtual
Machine Manager.

15.13.2. Changing the state of 2D /3D acceleration

1. Edit the configuration for an existing VM Guest:
>sudovirsh edit slesl5
2. To enable/disable 2D/3D acceleration, change the value of accel3d and accel2d

accordingly:

<video>
<model>
<acceleration accel3d='yes' accel2d='no'>
</model>
</video>

Enabling 2D /3D acceleration
@ Only virtio and vbox video devices are capable of 2D/3D acceleration. You
cannot enable it on other video devices.
15.14. Configuring network devices

This section describes how to configure specific aspects of virtual network devices by using
virsh.

Find more details about libvirt network interface specification in https:/libvirt.org/
formatdomain.html#elementsDriverBackendOptions.

15.14.1. Scaling network performance with multiqueue virtio-net

The multigueue virtio-net feature scales the network performance by allowing the VM Guest's
virtual CPUs to transfer packets in parallel. Refer to the section called “Scaling network
performance with multiqueue virtio-net” for more general information.

To enable multiqueue virtio-net for a specific VM Guest, edit its XML configuration as described in
the section called “Editing the VM configuration” and modify its network interface as follows:

150

https://libvirt.org/formatdomain.html#elementsDriverBackendOptions
https://libvirt.org/formatdomain.html#elementsDriverBackendOptions

<interface type='network'>

[...
<model type='virtio'/>

<driver name='vhost' queues='NUMBER OF QUEUES'/>
</interface>

15.15. Using macvtap to share VM Host Server network interfaces

Macvtap provides direct attachment of a VM Guest virtual interface to a host network interface. The
macvtap-based interface extends the VM Host Server network interface and has its own MAC
address on the same Ethernet segment. Typically, this is used to make both the VM Guest and the
VM Host Server show up directly on the switch that the VM Host Server is connected to.

Macvtap cannot be used with a Linux bridge

@ Macvtap cannot be used with network interfaces already connected to a Linux bridge.
Before attempting to create the macvtap interface, remove the interface from the
bridge.

VM Guest to VM Host Server communication with macvtap

@ When using macvtap, a VM Guest can communicate with other VM Guests, and with
other external hosts on the network. But it cannot communicate with the VM Host
Server on which the VM Guest runs. This is the defined behavior of macvtap,
because of the way the VM Host Server's physical Ethernet is attached to the
macvtap bridge. Traffic from the VM Guest into that bridge that is forwarded to the
physical interface cannot be bounced back up to the VM Host Server's IP stack.
Similarly, traffic from the VM Host Server's IP stack that is sent to the physical
interface cannot be bounced back up to the macvtap bridge for forwarding to the VM
Guest.

Virtual network interfaces based on macvtap are supported by libvirt by specifying an interface type
of direct. For example:
<interface type='direct'>
<mac address='aa:bb:cc:dd:ee:ff'/>
<source dev='eth0@' mode='bridge'/>
<model type='virtio'/>
</interface>
The operation mode of the macvtap device can be controlled with the mode attribute. The following

list shows its possible values and a description for each:

e vepa: all VM Guest packets are sent to an external bridge. Packets whose destination is a
VM Guest on the same VM Host Server as where the packet originates from are sent back to

151

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

the VM Host Server by the VEPA capable bridge (today's bridges are typically not VEPA
capable).

» bridge: packets whose destination is on the same VM Host Server as where they originate
from are directly delivered to the target macvtap device. Both origin and destination devices
need to be in bridge mode for direct delivery. If either of them is in vepa mode, a VEPA
capable bridge is required.

* private: all packets are sent to the external bridge and delivered to a target VM Guest on
the same VM Host Server if they are sent through an external router or gateway and that
device sends them back to the VM Host Server. This procedure is followed if either the
source or destination device is in private mode.

* passthrough: a special mode that gives more power to the network interface. All packets
are forwarded to the interface, allowing virtio VM Guests to change the MAC address or set
promiscuous mode to bridge the interface or create VLAN interfaces on top of it. A network
interface is not shareable in passthrough mode. Assigning an interface to a VM Guest
disconnects it from the VM Host Server. For this reason SR-IOV virtual functions are often
assigned to the VM Guest in passthrough mode.

15.16. Disabling a memory balloon device

Memory Balloon has become a default option for KVM. The device is added to the VM Guest
explicitly, so you do not need to add this element in the VM Guest's XML configuration. To disable
Memory Balloon in the VM Guest for any reason, set model="'none"' as shown below:

<devices>
<memballoon model='none'/>
</device>

15.17. Configuring multiple monitors (dual head)

libvirt supports a dual head configuration to display the video output of the VM Guest on
multiple monitors.

No support for Xen

o The Xen hypervisor does not support dual head configuration.

Procedure 15.3. Configuring dual head

1. While the virtual machine is running, verify that the xf86-video-qxl package is installed
in the VM Guest:

>rpm -q xf86-video-qgxl

2. Shut down the VM Guest and start editing its configuration XML as described in the section
called “Editing the VM configuration”.

152

3. Verify that the model of the virtual graphics card is “gxI”:

<video>
<model type='gx1l' ... />

4. Increase the heads parameter in the graphics card model specification from the default 1 to

2, for example:

<video>

<model type='gxl' ram='65536"' vram='65536' vgamem='16384"' heads='2"
primary='yes'/>

<alias name='video0'/>

<address type='pci' domain='0x0000' bus='0x00' slot='0x01"' function='0x0"'/
>

</video>

5. Configure the virtual machine to use the Spice display instead of VNC:

<graphics type='spice' port='5916' autoport='yes' listen='0.0.0.0'>
<listen type='address' address='0.0.0.0'/>
</graphics>

6. Start the virtual machine and connect to its display with virt-viewer, for example:

>virt-viewer --connect qemu+ssh://USER@VM HOST/system

7. From the list of VMs, select the one whose configuration you have modified and confirm with

Connect.

8. After the graphical subsystem (Xorg) loads in the VM Guest, select View > Displays >

Display 2 to open a new window with the second monitor's output.

15.18. Crypto adapter pass-through to KVM guests on IBM Z

15.18.1. Introduction

IBM Z machines include cryptographic hardware with useful functions such as random number

generation, digital signature generation, or encryption. KVM allows dedicating these crypto

adapters to guests as pass-through devices. The means that the hypervisor cannot observe

communications between the guest and the device.

15.18.2. What is covered

This section describes how to dedicate a crypto adapter and domains on an IBM Z host to a KVM

guest. The procedure includes the following basic steps:

153

» Mask the crypto adapter and domains from the default driver on the host.
* Load the vfio-ap driver.
« Assign the crypto adapter and domains to the vfio-ap driver.

 Configure the guest to use the crypto adapter.

CHAPTER 15. CONFIGURING VIRTUAL MACHINES WITH VIRSH

15.18.3. Requirements

* You need to have the QEMU / libvirt virtualization environment correctly installed and
functional.

*The vfio ap and vfio mdev modules for the running kernel need to be available on the
host operating system.

15.18.4. Dedicate a crypto adapter to a KVM host

1. Verify that the vfio_ap and vfio mdev kernel modules are loaded on the host:
>lsmod | grep vfio
If any of them is not listed, load it manually, for example:
>sudo modprobe vfio mdev

2. Create a new MDEYV device on the host and verify that it was added:

uuid=$(uuidgen)

$ echo ${uuid} | sudo tee /sys/devices/vfio ap/matrix/mdev supported types/
vfio ap-passthrough/create

dmesg | tail

looo

[272197.818811] iommu: Adding device 24f952b3-03d1-4df2-9967-0d5f7d63d5f2
to group 0O

[272197.818815] vfio mdev 24f952b3-03d1-4df2-9967-0d5f7d63d5f2: MDEV:
group id = 0

3. Identify the device on the host's logical partition that you intend to dedicate to a KVM guest:

>ls -1 /sys/bus/ap/devices/
[]

lrwxrwxrwx 1 root root © Nov 23 ©3:29 00.0016 -> ../../../devices/ap/
card00/00.0016/
lrwxrwxrwx 1 root root O Nov 23 03:29 card0® -> ../../../devices/ap/card00/

In this example, it is card 0 queue 16. To match the Hardware Management Console (HMC)
configuration, you need to convert from 16 hexadecimal to 22 decimal.

4. Mask the adapter from the zcrypt use:

>lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUEST CNT

00 CEX5C CCA-Coproc online 5
00.0016 CEX5C CCA-Coproc online 5

Mask the adapter:

>cat /sys/bus/ap/apmask
OXFfffrffffrfrfffffeef
echo -0x0 | sudo tee /sys/bus/ap/apmask
OX7fffefeef

Mask the domain:

154

>cat /sys/bus/ap/agmask
OXffrffffffffffrrffffffffe
echo -0x0 | sudo tee /sys/bus/ap/agmask
OXfffffdffffffffffffffffffffffffffffffffffffrffrfffffffrrrffffffffe

. Assign adapter 0 and domain 16 (22 decimal) to vfio-ap:

>sudo echo +0x0 > /sys/devices/vfio ap/matrix/${uuid}/assign adapter
>echo +0x16 | sudo tee /sys/devices/vfio ap/matrix/${uuid}/assign domain
>echo +0x16 | sudo tee /sys/devices/vfio ap/matrix/${uuid}/

assign _control domain

. Verify the matrix that you have configured:

>cat /sys/devices/vfio ap/matrix/${uuid}/matrix
00.0016

. Either create a new VM (refer to Chapter 10, Guest installation) and wait until it is initialized,
or use an existing VM. In both cases, make sure the VM is shut down.

. Change its configuration to use the MDEV device:

>sudo virsh edit VM NAME
[...
<hostdev mode='subsystem' type='mdev' model='vfio-ap'>
<source>

<address uuid='24f952b3-03d1-4df2-9967-0d5f7d63d5f2'/>
</source>
</hostdev>

[...]
. Restart the VM:

>sudo virsh reboot VM NAME

10. Log in to the guest and verify that the adapter is present:

>lszcrypt

CARD.DOMAIN TYPE MODE STATUS REQUEST CNT
00 CEX5C CCA-Coproc online 1

00.0016 CEX5C CCA-Coproc online 1

15.18.5. Further reading

155

« The installation of virtualization components is detailed in Chapter 6, Installation of
virtualization components.

* The vfio_ap architecture is detailed in https://www.kernel.org/doc/Documentation/s390/
vfio-ap.txt.

* A general outline together with a detailed procedure is described in https:/
bugs.launchpad.net/ubuntu/+source/linux/+bug/1787405.

» The architecture of VFIO Mediated devices (MDEVS) is detailed in https://www.kernel.org/
doc/html/latest/driver-api/vfio-mediated-device.html.

https://www.kernel.org/doc/Documentation/s390/vfio-ap.txt
https://www.kernel.org/doc/Documentation/s390/vfio-ap.txt
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1787405
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1787405
https://www.kernel.org/doc/html/latest/driver-api/vfio-mediated-device.html
https://www.kernel.org/doc/html/latest/driver-api/vfio-mediated-device.html

CHAPTER 16. ENHANCING VIRTUAL MACHINE SECURITY WITH AMD SEV-SNP

Chapter 16. Enhancing virtual machine security with AMD SEV-SNP

16.1. Supported hardware

A system with an AMD EPYC (3rd Gen or newer) is required to run AMD SEV-SNP virtual
machines. The BIOS of the AMD machine must provide the necessary options to enable support
for confidential computing on the platform.

16.2. Enabling confidential compute module

The necessary packages for AMD SEV-SNP feature are shipped via a confidential compute
module. You must enable it at system installation time or later via the SUSEConnect command-line
tool.

 To check whether the module is already enabled, run the command:

>sudo suseconnect -1

This displays the list of available modules with their activation status and commands to
enable the inactive modules.

The inactive confidential compute module appears as given below:

Confidential Computing Technical Preview Module 15 SP6 x86 64
Activate with: suseconnect -p sle-module-confidential-computing/15.6/x86 64

« To enable the confidential computing module technology preview, run the command:

>sudosuseconnect -p sle-module-confidential-computing/15.6/x86_ 64
Registering system to SUSE Customer Center

Updating system details on https://scc.suse.com ...

Activating sle-module-confidential-computing 15.6 x86 64 ...
Adding service to system ...

Installing release package ...

Successfully registered system

The confidential compute module is enabled and you can install the packages.
16.3. Installing packages and setting up the base system

The confidential compute module provides replacement packages supporting AMD SEV-SNP. To
ensure a maximum of compatibility, these packages are based on the code streams from SUSE
Linux Enterprise Serverl5 SP7.

The three components that need to be replaced are:

» The Linux kernel
* QEMU Virtual Machine Monitor

e libvirt framework

1. To install the replacement packages, run the command:

156

>sudozypper install --from SLE-Module-Confidential-Computing-15-SP6-Pool --
from SLE-Module-Confidential-Computing-15-SP6-Updates gemu-ovmf-x86_64
libvirt kernel-coco

After replacing the packages, you must set up the system with a configuration change to
make the AMD SEV-SNP feature ready to use. The IOMMU on the host side must be
configured in non-passthrough mode. This is required to prevent peripheral devices from
writing to memory that belongs to an encrypted guest and destroying its data integrity. The
default IOMMU configuration in SUSE Linux Enterprise Serverl5 SP7 is passthrough
mode.

. To disable the IOMMU configuration in SUSE Linux Enterprise Serverl5 SP7, open the /

etc/default/grub file and add iommu=nopt to the GRUB_ CMDLINE LINUX DEFAULT
variable.

. To update the bootloader configuration, run the command:

>sudo ; update-bootloader

. The system is now ready to be restarted with the confidential computing kernel. It is not

selected as the default kernel in the bootloader, so ensure to select it in the boot menu.

16.4. Verifying setup

You can verify the installation and configuration of the packages.

157

1. To verify whether the system has started with the new kernel, check the response for the

command uname -r.
>sudouname -r6.4.0-150616.cocol5sp6-coco

Ensure that the kernel version displayed contains the coco tag.

. To check the initialization result of the AMD Secure Processor in the kernel log when the

kernel is running, run the command:

>sudodmesg | grep -i ccp
10.103166] ccp 0000:42:00.
10.114951] ccp 0000:42:00.
10.127137] ccp 0000:42:00.
.133152] ccp 0000:42:00.
10.240817] ccp 0000:42:00.
11.128307] ccp 0000:42:00.
11.135057] ccp 0000:42:00.

: enabling device (0000 -> 0002)
no command queues available
sev enabled

psp enabled

SEV firmware update successful
SEV API:1.55 build:8

SEV-SNP API:1.55 build:8

.—..—..—..—..—..—..—.
=
(o]
Y = =

The message about the SEV-SNP API version indicates the successful initialization of the
AMD Secure Processor. Sometimes it happens that these messages do not appear in the
kernel log. In this case the BIOS settings or the IOMMU configuration are often the root-
cause.

CHAPTER 16. ENHANCING VIRTUAL MACHINE SECURITY WITH AMD SEV-SNP

16.5. Launching an AMD SEV-SNP virtual machine

You can run AMD SEV-SNP protected virtual machines using the libvirt framework once the
confidential computing kernel is booted and the AMD Secure Processor is initialized.

libvirt has several ways of setting up new virtual machines. This document uses a prepared
disk image and the virt-manager graphical user interface.

1. Connect virt-manager to the AMD EPYC host and create a new virtual machine.
2. In the Create a new virtual machine window, select the details:
> Select how you want to install the operating system.
o Select the ISO or CDROM install media.
o Select the memory and CPU settings.
o Select the required storage details.
3. In the fifth step, verify the details and select Customize configuration before install.

Figure 16.1. Create Virtual Machine

New VM x

m Create a new virtual machine

Ready to begin the installation

SLES-15-SP6
OS: SUSE Linux Enterprise 15 SP6
, Import existing OS image
Memory: 16384 MiB
CPUs: 8
Storage: ... imal-VM.x86_64-kvm-and-xen-GM.qcow?2

Customize configuration before install

» Network selection

Cancel Back Finish

4. Click Finish.
5. Select the XML tab in the virtual machine configuration window.

In the XML tab, you can edit the XML configuration of the virtual machine used by the
libvirt back-end.

158

Figure 16.2. XML view of virtual machine configuration

SLES-15-SP6 on QEMU/KVM: snp
Begin Installation Cancel Installation

B osinformation

U <domain type="kvm">
N o <name>SLES-15-SP6</name>

=5 Memory <uuid>0f5656d9-4154-467d-b03a-25307f4377b8</uuid>
.Q Boot Options <metadata>
Virtlo Disk 1 <li h?sinfo:'ﬁbosﬂvfo xmlns:libosinfo="http://libosinfo.org/xmlns/libvirt/domain/1.0">
= <libosinfo:os id="http://suse.com/sle/15.6"/>
NIC:3a:ab:6f </libosinfo: libosinfo>
- Tablet </metadata>
B Display Spice <memory>16777216</memory>
I <currentMemory>16777216</currentMemory>
@F soundicho <vepus8</vepu>

¢ Console1

2 Channel (qemu-ga) 6_64" machine="q35">hvm</type>

G Channel (spice)

B video Virtio <features>
m Controller USB <acpi/>
pic
m Controller PCle
<vmport sta
@} USB Redirector 1 </features

‘@‘ USB Redirector 2 <cpu mode=

.Q RNG /dev/urandom <clock offse
<timer n

utc">
rtc" tickpolicy="catchup"/

<timer n pit" tickpoli
<timer name="hpet" present="no"/>
</clock>
<pm>
<suspend-to-mem enabled="no"/>
<suspend-to-disk enabled="
</pm>
<devices>

<emulator>/usr/bin/qemu-system-x86_64</emulator>
<disk type="file" device="disk">

Add Hardware

6. To protect the virtual machine with AMD SEV-SNP, set the correct firmware by modifying the
0S section as given below:

Figure 16.3. Set firmware

<0S>
<type arch="x86_64" machi 'pc-q35-8.2">hvm</type>
<loader readonly="yes" type="rom">/usr/share/qemu/ovmf-x86_64-sev.bin</loader>
<boot dev="hd"/>

</os>

The loader line sets the firmware to the SEV version of OVMF.
7. Add a launchSecurity section. For AMD SEV-SNP, the section looks like this:
Figure 16.4. launchSecurity

<launchSecurity type="sev-snp">
<policy>0x00030000</policy>
</launchSecurity>

8. Click Apply and then click the Details tab.
9. Select CPUs in the left-hand list and set the CPU Model to host-model:

159

CHAPTER 16. ENHANCING VIRTUAL MACHINE SECURITY WITH AMD SEV-SNP

Figure 16.5. The Details view of virtual machine configuration

SLES-15-SP6 on QEMU/KVM: snp

Begin Installation Cancel Installation
Overview Details XML
‘ OS information PU

s
W cpus ,

Logical host CPUs: [

=5 Memory
.Q Boot Options vCPU allocation: 8 - +
|| VirtlODisk1

Configuration
NIC:3azab:6f Copy host CPU configuration (host-model)
Tablet
- ave Model:
B Display Spice
QE Sound ich9 Enable available CPU security flaw mitigations

host-model v

= Console1 » Topology
= Channel (qemu-ga)

= Channel (spice)

[video Virtio

m Controller USB

m Controller PCle

@ usBRedirector1

@ usBRedirector2

.Q RNG /dev/urandom

Add Hardware Cancel Apply

10. Click Apply and click Begin Installation.

This starts the virtual machine and installs it according to your settings. The virtual machine
boots up once the process is complete, and you can verify the AMD SEV-SNP protection.

16.6. Verifying the AMD SEV-SNP virtual machine

From the appearance of the virtual machine, one cannot tell whether it runs in a confidential
computing environment. But there are several ways to verify that from within the virtual machine.

To check the kernel log, run the command:

>sudodmesg | grep -i sev-snp
[1.986186] Memory Encryption Features active: AMD SEV SEV-ES SEV-SNP

The presence of the SEV-SNP feature in the kernel log, among other active memory encryption
features, shows that it is active for the virtual machine.

There are also cryptographically secure ways to prove the security of the AMD SEV-SNP
environment.

160

Chapter 17. Migrating VM Guests

One of the major advantages of virtualization is that VM Guests are portable. When a VM Host
Server needs maintenance, or when the host becomes overloaded, the guests can be moved to
another VM Host Server. KVM and Xen even support “live” migrations during which the VM Guest
is constantly available.

17.1. Types of migration
Depending on the required scenario, there are three ways you can migrate virtual machines (VM).
Live migration

The source VM continues to run while its configuration and memory is transferred to the
target host. When the transfer is complete, the source VM is suspended and the target VM is
resumed.

Live migration is useful for VMs that need to be online without any downtime.

Note

@ VMs experiencing heavy 1/O load or frequent memory page writes are
challenging to live migrate. In such cases, consider using non-live or offline
migration.

Non-live migration

The source VM is suspended and its configuration and memory transferred to the target
host. Then the target VM is resumed.

Non-live migration is more reliable than live migration, although it creates downtime for the
VM. If downtime is tolerable, non-live migration can be an option for VMs that are difficult to
live migrate.

Offline migration

The VM definition is transferred to the target host. The source VM is not stopped and the
target VM is not resumed.

Offline migration can be used to migrate inactive VMs.

Important

0 The - -persistent option must be used together with offline migration.

161

CHAPTER 17. MIGRATING VM GUESTS

17.2. Migration requirements

To successfully migrate a VM Guest to another VM Host Server, the following requirements need to
be met:

» The source and target systems must have the same architecture.

» Storage devices must be accessible from both machines, for example, via NFS or iSCSI. For
more information, see Chapter 13, Advanced storage topics.

This is also true for CD-ROM or floppy images that are connected during the move.
However, you can disconnect them before the move as described in the section called
“Ejecting and changing floppy or CD/DVD-ROM media with Virtual Machine Manager”.

e libvirtd needs to run on both VM Host Servers and you must be able to open a remote
libvirt connection between the target and the source host (or vice versa). Refer to the
section called “Configuring remote connections” for details.

« If a firewall is running on the target host, ports need to be opened to allow the migration. If
you do not specify a port during the migration process, libvirt chooses one from the
range 49152:49215. Make sure that either this range (recommended) or a dedicated port of
your choice is opened in the firewall on the target host.

» The source and target machines should be in the same subnet on the network, otherwise
networking fails after the migration.

« All VM Host Servers participating in migration must have the same UID for the gemu user
and the same GIDs for the kvm, gemu and libvirt groups.

* No running or paused VM Guest with the same name must exist on the target host. If a shut-
down machine with the same name exists, its configuration is overwritten.

 All CPU models, except the host cpu model, are supported when migrating VM Guests.
» The SATA disk device type is not migratable.
* File system pass-through feature is incompatible with migration.

e The VM Host Server and VM Guest need to have proper timekeeping installed. See
Chapter 20, VM Guest clock settings.

* No physical devices can be passed from host to guest. Live migration is currently not
supported when using devices with PCI pass-through or SR-IOV. If live migration needs to
be supported, use software virtualization (paravirtualization or full virtualization).

* The cache mode setting is an important setting for migration. See: the section called “Cache
modes and live migration”.

» Backward migration, for example, from SLES 15 SP2 to 15 SP1, is not supported.

* SUSE strives to support live migration of VM Guests from a VM Host Server running a
service pack under LTSS to a VM Host Server running a newer service pack within the same
SLES major version. For example, VM Guest migration from a SLES 12 SP2 host to a SLES

162

12 SP5 host. SUSE only performs minimal testing of LTSS-to-newer migration scenarios and
recommends thorough on-site testing before attempting to migrate critical VM Guests.

» The image directory should be located in the same path on both hosts.

< All hosts should be on the same level of microcode (especially the Spectre microcode
updates). This can be achieved by installing the latest updates of SUSE Linux Enterprise
Server on all hosts.

17.3. Live-migrating with Virtual Machine Manager

When using the Virtual Machine Manager to migrate VM Guests, it does not matter on which

machine it is started. You can start Virtual Machine Manager on the source or the target host or

even on a third host. In the latter case, you need to be able to open remote connections to both the

target and the source host.

163

1. Start Virtual Machine Manager and establish a connection to the target or the source host. If

the Virtual Machine Manager was started neither on the target nor the source host,
connections to both hosts need to be opened.

2. Right-click the VM Guest that you want to migrate and choose Migrate. Make sure the guest

is running or paused—it is not possible to migrate guests that are shut down.

Increasing the speed of the migration

@ To increase the speed of the migration, pause the VM Guest. This is the
equivalent of “non-live migration” described in the section called “Types of
migration”.

3. Choose a New Host for the VM Guest. If the desired target host does not show up, make

sure that you are connected to the host.

To change the default options for connecting to the remote host, under Connection, set the
Mode, and the target host's Address (IP address or host name) and Port. If you specify a
Port, you must also specify an Address.

Under Advanced options, choose whether the move should be permanent (default) or
temporary, using Temporary move.

Additionally, there is the option Allow unsafe, which allows migrating without disabling the
cache of the VM Host Server. This can speed up the migration but only works when the
current configuration allows for a consistent view of the VM Guest storage without using
cache="none"/0 DIRECT.

CHAPTER 17. MIGRATING VM GUESTS

Bandwidth option

@ In recent versions of Virtual Machine Manager, the option of setting a
bandwidth for the migration has been removed. To set a specific bandwidth,
use virsh instead.

4. To perform the migration, click Migrate.

When the migration is complete, the Migrate window closes and the VM Guest is now listed
on the new host in the Virtual Machine Manager window. The original VM Guest is still
available on the source host in the shut-down state.

17.4. Migrating with virsh

To migrate a VM Guest with virshmigrate, you need to have direct or remote shell access to the
VM Host Server, because the command needs to be run on the host. The migration command
looks like this:

>virsh migrate [OPTIONS] VM ID or NAMECONNECTION URI |[--migrateuri tcp://REMOTE
HOST : PORT]

The most important options are listed below. See virsh help migrate for a full list.
--live

Does a live migration. If not specified, the guest is paused during the migration (“non-live
migration”).

--suspend
Leaves the VM paused on the target host during live or non-live migration.
--persistent

Persists the migrated VM on the target host. Without this option, the VM is not be included in
the list of domains reported by virsh list --all when shut down.

--undefinesource

When specified, the VM Guest definition on the source host is deleted after a successful
migration. However, virtual disks attached to this guest are not deleted.

--parallel --parallel-connections NUM_OF_CONNECTIONS

Parallel migration can be used to increase migration data throughput in cases where a single
migration thread is not capable of saturating the network link between source and target
hosts. On hosts with 40 GB network interfaces, it may require four migration threads to

164

saturate the link. With parallel migration, the time required to migrate large memory VMs can
be reduced.

The following examples use mercury.example.com as the source system and jupiter.example.com
as the target system; the VM Guest's name is opensusel31 with ID 37.

Non-live migration with default parameters

>virsh migrate 37 gemu+ssh://tux@jupiter.example.com/system
Transient live migration with default parameters

>virsh migrate --live opensusel3l gemu+ssh://tux@jupiter.example.com/system
Persistent live migration; delete VM definition on source

>virsh migrate --live --persistent --undefinesource 37 \
gemu+tls://tux@jupiter.example.com/system

Non-live migration using port 49152

>virsh migrate opensusel3l gemu+ssh://tux@jupiter.example.com/system \
--migrateuri tcp://@jupiter.example.com:49152

Live migration transferring all used storage

>virsh migrate --live --persistent --copy-storage-all \
opensusel56 gemu+ssh://tux@jupiter.example.com/system

Important

o When migrating VM's storage using the --copy-storage-all option, the
storage must be placed in a libvirt storage pool. The target storage pool
must exist with identical type and name as the source pool.

To obtain the XML representation of the source pool, use the following
command:

>sudo virsh pool-dumpxml EXAMPLE VM > EXAMPLE POOL.xml

To create and start the storage pool on the target host, copy its XML
representation there and use the following commands:

>sudo virsh pool-define EXAMPLE POOL.xml>sudo virsh pool-start E
XAMPLE VM

165

CHAPTER 17. MIGRATING VM GUESTS

Transient compared to persistent migrations

@ By default, virsh migrate creates a temporary (transient) copy of the VM Guest
on the target host. A shut-down version of the original guest description remains on
the source host. A transient copy is deleted from the server after it is shut down.

To create a permanent copy of a guest on the target host, use the switch - -
persistent. A shut-down version of the original guest description remains on the
source host, too. Use the option - -undefinesource together with - -persistent
for a “real” move where a permanent copy is created on the target host and the
version on the source host is deleted.

It is not recommended to use --undefinesource without the --persistent
option, since this results in the loss of both VM Guest definitions when the guest is
shut down on the target host.

17.5. Step-by-step example

17.5.1. Exporting the storage

First, you need to export the storage to share the guest image between hosts. This can be done by
an NFS server. In the following example, we want to share the /volumel/VM directory for all
machines that are on the network 10.0.1.0/24. We are using a SUSE Linux Enterprise NFS server.
As root user, edit the /etc/exports file and add:

/volumel/VM 10.0.1.0/24 (rw,sync,no_root squash)
You need to restart the NFS server:

>sudo systemctl restart nfsserver
>sudo exportfs
/volumel/VM 10.0.1.0/24

17.5.2. Defining the pool on the target hosts

On each host where you want to migrate the VM Guest, the pool must be defined to be able to
access the volume (that contains the Guest image). Our NFS server IP address is 10.0.1.99, its
share is the /volumel/VM directory, and we want to get it mounted in the /var/lib/libvirt/
images/VM directory. The pool name is VM. To define this pool, create a VM. xml file with the
following content:

166

<pool type='netfs'>
<name>VYM</name>
<source>
<host name='10.0.1.99'/>
<dir path='/volumel/VM'/>
<format type='auto'/>
</source>
<target>
<path>/var/lib/libvirt/images/VM</path>
<permissions>
<mode>0755</mode>
<owner>-1l</owner>
<group>-1l</group>
</permissions>
</target>
</pool>

Then load it into Libvirt using the pool-define command:
#virsh pool-define VM.xml
An alternative way to define this pool is to use the virsh command:

#virsh pool-define-as VM --type netfs --source-host 10.0.1.99 \
--source-path /volumel/VM --target /var/lib/libvirt/images/VM
Pool VM created

The following commands assume that you are in the interactive shell of virsh, which can also be
reached by using the command virsh without any arguments. Then the pool can be set to start
automatically at host boot (autostart option):

virsh #pool-autostart VM
Pool VM marked as autostarted

To disable the autostart:

virsh #pool-autostart VM --disable
Pool VM unmarked as autostarted

Check if the pool is present:

virsh #pool-list --all

Name State Autostart
default active yes
VM active yes
virsh #pool-info VM
Name: VM
UuID: 42efelb3-7eaa-4e24-a06a-ba7c9ee29741
State: running
Persistent: yes
Autostart: yes
Capacity: 2,68 TiB
Allocation: 2,38 TiB
Available: 306,05 GiB

167

CHAPTER 17. MIGRATING VM GUESTS

Pool needs to exist on all target hosts

Remember: this pool must be defined on each host where you want to be able to
migrate your VM Guest.

17.5.3. Creating the volume

The pool has been defined—now we need a volume which contains the disk image:

virsh #vol-create-as VM sledl2.qcow2 8G --format gqcow2
Vol sledl2.qcow2 created

The volume names shown are used later to install the guest with virt-install.

17.5.4. Creating the VM Guest

Let us create a SUSE Linux Enterprise Server VM Guest with the virt-install command. The
VM pool is specified with the --disk option, cache=none is recommended if you do not want to
use the --unsafe option while doing the migration.
#virt-install --connect gemu:///system --virt-type kvm --name \
slesl5 --memory 1024 --disk vol=VM/sledl2.qcow2,cache=none --cdrom \
/mnt/install/IS0/SLE-15-Server-DVD-x86 64-Build0327-Medial.iso --graphics \
vnc --os-variant sledl5

Starting install...
Creating domain...

17.5.5. Migrate the VM Guest

Everything is ready to do the migration now. Run the migrate command on the VM Host Server
that is currently hosting the VM Guest, and choose the target.

virsh # migrate --live sledl2 --verbose gemu+ssh://IP/Hostname/system
Password:
Migration: [12 %]

168

Chapter 18. Xen to KVM migration guide

As the KVM virtualization solution is becoming more and more popular among server
administrators, many of them need a path to migrate their existing Xen based environments to
KVM. As of now, there are no mature tools to automatically convert Xen VMs to KVM. There is,
however, a technical solution that helps convert Xen virtual machines to KVM. The following
information and procedures help you to perform such a migration.

Migration procedure not supported

o The migration procedure described in this document is not fully supported by SUSE.
We provide it as a guidance only.

18.1. Migration to KVM using virt-v2v

This section contains information to help you import virtual machines from foreign hypervisors
(such as Xen) to KVM managed by libvirt.

Microsoft Windows guests

@ This section is focused on converting Linux guests. Converting Microsoft Windows
guests using virt-v2v is the same as converting Linux guests, except with regard
to handling the Virtual Machine Driver Pack (VMDP). Additional details on converting
Windows guests with the VMDP can be found separately at Virtual Machine Driver

Pack documentation.

18.1.1. Introduction to virt-v2v

virt-v2v is a command-line tool to convert VM Guests from a foreign hypervisor to run on KVM
managed by libvirt. It enables paravirtualized virtio drivers in the converted virtual machine if
possible. A list of supported operating systems and hypervisors follows:

Supported guest operating systems

* SUSE Linux Enterprise Server
e openSUSE

* Red Hat Enterprise Linux

* Fedora

* Microsoft Windows Server 2003 and 2008

Supported source hypervisor

e Xen

169

https://documentation.suse.com/sle-vmdp/
https://documentation.suse.com/sle-vmdp/

CHAPTER 18. XEN TO KVM MIGRATION GUIDE

Supported target hypervisor

* KVM (managed by libvirt)
18.1.2. Installing virt-v2v

The installation of virt-v2v is simple:
>sudo zypper install virt-v2v

Remember that virt-v2v requires root privileges, so you need to run it either as root, or via
sudo.

18.1.3. Converting virtual machines to run under KVM managed by libvirt

virt-v2v converts virtual machines from the Xen hypervisor to run under KVM managed by
libvirt. To learn more about Libvirt and virsh, see Part I, “Managing virtual machines with
libvirt ”. Additionally, all virt-v2v command line options are explained in the virt-v2v man
page (man 1 virt-v2v).

Before converting a virtual machine, make sure to complete the following steps:

Procedure 18.1. Preparing the environment for the conversion

1. Create a new local storage pool.

virt-v2v copies the storage of the source virtual machine to a local storage pool managed
by libvirt (the original disk image remains unchanged). You can create the pool either
with Virtual Machine Manager or virsh. For more information, see the section called
“Managing storage with Virtual Machine Manager” and the section called “Managing storage
with virsh”.

2. Prepare the local network interface.

Check that the converted virtual machine can use a local network interface on the VM Host
Server. It is normally a network bridge and if it is not yet defined, create it with YaST >
System > Network Settings > Add > Bridge.

170

Mappings of network devices

@ Network devices on the source Xen host can be mapped during the conversion
process to corresponding network devices on the KVM target host. For
example, the Xen bridge br0@ can be mapped to the default KVM network
device. Sample mappings can be found in /etc/virt-v2v.conf. To enable
these mappings, modify the XML rule and ensure the section is not commented
out with <!'- - and - -> markers. For example:

<network type='bridge' name='bro'>
<network type='network' name='default'/>
</network>

No network bridge

@ If there is no network bridge available, Virtual Machine Manager can optionally
create it.

virt-v2v has the following basic command syntax:
virt-v2v -i INPUT METHOD -os STORAGE POOLSOURCE VM

input_method

There are two input methods: libvirt or Libvirtxml. See the SOURCE_VM parameter
for more information.

storage_pool
The storage pool you already prepared for the target virtual machine.
source_vm

The source virtual machine to convert. It depends on the INPUT_METHOD parameter: for
libvirt, specify the name of a libvirt domain. For libvirtxml, specify the path to an
XML file containing a libvirt domain specification.

Conversion time

@ Conversion of a virtual machine takes a lot of system resources, mainly for copying
the whole disk image for a virtual machine. Converting a single virtual machine
typically takes up to 10 minutes.Virtual machines using large disk images can take
much longer.

171

CHAPTER 18. XEN TO KVM MIGRATION GUIDE

18.1.3.1. Conversion based on the Libvirt XML description file

This section describes how to convert a local Xen virtual machine using the libvirt XML
configuration file. This method is suitable if the host is already running the KVM hypervisor. Make
sure that the libvirt XML file of the source virtual machine, and the libvirt storage pool
referenced from it are available on the local host.

1. Obtain the 1ibvirt XML description of the source virtual machine.

Obtaining the XML files

@ To obtain the 1ibvirt XML files of the source virtual machine, you must run
the host OS under the Xen kernel. If you already rebooted the host to the KVM-
enabled environment, reboot back to the Xen kernel, dump the libvirt XML
file, and then reboot back to the KVM environment.

First identify the source virtual machine under virsh:

#virsh list
Id Name State

2 slesl2 xen running

[...]

sles12 xen is the source virtual machine to convert. Now export its XML and save it to
slesl2 xen.xml:

#virsh dumpxml slesl2 xen > slesl2 xen.xml

2. Verify that all disk image paths are correct from the KVM host's perspective. This is not a
problem when converting on one machine, but may require manual changes when
converting using an XML dump from another host.

<source file='/var/lib/libvirt/images/XenPool/SLES.qcow2'/>

Copying images

@ To avoid copying an image twice, manually copy the disk image or images
directly to the Libvirt storage pool. Update the source file entries in the XML
description file. The virt-v2v process detects the existing disks and converts
them in place.

3. Run virt-v2v to convert to KVM virtual machine:

#virt-v2v slesl2 xen.xml@ \

-i LIBVIRTXML® \

-0s remote host.example.com:/exported dir® \
--bridge bro@®@ \

-on slesl12 kvm@®

172

O The XML description of the source Xen-based virtual machine.
® virt-v2v reads the information about the source virtual machine from a Libvirt XML
file.

© Storage pool where the target virtual machine disk image is placed. In this example, the
image is placed on an NFS share /exported dir on the

remote host.example.com server.
O The target KVM-based virtual machine uses the network bridge br0@ on the host.

© The target virtual machine is renamed to sles12 kvm to prevent name collision with the

existing virtual machine of the same name.

18.1.3.2. Conversion based on the 1ibvirt domain name

This method is useful if you are still running Libvirt under Xen, and plan to reboot to the KVM

hypervisor later.

173

1. Find the 1ibvirt domain name of the virtual machine you want to convert.

#virsh list
Id Name State

2 slesl2 xen running

slesl2 xen is the source virtual machine to convert.

. Run virt-v2v to convert to KVM virtual machine:

#virt-v2v slesl2 xen@ \
-1 libvirt® \

-0s storage pool® \
--network eth0@ \

-of qcow2@® \

-0a sparse@® \

-on slesl12 kvm

® The domain name of the Xen-based virtual machine.

® virt-v2v reads the information about the source virtual machine directly from the active

libvirt connection.
© The target disk image is placed in a local Libvirt storage pool.
O All guest bridges (or networks) are connected to a locally managed network.

© Format for the disk image of the target virtual machine. Supported options are raw or

gcow2.

O Whether the converted guest disk space is sparse or preallocated.

CHAPTER 18. XEN TO KVM MIGRATION GUIDE

18.1.3.3. Converting a remote Xen virtual machine

This method is useful if you need to convert a Xen virtual machine running on a remote host. As
virt-v2v connects to the remote host via ssh, ensure the SSH service is running on the host.

Passwordless SSH access

@ virt-v2v requires a passwordless SSH connection to the remote host. This means
a connection using an SSH key added to the ssh-agent. See man ssh-keygen and
man ssh-add for more details on this. More information is also available at
Chapter 22, Securing network operations with OpenSSH in “Security and Hardening
Guide”.

To connect to a remote Libvirt connection, construct a valid connection URI relevant for your
remote host. In the following example, the remote host name is remote host.example.com,
and the user name for the connection is root. The connection URI then looks as follows:

xen+ssh://root@remote host.example.com/

For more information on 1ibvirt connection URIs, see https:/libvirt.org/uri.html.

1. Find the 1ibvirt domain name of the remote virtual machine you want to convert.

#virsh -c xen+ssh://root@remote host.example.com/ list
Id Name State

1 slesl2 xen running

[...]

sles12 xen is the source virtual machine to convert.

2. The virt-v2v command for the remote connection looks like this:

#virt-v2v slesl2 xen \

-1 libvirt \

-ic xen+ssh://root@remote host.example.com/ \
-os local storage pool \

--bridge bro

18.1.4. Running converted virtual machines

After virt-v2v completes successfully, a new libvirt domain is created with the name
specified with the -on option. If you did not specify -on, the same name as the source virtual
machine is used. The new guest can be managed with standard 1ibvirt tools, such as virsh or
Virtual Machine Manager.

174

https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf
https://libvirt.org/uri.html

Rebooting the machine

@ If you completed the conversion under Xen as described in the section called
“Conversion based on the libvirt domain name”, you may need to reboot the host
machine and boot with the non-Xen kernel.

18.2. Xen to KVM manual migration

18.2.1. General outline

The preferred solution to manage virtual machines is based on libvirt; for more information,
see https://libvirt.org/. It has several advantages over the manual way of defining and running
virtual machines—1libvirt is cross-platform, supports many hypervisors, has secure remote
management, has virtual networking, and, most of all, provides a unified abstract layer to manage
virtual machines. Therefore the main focus of this article is on the Libvirt solution.

Generally, the Xen to KVM migration consists of the following basic steps:

1. Make a backup copy of the original Xen VM Guest.
2. Optionally, apply changes specific to paravirtualized guests.
3. Obtain information about the original Xen VM Guest and update it to KVM equivalents.

4. Shut down the guest on the Xen host, and run the new one under the KVM hypervisor.

No live migration

The Xen to KVM migration cannot be done live while the source VM Guest is running.
Before running the new KVM-ready VM Guest, you are advised to shut down the
original Xen VM Guest.

18.2.2. Back up the Xen VM Guest
To back up your Xen VM Guest, follow these steps:

1. Identify the relevant Xen guest you want to migrate, and remember its ID/name.

>sudo virsh list --all

Id Name State
0 Domain-0 running

1 SLES15SP3 running

[...]

2. Shut down the guest. You can do this either by shutting down the guest OS, or with virsh:

>sudo virsh shutdown SLES11SP3

175

https://libvirt.org/

CHAPTER 18. XEN TO KVM MIGRATION GUIDE

3. Back up its configuration to an XML file.
>sudo virsh dumpxml SLES11SP3 > slesllsp3.xml

4. Back up its disk image file. Use the cp or rsync commands to create the backup copy.
Remember that it is always a good idea to check the copy with the md5sum command.

5. After the image file is backed up, you can start the guest again with

>sudo virsh start SLES11SP3
18.2.3. Changes specific to paravirtualized guests

Apply the following changes if you are migrating a paravirtualized Xen guest. You can do it either
on the running guest, or on the stopped guest using guestfs-tools.

Important

o After applying the changes described in this section, the image file related to the
migrated VM Guest is not usable under Xen anymore.

18.2.3.1. Install the default kernel

No booting

After installing the default kernel, the system fails to boot the Xen guest.

Before cloning the Xen guest disk image for use under the KVM hypervisor, make sure it is
bootable without the Xen hypervisor. This is crucial for paravirtualized Xen guests as they normally
contain a special Xen kernel, and often do not have a complete GRUB 2 boot loader installed.

1. For SLES 11, update the /etc/sysconfig/kernel file. Change the INITRD MODULES
parameter by removing all Xen drivers and replacing them with virtio drivers. Replace
INITRD MODULES="xenblk xennet"
with
INITRD MODULES="virtio blk virtio pci virtio net virtio balloon"

For SLES 12, 15 and openSUSE, search for xenblk xennet in /etc/dracut.conf.d/
*.conf and replace them with virtio blk wvirtio pci virtio net
virtio balloon

2. Paravirtualized Xen guests run a specific Xen kernel. To run the guest under KVM, you need
to install the default kernel.

176

Default kernel is already installed

@ You do not need to install the default kernel for a fully virtualized guest, as it is
already installed.

Enter rpm -q kernel-default on the Xen guest to find out whether the default kernel is
installed. If not, install it with zypper in kernel-default.

The kernel we are going to use to boot the guest under KVM must have virtio
(paravirtualized) drivers available. Run the following command to find out. Do not forget to
replace 6.4.0-150700. 38 with your kernel version:

>sudo sudo find /lib/modules/6.4.0-150700.38-default/kernel/drivers/ -name
virtio*
/lib/modules/6.4.0-150700.38-default/kernel/drivers/block/virtio blk.ko.zst
/lib/modules/6.4.0-150700.38-default/kernel/drivers/bluetooth/

virtio bt.ko.zst
/lib/modules/6.4.0-150700.38-default/kernel/drivers/char/hw_random/virtio-
rng.ko.zst
/lib/modules/6.4.0-150700.38-default/kernel/drivers/crypto/virtio
/lib/modules/6.4.0-150700.38/kernel/drivers/block/virtio blk.ko

3. Update /etc/fstab. Change any storage devices from xvda to vda.

4. Update the boot loader configuration. Enter rpm -q grub2 on the Xen guest to find out
whether GRUB 2 is already installed. If not, install it with zypper in grub2.

Now make the newly installed default kernel the default for booting the OS. Also remove/
update the kernel command line options that may refer to Xen-specific devices. You can do it
either with YaST (System > Boot Loader), or manually:

o Find the preferred Linux boot menu entry by listing them all:
>cat /boot/grub2/grub.cfg | grep 'menuentry '

Remember the order number (counted from zero) of the one you newly installed.

> Set it as the default boot menu entry:
>sudo grub2-set-default N

Replace N with the number of the boot menu entry you previously discovered.

> Open /etc/default/grubfor editing, and look for the
GRUB CMDLINE LINUX DEFAULT and GRUB CMDLINE LINUX RECOVERY options.
Remove or update any reference to Xen-specific devices. In the following example,
you can replace

root=/dev/xvdal disk=/dev/xvda console=xvc
with

root=/dev/vdal disk=/dev/vda

177

CHAPTER 18. XEN TO KVM MIGRATION GUIDE

Do not forget to remove all references to xvc-type consoles (such as xvc0).

5. Update device.map in either the /boot/grub2 or /boot/grub2-efi directory,
whichever that VM uses. Change any storage devices from xvda to vda.

6. To import new default settings, run

grub2-mkconfig -o /boot/grub2/grub.cfg

18.2.3.2. Update the guest for boot under KVM

1. Update the system to use the default serial console. List the configured consoles, and
remove symbolic links to xvc? ones.

>sudo 1s -1 /etc/systemd/system/getty.target.wants/
getty@ttyl.service -> /usr/lib/systemd/system/getty@.service
getty@xvcO.service -> /usr/lib/systemd/system/getty@xvcO.service
getty@xvcl.service -> /usr/lib/systemd/system/getty@xvcl.service

rm /etc/systemd/system/getty.target.wants/getty@xvc?.service

2. Update the /etc/securetty file. Replace xvc0O with ttyS0.

18.2.4. Update the Xen VM Guest configuration

This section describes how to export the configuration of the original Xen VM Guest, and what
particular changes to apply to it so it can be imported as a KVM guest into Libvirt.

18.2.4.1. Export the Xen VM Guest configuration

First export the configuration of the guest and save it to a file. For example:

178

>sudo virsh dumpxml SLES11SP3
<domain type='xen'>

<name>SLES11SP3</name>
<uuid>fa9eadd7-8f95-30c0O-bce9-9e58ffcabeb2</uuid>
<memory>524288</memory>
<currentMemory>524288</currentMemory>
<vcpu>1l</vcpu>
<bootloader>/usr/bin/pygrub</bootloader>
<0S>
<type>linux</type>
</0s>
<clock offset='utc'/>
<on_poweroff>destroy</on poweroff>
<on_reboot>restart</on reboot>
<on _crash>restart</on crash>
<devices>
<emulator>/usr/lib/xen/bin/gemu-dm</emulator>
<disk type='file' device='disk'>
<driver name='file'/>
<source file='/var/lib/libvirt/images/

SLES 11 SP2 Je0S.x86 64-0.0.2 para.raw'/>

<target dev='xvda' bus='xen'/>
</disk>
<interface type='bridge'>
<mac address='00:16:3e:2d:91:c3'/>
<source bridge='bro'/>
<script path='vif-bridge'/>
</interface>
<console type='pty'>
<target type='xen' port='0'/>
</console>
<input type='mouse' bus='xen'/>

<graphics type='vnc' port='-1' autoport='yes' keymap='en-us'/>

</devices>

</domain>

You can find detailed information on the libvirt XML format for VM Guest description at https://

libvirt.org/formatdomain.html.

18.2.4.2. General changes to the guest configuration

You need to make a few general changes to the exported Xen guest XML configuration to run it
under the KVM hypervisor. The following applies to both fully virtualized and paravirtualized guests.
The following XML elements are just an example and do not need to be in your specific

configuration.

179

https://libvirt.org/formatdomain.html
https://libvirt.org/formatdomain.html

CHAPTER 18. XEN TO KVM MIGRATION GUIDE

Conventions used

@ To refer to a node in the XML configuration file, an XPath syntax is used throughout
this document. For example, to refer to a <name> inside the <domain> tag

<domain>
<name>slesllsp3</name>
</domain>

an XPath equivalent /domain/name is used.

. Change the type attribute of the /domain element from xento kvm.
. Remove the /domain/bootloader element section.
. Remove the /domain/bootloader args element section.

1
2
3
4. Change the /domain/os/type element value from linux to hvm.
5. Add <boot dev="hd"/> under the /domain/os element.

6

.Add the arch attribute to the /domain/os/type element. Acceptable values are
arch="x86 64" orarch="1686"

~

. Change the /domain/devices/emulator element from /usr/lib/xen/bin/qemu-
dm' to /usr/bin/qemu-kvm.

8. For each disk associated with the paravirtualized (PV) guest, change the following:
o Change the name attribute of the /domain/devices/disk/driver element from

file to gemu, and add a type attribute for the disk type. For example, valid options
include raw and qcow?2.

o Change the dev attribute of the /domain/devices/disk/target element from
xvda to vda.

> Change the bus attribute of the /domain/devices/disk/target element from
xentovirtio.

9. For each network interface card, make the following changes:

o If there is a model defined in /domain/devices/interface, change its type
attribute value to virtio

<model type="virtio”>

> Delete all /domain/devices/interface/script sections.

> Delete all /domain/devices/interface/target elements if the dev attribute
starts with vif or vnet or veth. If using a custom network then change the dev
value to that target.

10. Remove the /domain/devices/console element section if it exists.

11. Remove the /domain/devices/serial element section if it exists.

180

12. Change the bus attribute on the /domain/devices/input element from xen to ps2.

13. Add the following element for memory ballooning features under the /domain/devices
element.

<memballoon model="virtio"/>

Device name

@ <target dev='hda' bus='ide'/> controls the device under which the disk is
exposed to the guest OS. The dev attribute indicates the “logical” device name. The
actual device name specified is not guaranteed to map to the device name in the
guest OS. Therefore you may need to change the disk mapping on the boot loader
command line. For example, if the boot loader expects a root disk to be hda2 but
KVM still sees it as sda2, change the boot loader command line from

[...] root=/dev/hda2 resume=/dev/hdal [...]
to

[...] root=/dev/sda2 resume=/dev/sdal [...]
For paravirtualized xvda devices, change it to:

[...] root=/dev/vda2 resume=/dev/vdal [...]

Otherwise the VM Guest refuses to boot in the KVM environment.

18.2.4.3. The target KVM guest configuration

After having applied all the modifications mentioned above, you end up with the following
configuration for your KVM guest:

181

CHAPTER 18. XEN TO KVM MIGRATION GUIDE

<domain type='kvm'>
<name>SLES11SP3</name>
<uuid>fa9eadd7-8f95-30c0O-bce9-9e58ffcabeb2</uuid>
<memory>524288</memory>
<currentMemory>524288</currentMemory>
<vcpu cpuset='0-3'>1</vcpu>
<0S>
<type arch="x86 64">hvm</type>
<boot dev="hd"/>
</0s>
<clock offset="'utc'/>
<on_poweroff>destroy</on poweroff>
<on_reboot>restart</on reboot>
<on_crash>restart</on crash>
<devices>
<emulator>/usr/bin/gemu-kvm</emulator>
<disk type='file' device='disk'>
<driver name='gemu' type="raw"/>
<source file='/var/lib/libvirt/images/
SLES 11 SP2 Je0S.x86 64-0.0.2 para.raw'/>
<target dev='vda' bus='virtio'/>
</disk>
<interface type='bridge'>
<mac address='00:16:3e:2d:91:c3'/>
<source bridge='br0'/>
</interface>
<input type='mouse' bus='usb'/>
<graphics type='vnc' port='5900' autoport='yes' keymap='en-us'/>
<memballoon model="virtio"/>
</devices>
</domain>

Save the configuration to a file in your home directory, as SLES11SP3.xm1, for example. It gets
copied to the default /etc/libvirt/qgemu directory after the import.

18.2.5. Migrate the VM Guest

After you updated the VM Guest configuration, and applied necessary changes to the guest OS,
shut down the original Xen guest, and run its clone under the KVM hypervisor.

1. Shut down the guest on the Xen host by running shutdown -h now as root from the
console.

2. Copy the disk images associated with the VM Guest if needed. A default configuration
requires the Xen disk files to be copied from /var/lib/xen/images to /var/lib/kvm/
images. The /var/lib/kvm/images directory may need to be created (as root) if you
have not previously created a VM Guest.

3. Create the new domain, and register it with Libvirt:

>sudo virsh define SLES11SP3.xml
Domain SLES11SP3 defined from SLES11SP3.xml

4. Verify that the new guest is seen in the KVM configuration:
>virsh list —all

5. After the domain is created, you can start it:

182

>sudo virsh start SLES11SP3
Domain SLES11SP3 started

18.3. More information
For more information on libvirt, see https:/libvirt.org.

You can find more details on the Libvirt XML format at https://libvirt.org/formatdomain.html.

183

https://libvirt.org
https://libvirt.org/formatdomain.html

Part III. Hypervisor-independent features

19
20
21
22
23
24

PART III. HYPERVISOR-INDEPENDENT FEATURES

Disk cache modes 185

VM Guest clock settings 188
libguestfs 189

QEMU guest agent 199
Software TPM emulator 202

Creating crash dumps of a VM Guest
205

184

Chapter 19. Disk cache modes
19.1. What is a disk cache?

A disk cache is a memory used to speed up the process of storing and accessing data from the
hard disk. Physical hard disks have their cache integrated as a standard feature. For virtual disks,
the cache uses VM Host Server's memory and you can fine-tune its behavior, for example, by
setting its type.

19.2. How does a disk cache work?

Normally, a disk cache stores the most recent and frequently used programs and data. When a
user or program requests data, the operating system first checks the disk cache. If the data is
there, the operating system quickly delivers the data to the program instead of re-reading the data
from the disk.

Figure 19.1. Caching mechanism

1st request

1st request 1st request

User Cache
cached data) data is cashed

L 4

s~

Subsequent requests

request

User Cache
cached data

v

o~

19.3. Benefits of disk caching

Caching of virtual disk devices affects the overall performance of guest machines. You can improve
the performance by optimizing the combination of cache mode, disk image format, and storage
subsystem.

19.4. Virtual disk cache modes

If you do not specify a cache mode, writeback is used by default. Each guest disk can use one
of the following cache modes:

writeback

writeback uses the host page cache. Writes are reported to the guest as completed when
they are placed in the host cache. Cache management handles commitment to the storage

185

CHAPTER 19. DISK CACHE MODES

device. The guest's virtual storage adapter is informed of the writeback cache and therefore
expected to send flush commands as needed to manage data integrity.

writethrough

Writes are reported as completed only when the data has been committed to the storage
device. The guest's virtual storage adapter is informed that there is no writeback cache, so
the guest does not need to send flush commands to manage data integrity.

none

The host cache is bypassed, and reads and writes happen directly between the hypervisor
and the storage device. Because the actual storage device may report a write as completed
when the data is still placed in its write queue only, the guest's virtual storage adapter is
informed that there is a writeback cache. This mode is equivalent to direct access to the
host's disk.

unsafe

Similar to the writeback mode, except all flush commands from the guests are ignored. Using
this mode implies that the user prioritizes performance gain over the risk of data loss in case
of a host failure. This mode can be useful during guest installation, but not for production
workloads.

directsync

Writes are reported as completed only when the data has been committed to the storage
device and the host cache is bypassed. Similar to writethrough, this mode can be useful for
guests that do not send flushes when needed.

19.5. Cache modes and data integrity
writethrough, none, directsync

These modes are considered to be safest when the guest operating system uses flushes as
needed. For unsafe or unstable guests, use writethough or directsync.

writeback

This mode informs the guest of the presence of a write cache, and it relies on the guest to
send flush commands as needed to maintain data integrity within its disk image. This mode
exposes the guest to data loss if the host fails. The reason is the gap between the moment a
write is reported as completed and the time the write being committed to the storage device.

186

unsafe

This mode is similar to writeback caching, except the guest flush commands are ignored.
This means a higher risk of data loss caused by host failure.

19.6. Cache modes and live migration

The caching of storage data restricts the configurations that support live migration. Currently, only
raw and qcow2 image formats can be used for live migration. If a clustered file system is used, all
cache modes support live migration. Otherwise the only cache mode that supports live migration
on read/write shared storage is none.

The libvirt management layer includes checks for migration compatibility based on several
factors. If the guest storage is hosted on a clustered file system, is read-only, or is marked
shareable, then the cache mode is ignored when determining if migration can be allowed.
Otherwise libvirt does not allow migration unless the cache mode is set to none. However, this

restriction can be overridden with the “--unsafe” option to the migration APIs, which is also

supported by virsh. For example:

>virsh migrate --live --unsafe
Tip

@ The cache mode none is required for the AIO mode setting native. If another cache
mode is used, the AIO mode is silently switched back to the default threads.

187

CHAPTER 20. VM GUEST CLOCK SETTINGS

Chapter 20. VM Guest clock settings

Timekeeping on the VM Host Server

@ It is strongly recommended to ensure the VM Host Server keeps the correct time as
well, for example, by using NTP (see Chapter 39, Time synchronization with NTP in
“Administration Guide” for more information).

20.1. KVM: using kvm_clock

KVM provides a paravirtualized clock which is supported via the kvm_clock driver. It is strongly
recommended to use kvm_clock.

Use the following command inside a VM Guest running Linux to check whether the driver
kvim_clock has been loaded:

>sudo dmesg | grep kvm-clock

[0.000000] kvm-clock: cpu 0, msr 0:7d3a81, boot clock

[0.000000] kvm-clock: cpu 0, msr 0:1206a81, primary cpu clock

[0.012000] kvm-clock: cpu 1, msr 0:1306a81, secondary cpu clock
[0.160082] Switching to clocksource kvm-clock

To check which clock source is currently used, run the following command in the VM Guest. It
should output kvm-clock:

>cat /sys/devices/system/clocksource/clocksource@/current clocksource
kvm-clock and NTP

o When using kvm-clock, it is recommended to use NTP in the VM Guest, as well.
Using NTP on the VM Host Server is also recommended.

20.1.1. Other timekeeping methods

The paravirtualized kvm-clock is currently not for Windows* operating systems. For Windows*,
use the Windows Time Service Tools for time synchronization.

20.2. Xen virtual machine clock settings

With Xen 4, the independent wallclock setting /proc/sys/xen/independent wallclock
used for time synchronization between Xen host and guest was removed. A new configuration
option tsc _mode was introduced. It specifies a method of using the time stamp counter to
synchronize the guest time with the Xen server. Its default value 0 handles the most hardware and
software environments.

For more details on tsc_mode, see the xen-tscmode man page (man 7 xen-tscmode).

188

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

Chapter 21. libguestfs

Important

o Using libguestfs tools is fully supported on the AMD64/Intel 64 architecture only.

21.1. VM Guest manipulation overview

21.1.1. VM Guest manipulation risk

As disk images and definition files are simply another type of file in a Linux environment, it is possi-
ble to use many tools to access, edit and write to these files. When used correctly, such tools can
be an important part of guest administration. However, even correct usage of these tools is not
without risk. Risks that should be considered when manually manipulating guest disk images in-
clude:

» Data Corruption: concurrently accessing images, by the host machine or another node in a
cluster, can cause changes to be lost or data corruption to occur if virtualization protection
layers are bypassed.

« Security: mounting disk images as loop devices requires root access. While an image is loop
mounted, other users and processes can potentially access the disk contents.

» Administrator Error: bypassing virtualization layers correctly requires advanced understand-
ing of virtual components and tools. Failing to isolate the images or failing to clean up prop-
erly after changes have been made can lead to further problems once back in virtualization
control.

21.1.2. libguestfs design

libguestfs C library has been designed to safely and securely create, access and modify virtual ma-
chine (VM Guest) disk images. It also provides additional language bindings: for Perl, Python, and
Ruby. libguestfs can access VM Guest disk images without needing root and with multiple layers of
defense against rogue disk images.

libguestfs provides many tools designed for accessing and modifying VM Guest disk images and
contents. These tools provide such capabilities as: viewing and editing files inside guests, scripting
changes to VM Guests, monitoring disk used/free statistics, creating guests, doing V2V or P2V mi-
grations, performing backups, cloning VM Guests, formatting disks, and resizing disks.

189

https://libguestfs.org/guestfs-perl.3.html
https://libguestfs.org/guestfs-python.3.html
https://libguestfs.org/guestfs-ruby.3.html

CHAPTER 21. LIBGUESTFS

Best practices

You must not use libguestfs tools on live virtual machines. Doing so may result in disk
corruption in the VM Guest. libguestfs tools try to stop you from doing this, but cannot
catch all cases.

However, most commands have the --ro (read-only) option. With this option, you
can run a command on a live virtual machine. The results may be strange or incon-
sistent but you do not risk disk corruption.

21.2. Package installation
libguestfs is shipped through 4 packages:

» Libguestfs0: which provides the main C library

» guestfs-data: which contains the appliance files used when launching images (stored in
/usr/1ib64/questfs)

e guestfs-tools: the core guestfs tools, man pages, and the /etc/libguestfs-
tools.conf configuration file.

e guestfs-winsupport: provides support for Windows file guests in the guestfs tools. This
package only needs to be installed to handle Windows guests, for example when converting
a Windows guest to KVM.

To install guestfs tools on your system run:
>sudo zypper in guestfs-tools

21.3. Guestfs tools

21.3.1. Modifying virtual machines

The set of tools found within the guestfs-tools package is used for accessing and modifying virtual
machine disk images. This functionality is provided through a familiar shell interface with built-in
safeguards which ensure image integrity. Guestfs tools shells expose all capabilities of the guestfs
API, and create an appliance on the fly using the packages installed on the machine and the files
found in /usr/1ib64/questfs.

21.3.2. Supported file systems and disk images
Guestfs tools support multiple file systems including:

* Ext2, Ext3, Ext4
* Xfs

190

* Btrfs
Multiple disk image formats are also supported:

* raw

e qcow2

Unsupported file systems

Guestfs may also support Windows* file systems (VFAT, NTFS), BSD* and Apple* file
systems, and other disk image formats (VMDK, VHDX...). However, these file sys-
tems and disk image formats are unsupported on SUSE Linux Enterprise Server.

21.3.3. virt-rescue

virt-rescue is similar to a rescue CD, but for virtual machines, and without the need for a CD.
virt-rescue presents users with a rescue shell and several simple recovery tools which can be
used to examine and correct problems within a virtual machine or disk image.

>virt-rescue -a sles.qcow2
Welcome to virt-rescue, the libguestfs rescue shell.

Note: The contents of / are the rescue appliance.

You need to mount the guest's partitions under /sysroot
before you can examine them. A helper script for that exists:
mount-rootfs-and-chroot.sh /dev/sdal

><rescue>

[67.194384] EXT4-fs (sdal): mounting ext3 file system
using the ext4 subsystem

[67.199292] EXT4-fs (sdal): mounted filesystem with ordered data
mode. Opts: (null)

mount: /dev/sdal mounted on /sysroot.

mount: /dev bound on /sysroot/dev.

mount: /dev/pts bound on /sysroot/dev/pts.

mount: /proc bound on /sysroot/proc.

mount: /sys bound on /sysroot/sys.

Directory: /root

Thu Jun 5 13:20:51 UTC 2014

(none) :~ #

You are now running the VM Guest in rescue mode:

(none) :~ # cat /etc/fstab

devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 00
sysfs /sys sysfs noauto 00
debugfs /sys/kernel/debug debugfs noauto 00
usbfs /proc/bus/usb usbfs noauto 00
tmpfs /run tmpfs noauto 00
/dev/disk/by-id/ata-QEMU HARDDISK QM00001l-partl / ext3 defaults 1 1

191

CHAPTER 21. LIBGUESTFS

21.3.4. virt-resize

virt-resize is used to resize a virtual machine disk, making it larger or smaller overall, and re-

sizing or deleting any partitions contained within.

Procedure 21.1. Expanding a disk

Full step-by-step example: how to expand a virtual machine disk

1. First, with virtual machine powered off, determine the size of the partitions available on this

virtual machine:

>virt-filesystems --long --parts --blkdevs -h -a sles.qcow2

Name Type MBR Size Parent
/dev/sdal partition 83 166G /dev/sda
/dev/sda device - 16G -

.virt-resize cannot do in-place disk modifications—there must be sufficient space to
store the resized output disk. Use the truncate command to create a file of suitable size:

>truncate -s 32G outdisk.img

.Use virt-resize to resize the disk image. virt-resize requires two mandatory param-
eters for the input and output images:

>virt-resize --expand /dev/sdal sles.qcow2 outdisk.img

Examining sles.qcow2 ...
>k 3k 5K 5K K kK >k >k >k k

Summary of changes:

/dev/sdal: This partition will be resized from 16,0G to 32,0G. The
filesystem ext3 on /dev/sdal will be expanded using the 'resize2fs'
method.

>k 3k 5k 5K K >k >k >k kok
Setting up initial partition table on outdisk.img ...

Copying /dev/sdal ...
©_384%

00:03
Expanding /dev/sdal using the 'resize2fs' method ...

Resize operation completed with no errors. Before deleting the old
disk, carefully check that the resized disk boots and works correctly.

. Confirm the image was resized properly

>virt-filesystems --long --parts --blkdevs -h -a outdisk.img

Name Type MBR Size Parent
/dev/sdal partition 83 32G /dev/sda
/dev/sda device - 32G -

. Bring up the VM Guest using the new disk image and confirm correct operation before delet-
ing the old image.

192

21.3.5. Other virt-* tools

There are guestfs tools to simplify administrative tasks—such as viewing and editing files, or ob-
taining information on the virtual machine.

21.3.5.1. virt-filesystems

This tool is used to report information regarding file systems, partitions and logical volumes in a
disk image or virtual machine.
>virt-filesystems -1 -a sles.qcow2

Name Type VFS Label Size Parent
/dev/sdal filesystem ext3 - 17178820608 -

21.3.5.2. virt-1s

virt-1s lists file names, file sizes, checksums, extended attributes and more from a virtual ma-
chine or disk image. Multiple directory names can be given, in which case the output from each is
concatenated. To list directories from a libvirt guest, use the -d option to specify the name of the
guest. For a disk image, use the -a option.

>virt-1s -h -1R -a sles.qcow2 /var/log/

d 0755 776 /var/log

- 0640 0 /var/log/NetworkManager

- 0644 23K /var/log/Xorg.0.log

- 0644 23K /var/log/Xorg.0.log.old

d 0700 482 /var/log/YaST2

- 0644 512 /var/log/YaST2/ dev vda

- 0644 59 /var/log/YaST2/arch.info

- 0644 473 /var/log/YaST2/config diff 2017 05 03.1log
- 0644 5.1K /var/log/YaST2/curl log

- 0644 1.5K /var/log/YaST2/disk vda.info

- 0644 1.4K /var/log/YaST2/disk vda.info-1
[..

-]
21.3.5.3. virt-cat

virt-cat is a command-line tool to display the contents of a file that exists in the named virtual
machine (or disk image). Multiple file names can be given, in which case they are concatenated to-
gether. Each file name must be specified by its absolute path, starting at the root directory with /.
>virt-cat -a sles.qcow2 /etc/fstab

devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 00

21.3.5.4. virt-df

virt-df is a command-line tool to display free space on virtual machine file systems. Unlike other
tools, it not only displays the size of disk allocated to a virtual machine, but can look inside disk im-
ages to show how much space is being used.

193

CHAPTER 21. LIBGUESTFS

>virt-df -a sles.qcow2
Filesystem 1K-blocks Used Available Use%
sles.qcow2:/dev/sdal 16381864 520564 15022492 4%

21.3.5.5. virt-edit

virt-edit is a command-line tool capable of editing files that reside in the named virtual ma-
chine (or disk image).

21.3.5.6. virt-tar-in/out

virt-tar-in unpacks an uncompressed TAR archive into a virtual machine disk image or
named libvirt domain. virt-tar-out packs a virtual machine disk image directory into a TAR ar-
chive.

>virt-tar-out -a sles.qcow2 /home homes.tar

21.3.5.7. virt-copy-in/out

virt-copy-in copies files and directories from the local disk into a virtual machine disk image or
named libvirt domain. virt-copy-out copies files and directories out of a virtual machine disk
image or named libvirt domain.

>virt-copy-in -a sles.qcow2 data.tar /tmp/

>virt-1ls -a sles.qcow2 /tmp/

.ICE-unix

X11-unix
data.tar

21.3.5.8. virt-log

virt-log shows the log files of the named libvirt domain, virtual machine or disk image. If the
package guestfs-winsupport is installed it can also show the event log of a Windows virtual
machine disk image.

194

>virt-log -a windows8.qcow2

<?xml version="1.0" encoding="utf-8" standalone="yes" 7>
<Events>

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/
event"><System><Provider Name="EventLog"></Provider>
<EventID Qualifiers="32768">6011</EventID>
<Level>4</Level>

<Task>0</Task>

<Keywords>0x0080000000000000</Keywords>

<TimeCreated SystemTime="2014-09-12 05:47:21"></TimeCreated>
<EventRecordID>1</EventRecordID>
<Channel>System</Channel>
<Computer>windows-uj49s6b</Computer>

<Security UserID=""></Security>

</System>
<EventData><Data><string>WINDOWS-UJ49S6B</string>
<string>WIN-KG190623QG4</string>

</Data>

<Binary></Binary>

</EventData>

</Event>

21.3.6. guestfish

guestfish is a shell and command-line tool for examining and modifying virtual machine file sys-
tems. It uses libguestfs and exposes all the functionality of the guestfs API.

Examples of usage:

>guestfish -a disk.img <<EOF
run

list-filesystems

EOF

guestfish

Welcome to guestfish, the guest filesystem shell for
editing virtual machine filesystems and disk images.

Type: 'help' for help on commands
'man' to read the manual
'quit' to quit the shell

><fs> add sles.qcow2

><fs> run

><fs> list-filesystems

/dev/sdal: ext3

><fs> mount /dev/sdal /
cat /etc/fstab

devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 00
sysfs /sys sysfs noauto 00
debugfs /sys/kernel/debug debugfs noauto 00
usbfs /proc/bus/usb usbfs noauto 00
tmpfs /run tmpfs noauto 00
/dev/disk/by-id/ata-QEMU HARDDISK QM0000l-partl / ext3 defaults 1 1

21.3.7. Converting a physical machine into a KVM guest

Libguestfs provides tools to help converting Xen virtual machines or physical machines into KVM
guests. The Xen to KVM conversion scenario is covered by the Chapter 18, Xen to KVM migration

195

CHAPTER 21. LIBGUESTFS

guide. The following section covers a special use case: converting a bare metal machine into a
KVM one.

Converting a physical machine into a KVM one is not yet supported in SUSE Linux Enterprise
Server. This feature is released as a technology preview only.

Converting a physical machine requires collecting information about it and transmitting this to a
conversion server. This is achieved by running a live system prepared with virt-p2v and
KIWI NG tools on the machine.

Procedure 21.2. Using virt-p2v

1. Install the needed packages with the command:

>sudo zypper in virt-p2v kiwi-desc-isoboot

Note

@ These steps document how to create an ISO image to create a bootable DVD.
Alternatively, you can create a PXE boot image instead; for more information
about building PXE images with KIWI NG, see man virt-p2v-make-kiwi.

2. Create a KIWI NG configuration:
>virt-p2v-make-kiwi -o /tmp/p2v.kiwi

The -0 defines where to create the KIWI NG configuration.

3. Edit the config.xml file in the generated configuration if needed. For example, in con-
fig.xml adjust the keyboard layout of the live system.

4. Build the 1SO image with kiwi:

>kiwi --build /tmp/p2v.kiwi@ \
-d /tmp/build® \
--ignore-repos \
--add-repo http://URL TO REPOSITORIES® \
--type iso

O The directory where the KIWI NG configuration was generated in the previous step.

8 The directory where KIWI NG will place the generated ISO image and other intermediary
build results.

© The URLs to the package repositories as found with zypper lr -d.

Use one - -add- repo parameter per repository.

5. Burn the ISO on a DVD or a USB stick. With such a medium, boot the machine to be con-
verted.

6. After the system is started, enter the connection details of the conversion server. This server
is a machine with the virt-v2v package installed.

196

If the network setup is more complex than a DHCP client, click the Configure network button
to open the YaST network configuration dialog.

Click the Test connection button to allow moving to the next page of the wizard.

7. Select the disks and network interfaces to be converted and define the VM data like the
amount of allocated CPUs, memory and the Virtual Machine name.

Note

@ If not defined, the created disk image format is raw by default. This can be
changed by entering the desired format in the Output format field.

There are two possibilities to generate the virtual machine: either using the local or the libvirt
output. The first one places the Virtual Machine disk image and configuration in the path de-
fined in the Output storage field. These can then be used to define a new libvirt-handled
guest using virsh. The second method creates a new libvirt-handled guest with the disk im-
age placed in the pool defined in the Output storage field.

Click Start conversion to start it.

21.4. Troubleshooting

21.4.1. Btrfs-related problems

When using the guestfs tools on an image with Btrfs root partition (the default with SUSE Linux En-
terprise Server) the following error message may be displayed:

>virt-1s -a /path/to/slesl2sp2.qcow2 /
virt-1s: multi-boot operating systems are not supported

If using guestfish '-i' option, remove this option and instead
use the commands 'run' followed by 'list-filesystems'.

You can then mount file systems you want by hand using the
'mount' or 'mount-ro' command.

If using guestmount '-i', remove this option and choose the
filesystem(s) you want to see by manually adding '-m' option(s).
Use 'virt-filesystems' to see what file systems are available.

If using other virt tools, multi-boot operating systems won't work

with these tools. Use the guestfish equivalent commands

(see the virt tool manual page).

This is often caused by the presence of snapshots in the guests. In this case guestfs does not
know which snapshot to bootstrap. To force the use of a snapshot, use the -m parameter as fol-
lows:

>virt-1ls -m /dev/sda2:/:subvol=@/.snapshots/2/snapshot -a /path/to/
slesl2sp2.qcow2 /

197

CHAPTER 21. LIBGUESTFS

21.4.2. Environment

When troubleshooting problems within a libguestfs appliance, the environment variable
LIBGUESTFS_DEBUG=1 can be used to enable debug messages. To output each command/API
call in a format that is similar to guestfish commands, use the environment variable
LIBGUESTFS_TRACE=1.

21.4.3. libguestfs-test-tool

libguestfs-test-tool is a test program that checks if basic libguestfs functionality is working.
It prints a large amount of diagnostic messages and details of the guestfs environment, then create
a test image and try to start it. If it runs to completion successfully, the following message should
be seen near the end:

21.5. More information

« libguestfs.org
« libguestfs FAQ

198

https://libguestfs.org
https://libguestfs.org/guestfs-faq.1.html

Chapter 22. QEMU guest agent

The QEMU guest agent (GA) runs inside the VM Guest and allows the VM Host Server to run
commands in the guest operating system via libvirt. It supports many functions—for example,
getting details about guest file systems, freezing and thawing file systems, or suspending or
rebooting a guest.

QEMU GA is included in the gemu-guest-agent package and is installed, configured and
activated by default on KVM virtual machines.

QEMU GA is installed in Xen virtual machines, but it is not activated by default. Although it is
possible to use QEMU GA with Xen virtual machines, there is no integration with libvirt as
described below for KVM virtual machines. To use QEMU GA with Xen, a channel device must be
added to the VM Guest configuration. The channel device includes a Unix domain socket path on
the VM Host Server for communicating with QEMU GA.
<channel type='unix'>

<source mode='bind' path='/example/path'/>

<target type='xen' name='org.gemu.guest agent.0'/>
</channel>

22.1. Running QEMU GA commands

QEMU GA includes many built-in commands that do not have direct Libvirt counterparts. Refer
to the section called “More information” to find the complete list. You can run all the QEMU GA
commands by using libvirt's general purpose command gemu-agent-command:

virsh gemu-agent-command DOMAIN NAME '{"execute":"QEMU GA COMMAND"}'

For example:
>sudo virsh gemu-agent-command slel5sp2 '{"execute":"guest-info"}' --pretty
"return": {

"version": "4.2.0",

"supported commands": [

"enabled": true,

"name": "guest-get-osinfo",

"success-response": true

+

[...]
22.2. virsh commands that require QEMU GA
Several virsh commands require QEMU GA for their functionality. For example, the following
ones:

virsh guestinfo

Prints information about the guest from the guest's point of view.

199

CHAPTER 22. QEMU GUEST AGENT

virsh guestvcpus
Queries or changes the state of virtual CPUs from the guest's point of view.
virsh set-user-password
Sets the password for a user account in the guest.
virsh domfsinfo
Shows a list of mounted file systems within the running domain.
virsh dompmsuspend
Suspends a running guest.
22.3. Enhancing libvirt commands

If QEMU GA is enabled inside the guest, several virsh subcommands have enhanced
functionality when run in the agent mode. The following list includes only certain examples of them.
For a complete list, see the virsh man page and search for the agent string.

virsh shutdown --mode agent and virsh reboot --mode agent

This method of shutting down or rebooting leaves the guest clean for its next run, similar to
the ACPI method.

virsh domfsfreeze and virsh domfsthaw

Instructs the guest to make its file system quiescent—to flush all I/O operations in the cache
and leave volumes in a consistent state, so that no checks are needed when they are
remounted.

virsh setvcpus --guest
Changes the number of CPUs assigned to a guest.
virsh domifaddr --source agent
Queries the QEMU GA for the guest's IP address.
virsh vcpucount --guest
Prints information about the virtual CPU counts from the perspective of the guest.

22.4. More information

* A complete list of commands supported by the QEMU GA is at https://www.gemu.org/docs/
master/interop/gemu-ga-ref.html.

200

https://www.qemu.org/docs/master/interop/qemu-ga-ref.html
https://www.qemu.org/docs/master/interop/qemu-ga-ref.html

e The virsh man page (man 1 virsh) includes descriptions of the commands that support
the QEMU GA interface.

201

CHAPTER 23. SOFTWARE TPM EMULATOR

Chapter 23. Software TPM emulator
23.1. Introduction

The Trusted Platform Module (TPM) is a cryptoprocessor that secures hardware using
cryptographic keys. For developers who use the TPM to develop security features, a software TPM
emulator is a convenient solution. Compared to a hardware TPM device, the emulator has no limit
on the number of guests that can access it. Also, it is simple to switch between TPM versions 1.2
and 2.0. QEMU supports the software TPM emulator that is included in the swtpm package.

23.2. Prerequisites

Before you can install and use the software TPM emulator, you need to install the libvirt
virtualization environment. Refer to the section called “Installing virtualization components” and
install one of the provided virtualization solutions.

23.3. Installation

To use the software TPM emulator, install the swtpm package:
>sudo zypper install swtpm

23.4. Using swtpm with QEMU

swtpm provides three types of interface: socket, chardev, and cuse. This procedure focuses on
the socket interface.

1. Create a directory mytpm@ inside the VM directory to store the TPM states—for example, /
var/lib/libvirt/gemu/slel5sp3:

>sudo mkdir /var/lib/libvirt/qemu/slel5sp3/mytpm0O

2. Start swtmp. It creates a socket file that QEMU can use—for example, /var/lib/
libvirt/qgemu/slel5sp3:

>sudo swtpm socket

--tpmstate dir=/var/lib/libvirt/qemu/slel5sp3/mytpmO \

--ctrl type=unixio,path=/var/lib/libvirt/qemu/slel5sp3/mytpmO/swtpm-sock
\

--log level=20

202

TPM version 2.0

@ By default, swtpm starts a TPM version 1.2 emulator and stores its states in
the tpm-00.permall directory. To create a TPM 2.0 instance, run:

>sudo swtpm socket

--tpm2

--tpmstate dir=/var/lib/libvirt/qemu/slel5sp3/mytpm0 \

--ctrl type=unixio,path=/var/lib/libvirt/qemu/slel5sp3/mytpm0/
swtpm-sock \

--log level=20

TPM 2.0 states are stored in the tpm2-00.permall directory.

3. Add the following command line parameters to the gemu-system-ARCH command:

>gemu-system-x86 64 \

[...]

-chardev socket,id=chrtpm,path=/var/lib/libvirt/gemu/slel5sp3/mytpm0O/swtpm-
sock \

-tpmdev emulator,id=tpm0@, chardev=chrtpm \

-device tpm-tis,tpmdev=tpm0O

4. Verify that the TPM device is available in the guest by running the following command:

>tpm version
TPM 1.2 Version Info:

Chip Version: 1.2.18.158
Spec Level: 2

Errata Revision: 3

TPM Vendor ID: IBM

TPM Version: 01010000

Manufacturer Info: 49424d00

23.5. Using swtpm with Libvirt

To use swtpm with 1ibvirt, add the following TPM device to the guest XML specification:

<devices>
<tpm model="'tpm-tis'>
<backend type='emulator' version='2.0'/>
</tpm>
</devices>
libvirt starts swtpm for the guest automatically. You do not need to start it manually in advance.

The corresponding permall file is created in /var/lib/libvirt/swtpm/VM UUID.
23.6. TPM measurement with OVMF firmware

If the guest uses the Open Virtual Machine Firmware (OVMF), it measures components with TPM.
You can find the event log in /sys/kernel/security/tpm0/binary bios measurements.

203

CHAPTER 23. SOFTWARE TPM EMULATOR

23.7. Resources

* Wikipedia offers a thorough description of the TPM at the page https://en.wikipedia.org/wiki/
Trusted_Platform_Module.

» Configuring a specific virtualization environment on SUSE Linux Enterprise Server is
described in Chapter 6, Installation of virtualization components.

* Details on the use of swtpm are on its man page (man 8 swtpm).

A detailed libvirt specification of TPM is at https://libvirt.org/
formatdomain.html#elementsTpm

« A description of enabling UEFI firmware by using OVMF is at the section called “Advanced
UEFI configuration”.

204

https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://libvirt.org/formatdomain.html#elementsTpm
https://libvirt.org/formatdomain.html#elementsTpm

Chapter 24. Creating crash dumps of a VM Guest
24.1. Introduction

Whenever a VM crashes, it is useful to collect a core dump of the VM memory for debugging and
analysis. For physical machines, Kexec and Kdump takes care of collecting crash dumps. For
virtual machines, it depends whether the guest is fully virtualized (FV) or paravirtualized (PV).

24.2. Creating crash dumps for fully virtualized machines

To view crash dumps for FV machines, use the same procedures as for physical machines—Kexec
and Kdump.

24.3. Creating crash dumps for paravirtualized machines

Unlike with FVs, Kexec/Kdump does not work in paravirtualized machines. Crash dumps of PV
guests must be performed by the host tool stack. If using the x1 tool stack for Xen domUs, the x1
dump-core command produces the dump. For libvirt-based VM Guests, the virsh dump
command provides the same functionality.

You can configure automatic collection of a core dump with the on crash setting in the
configuration of the VM Guest. This setting tells the host tool stack what to do if the VM Guest
encounters a crash. The default in both x1 and libvirt is destroy. Useful options for
automatically collecting a core dump are coredump-destroy and coredump-restart.

24.4. Additional information

» The difference between fully virtualized and paravirtualized virtual machines is described in
the section called “Virtualization modes”.

« Detailed information about Kexec/Kdump mechanism is included in Chapter 20, Kexec and
Kdump in “System Analysis and Tuning Guide”.
« Refer to the xl.cfg man page (man 5 x1.cfg) for more information on the x1 configuration

syntax.

« Refer to https://libvirt.org/formatdomain.html#events-configuration for details about the
libvirt XML settings.

205

https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf
https://libvirt.org/formatdomain.html#events-configuration

PART IV. MANAGING VIRTUAL MACHINES WITH XEN

Part IV. Managing virtual machines with Xen

25 Setting up a virtual machine host 207

26 Virtual networking 217

27 Managing a virtualization environment 224

28 Block devices in Xen 229

29 Virtualization: configuration options and settings 233

30 Administrative tasks 242

31 XenStore: configuration database shared between domains 250
32 Xen as a high-availability virtualization host 255

33 Xen: converting a paravirtual (PV) guest into a fully virtual (FV/
HVM) guest 257

206

Chapter 25. Setting up a virtual machine host

This section documents how to set up and use SUSE Linux Enterprise Serverl5 SP7 as a virtual
machine host.

The hardware requirements for the DomO are often the same as those for the SUSE Linux
Enterprise Server operating system. Additional CPU, disk, memory and network resources should
be added to accommodate the resource demands of all planned VM Guest systems.

Resources

@ Remember that VM Guest systems, like physical machines, perform better when they
run on faster processors and have access to more system memory.

The virtual machine host requires several software packages and their dependencies to be
installed. To install all necessary packages, run YaST Software Management, select View >
Patterns and choose Xen Virtual Machine Host Server for installation. The installation can also be
performed with YaST using the module Virtualization > Install Hypervisor and Tools.

After the Xen software is installed, restart the computer and, on the boot screen, choose the newly
added option with the Xen kernel.

Updates are available through your update channel. To be sure to have the latest updates
installed, run YaST Online Update after the installation has finished.

25.1. Best practices and suggestions

When installing and configuring the SUSE Linux Enterprise Server operating system on the host,
be aware of the following best practices and suggestions:

« If the host should always run as Xen host, run YaST System > Boot Loader and activate the
Xen boot entry as default boot section.

o In YaST, click System > Boot Loader.
> Change the default boot to the Xen label, then click Set as Default.
o Click Finish.

* For best performance, only the applications and processes required for virtualization should
be installed on the virtual machine host.

« If you intend to use a watchdog device attached to the Xen host, use only one at a time. It is
recommended to use a driver with actual hardware integration over a generic software one.

207

CHAPTER 25. SETTING UP A VIRTUAL MACHINE HOST

Hardware monitoring

@ The DomO kernel is running virtualized, so tools like irgbalance or Lscpu do not
reflect the real hardware characteristics.

Trusted boot not supported by Xen

o Trusted boot (Thoot) is not supported by Xen. To ensure that the Xen host boots
correctly, verify that the Enable Trusted Boot Support option is deactivated in the
GRUB 2 configuration dialog.

25.2. Managing Dom0 memory

In previous versions of SUSE Linux Enterprise Server, the default memory allocation scheme of a
Xen host was to allocate all host physical memory to DomO and enable auto-ballooning. Memory
was automatically ballooned from DomO when additional domains were started. This behavior has
always been error prone and disabling it was strongly encouraged. Starting with SUSE Linux
Enterprise Server 15 SP1, auto-ballooning has been disabled by default and DomO is given 10% of
host physical memory + 1 GB. For example, on a host with 32 GB of physical memory, 4.2 GB of
memory is allocated for DomoO.

The use of the dom@ mem Xen command line option in /etc/default/grub is still supported
and encouraged. You can restore the old behavior by setting dom@ mem to the host physical
memory size and enabling the autoballoon setting in /etc/xen/x1l.conf.

Insufficient memory for Dom0

The amount of memory reserved for DomO is a function of the number of VM Guests
running on the host since DomO provides back-end network and disk 1/O services for
each VM Guest. Other workloads running in DomO should also be considered when
calculating Dom0O memory allocation. Memory sizing of DomO should be determined
like any other virtual machine.

25.2.1. Setting Dom0 memory allocation

1. Determine memory allocation required for DomO.
2. At Domo, type x1 info to view the amount of memory that is available on the machine.

Dom0's current memory allocation can be determined with the x1 1ist command.

3. Edit /etc/default/grub and adjust the GRUB CMDLINE XEN option so that it includes
domO@ mem=MEM_AMOUNT. Replace MEM_AMOUNT with the maximum amount of memory
to allocate to DomO. Add K, M, or G, to specify the size unit. For example:

208

GRUB_CMDLINE XEN="dom0 mem=2G"

4. Restart the computer to apply the changes.
Tip

@ Refer to the section called “The file /etc/default/grub " in “Administration
Guide” for more details about Xen-related boot configuration options.

Xen Dom0 memory

When using the XL tool stack and the dom@_mem= option for the Xen hypervisor in
GRUB 2 you need to disable x| autoballoon in etc/xen/x1.conf. Otherwise
launching VMs fails with errors about not being able to balloon down DomO. So add
autoballoon=0 to x1. conf if you have the dom@_mem= option specified for Xen. Also

see Xen dom0O memory

25.3. Network card in fully virtualized guests

In a fully virtualized guest, the default network card is an emulated Realtek network card. However,
it also possible to use the split network driver to run the communication between Dom0 and a VM
Guest. By default, both interfaces are presented to the VM Guest, because the drivers of certain
operating systems require both to be present.

When using SUSE Linux Enterprise Server, only the paravirtualized network cards are available for
the VM Guest by default. The following network options are available:

emulated

To use an emulated network interface like an emulated Realtek card, specify type=ioemu
in the vif device section of the domain xlI configuration. An example configuration would
look like:

vif = ['type=ioemu,mac=00:16:3e:5f:48:e4,bridge=bro"']
Find more details about the xI configuration in the x1.conf man page man 5 x1.conf.

paravirtualized

When you specify type=vif and do not specify a model or type, the paravirtualized network
interface is used:

vif = ['type=vif,mac=00:16:3e:5f:48:e4,bridge=br0,backen=0"']

209

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf
https://wiki.xen.org/wiki/Xen_Best_Practices#Xen_dom0_dedicated_memory_and_preventing_dom0_memory_ballooning

CHAPTER 25. SETTING UP A VIRTUAL MACHINE HOST

emulated and paravirtualized

If the administrator should be offered both options, simply specify both type and model. The
xI configuration would look like:

vif = ['type=ioemu,mac=00:16:3e:5f:48:e4,model=rt18139,bridge=br0']

In this case, one of the network interfaces should be disabled on the VM Guest.
25.4. Starting the virtual machine host

If virtualization software is correctly installed, the computer boots to display the GRUB 2 boot
loader with a Xen option on the menu. Select this option to start the virtual machine host.

Warning

When booting a Xen system, you may observe error messages in the /var/log/
messages log file or systemd journal of domO similar to following:

isst if mbox pci: probe of 0000:ff:le.l failed with error -5
isst if pci: probe of 0000:fe:00.1 failed with error -5

Ignore them as they are harmless and are caused by the fact that the ISST driver
does not provide any power or frequency scaling feature for virtual machines.

Xen and Kdump

@ In Xen, the hypervisor manages the memory resource. If you need to reserve system
memory for a recovery kernel in DomO0, this memory needs to be reserved by the
hypervisor. Thus, it is necessary to add crashkernel=size to the
GRUB CMDLINE XEN DEFAULT variable in the /etc/dfault/grub file, save it
and run the following command:

>sudo grub2-mkconfig -o /boot/grub2/grub.cfg

For more information on the crashkernel parameter, see the section called
“Calculating crashkernel allocation size” in “System Analysis and Tuning Guide”.

If the Xen option is not on the GRUB 2 menu, review the steps for installation and verify that the
GRUB 2 boot loader has been updated. If the installation has been done without selecting the Xen
pattern, run the YaST Software Management, select the filter Patterns and choose Xen Virtual
Machine Host Server for installation.

After booting the hypervisor, the DomO virtual machine starts and displays its graphical desktop
environment. If you did not install a graphical desktop, the command line environment appears.

210

https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf

Graphics problems

@ Sometimes it may happen that the graphics system does not work properly. In this
case, add vga=ask to the boot parameters. To activate permanent settings, use
vga=mode-0x??? where 7?77 is calculated as 0x100 + VESA mode from https://

en.wikipedia.org/wiki/VESA_BIOS Extensions, for example, vga=mode - 0x361.

Before starting to install virtual guests, make sure that the system time is correct. To do this,
configure NTP (Network Time Protocol) on the controlling domain:

1. In YaST select Network Services > NTP Configuration.

2. Select the option to automatically start the NTP daemon during boot. Provide the IP address
of an existing NTP time server, then click Finish.

Time services on virtual guests

@ Hardware clocks are not precise. All modern operating systems try to correct the
system time compared to the hardware time bvia an additional time source. To get
the correct time on all VM Guest systems, also activate the network time services on
each respective guest or make sure that the guest uses the system time of the host.
For more about Independent Wallclocks in SUSE Linux Enterprise Server see
the section called “Xen virtual machine clock settings”.

For more information about managing virtual machines, see Chapter 27, Managing a virtualization
environment.

25.5. PCI Pass-Through

To take full advantage of VM Guest systems, it is sometimes necessary to assign specific PCI
devices to a dedicated domain. When using fully virtualized guests, this functionality is only
available if the chipset of the system supports this feature, and if it is activated from the BIOS.

This feature is available from both AMD* and Intel*. For AMD machines, the feature is called
IOMMU. In Intel speak, this is VT-d. Be aware that Intel-VT technology is not sufficient to use this
feature for fully virtualized guests. To make sure that your computer supports this feature, ask your
supplier specifically to deliver a system that supports PCI Pass-Through.

Limitations

« Certain graphics drivers use highly optimized ways to access DMA. This is not supported,
and thus using graphics cards may be difficult.

211

https://en.wikipedia.org/wiki/VESA_BIOS_Extensions
https://en.wikipedia.org/wiki/VESA_BIOS_Extensions

CHAPTER 25. SETTING UP A VIRTUAL MACHINE HOST

* When accessing PCI devices behind a PCle bridge, all the PCI devices must be assigned to
a single guest. This limitation does not apply to PCle devices.

» Guests with dedicated PCI devices cannot be migrated live to a different host.

The configuration of PCI Pass-Through is twofold. First, the hypervisor must be informed at boot
time that a PCI device should be available for reassigning. Second, the PCI device must be
assigned to the VM Guest.

25.5.1. Configuring the hypervisor for PCI Pass-Through

1. Select a device to reassign to a VM Guest. To do this, run Lspci -k, and read the device
number and the name of the original module that is assigned to the device:

06:01.0 Ethernet controller: Intel Corporation Ethernet Connection I217-LM
(rev 05)

Subsystem: Dell Device 0617

Kernel driver in use: el000e

Kernel modules: el000e

In this case, the PCI numberis (06:01.0) and the dependent kernel module is e1000e.

2. Specify a module dependency to ensure that xen pciback is the first module to control the
device. Add the file named /etc/modprobe.d/50-e1000e.conf with the following
content:

install el000e /sbin/modprobe xen pciback ; /sbin/modprobe \
--first-time --ignore-install elQ00e

3. Instruct the xen pciback module to control the device using the hide option. Edit or
create /etc/modprobe.d/50-xen-pciback. conf with the following content:

options xen pciback hide=(06:01.0)

4. Reboot the system.

5. Check if the device is in the list of assignable devices with the command

xl pci-assignable-list
25.5.1.1. Dynamic assignment with x1

To avoid restarting the host system, you can use dynamic assignment with x| to use PCI Pass-
Through.

Begin by making sure that dom0 has the pciback module loaded:
>sudo modprobe pciback

Then make a device assignable by using X1 pci-assignable-add. For example, to make the
device 06:01.0 available for guests, run the command:

>sudo xl pci-assignable-add 06:01.0

212

25.5.2. Assigning PCI devices to VM Guest systems
There are several possibilities to dedicate a PCI device to a VM Guest:
Adding the device while installing:

During installation, add the pci line to the configuration file:
pci=['06:01.0"]
Hotplugging PCI devices to VM Guest systems

The command x1 can be used to add or remove PCI devices on the fly. To add the device
with number 06:01.0 to a guest with name sles12 use:

x1 pci-attach slesl2 06:01.0

Adding the PCI device to Xend

To add the device to the guest permanently, add the following snippet to the guest
configuration file:

pci = ['06:01.0,power mgmt=1,permissive=1"']

After assigning the PCI device to the VM Guest, the guest system must care for the configuration
and device drivers for this device.

25.5.3. VGA Pass-Through

Xen 4.0 and newer supports VGA graphics adapter pass-through on fully virtualized VM Guests.
The guest can take full control of the graphics adapter with high-performance full 3D and video
acceleration.

Limitations

* VGA Pass-Through functionality is similar to PCI Pass-Through and as such also requires
IOMMU (or Intel VT-d) support from the mainboard chipset and BIOS.

» Only the primary graphics adapter (the one that is used when you power on the computer)
can be used with VGA Pass-Through.

* VGA Pass-Through is supported only for fully virtualized guests. Paravirtual guests (PV) are
not supported.

» The graphics card cannot be shared between multiple VM Guests using VGA Pass-Through
—you can dedicate it to one guest only.

To enable VGA Pass-Through, add the following settings to your fully virtualized guest
configuration file:

213

CHAPTER 25. SETTING UP A VIRTUAL MACHINE HOST

gfx passthru=1
pci=['yy:zz.n']

where yy:zz.n is the PCI controller ID of the VGA graphics adapter as found with Lspci -v on

DomoO.

25.5.4. Troubleshooting

In certain circumstances, problems may occur during the installation of the VM Guest. This section
describes several known problems and their solutions.

During boot, the system hangs

The software 1/O translation buffer allocates a large chunk of low memory early in the
bootstrap process. If the requests for memory exceed the size of the buffer, it may result in a
hung boot process. To check if this is the case, switch to console 10 and check the output
there for a message similar to

kernel: PCI-DMA: Out of SW-IOMMU space for 32768 bytes at device
000:01:02.0

In this case, you need to increase the size of the swiotlb. Add swiotlb=VALUE (where
VALUE is specified as the number of slab entries) on the command line of DomO. The
number can be adjusted up or down to find the optimal size for the machine.

swiotlb a PV guest

@ The swiotlb=force kernel parameter is required for DMA access to work for PCI
devices on a PV guest. For more information about IOMMU and the swiotlb option
see the file boot-options. txt from the package kernel-source.

25.5.5. More information

There are several resources on the Internet that provide interesting information about PCI Pass-
Through:

* https://wiki.xenproject.org/wiki/VTd_HowTo

enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
* https://support.amd.com/TechDocs/48882_IOMMU.pdf

25.6. USB pass-through

There are two methods for passing through individual host USB devices to a guest. The first is via
an emulated USB device controller, the second is using PVUSB.

214

https://wiki.xenproject.org/wiki/VTd_HowTo
https://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
https://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
https://support.amd.com/TechDocs/48882_IOMMU.pdf

25.6.1. Identify the USB device

Before you can pass through a USB device to the VM Guest, you need to identify it on the VM Host
Server. Use the Lsusb command to list the USB devices on the host system:

#lsusb

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 003: ID 0461:4d15 Primax Electronics, Ltd Dell Optical Mouse

Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

To pass through the Dell mouse, for example, specify either the device tag in the form
vendor id:device id (0461:4d15) or the bus address in the form bus.device (2.3).
Remember to remove leading zeros, otherwise x1 would interpret the numbers as octal values.

25.6.2. Emulated USB device

In emulated USB, the device model (QEMU) presents an emulated USB controller to the guest.
The USB device is then controlled from Dom0O while USB commands are translated between the
VM Guest and the host USB device. This method is only available to fully virtualized domains
(HVM).

Enable the emulated USB hub with the usb=1 option. Then specify devices among the list of
devices in the configuration file along with other emulated devices by using host:USBID. For
example:

usb=1
usbdevice=['tablet', 'host:2.3"', 'host:0424:460"']

25.6.3. Paravirtualized PVUSB

PVUSB is a new high performance method for USB Pass-Through from domO to the virtualized
guests. With PVUSB, there are two ways to add USB devices to a guest:

* via the configuration file at domain creation time

* via hotplug while the VM is running

PVUSB uses paravirtualized front- and back-end interfaces. PVUSB supports USB 1.1 and USB
2.0, and it works for both PV and HVM guests. To use PVUSB, you need usbfront in your guest
OS, and usbback in domO or usb back-end in gemu. On SUSE Linux Enterprise Server, the USB
back-end comes with gemu.

As of Xen 4.7, x1 PVUSB support and hotplug support is introduced.

In the configuration file, specify USB controllers and USB host devices with usbctrl and usbdev.
For example, in case of HVM guests:

usbctrl=['type=qusb,version=2,ports=4"', 'type=qusb,version=1,ports=4',]
usbdev=["hostbus=2, hostaddr=1, controller=0,port=1',]

215

CHAPTER 25. SETTING UP A VIRTUAL MACHINE HOST

Note

@ It is important to specify type=qusb for the controller of HVM guests.

To manage hotplugging PVUSB devices, use the usbctrl-attach, usbctrl-detach, usb-

list, usbdev-attach and usb-detach subcommands. For example:

Create a USB controller which is version USB 1.1 and has 8 ports:

#x1 usbctrl-attach test vm version=1 ports=8 type=qusb

Find the first available controller:port in the domain, and attach USB device whose

busnum:devnum is 2:3 to it; you can also specify controller and port:

#x1 usbdev-attach test vm hostbus=2 hostaddr=3

Show all USB controllers and USB devices in the domain:

#x1 usb-list test vm

Devid
0

Port
Port
Port
Port
Port
Port
Port
Port

Type BE state usb-ver ports
qusb 0 1 1 8
1: Bus 002 Device 003

ONOUTERWN

Detach the USB device under controller O port 1:

#x1 usbdev-detach test vm 0 1

Remove the USB controller with the indicated dev_1id, and all USB devices under it:

#x1 usbctrl-detach test vm dev id

For more information, see https://wiki.xenproject.org/wiki/Xen_USB_Passthrough.

216

https://wiki.xenproject.org/wiki/Xen_USB_Passthrough

Chapter 26. Virtual networking

A VM Guest system needs specific means to communicate either with other VM Guest systems or
with a local network. The network interface to the VM Guest system is made of a split device driver,
which means that any virtual Ethernet device has a corresponding network interface in Dom0. This
interface is set up to access a virtual network that is run in Dom0. The bridged virtual network is
fully integrated into the system configuration of SUSE Linux Enterprise Server and can be
configured with YaST.

When installing a Xen VM Host Server, a bridged network configuration is proposed during normal
network configuration. The user can choose to change the configuration during the installation and
customize it to the local needs.

If desired, Xen VM Host Server can be installed after performing a default Physical Server
installation using the Install Hypervisor and Tools module in YaST. This module prepares
the system for hosting virtual machines, including invocation of the default bridge networking
proposal.

In case the necessary packages for a Xen VM Host Server are installed manually with rpm or
zypper, the remaining system configuration needs to be done by the administrator manually or
with YaST.

The network scripts that are provided by Xen are not used by default in SUSE Linux Enterprise
Server. They are only delivered for reference but disabled. The network configuration that is used
in SUSE Linux Enterprise Server is done by the YaST system configuration similar to the
configuration of network interfaces in SUSE Linux Enterprise Server.

For more general information about managing network bridges, see the section called “Network
bridge”.

26.1. Network devices for guest systems

The Xen hypervisor can provide different types of network interfaces to the VM Guest systems.
The preferred network device should be a paravirtualized network interface. This yields the highest
transfer rates with the lowest system requirements. Up to eight network interfaces may be provided
for each VM Guest.

Systems that are not aware of paravirtualized hardware may not have this option. To connect
systems to a network that can only run fully virtualized, several emulated network interfaces are
available. The following emulations are at your disposal:

* Realtek 8139 (PCI). This is the default emulated network card.
* AMD PCnet32 (PCI)
* NE2000 (PCI)

217

CHAPTER 26. VIRTUAL NETWORKING

* NE2000 (ISA)
* Intel €100 (PCI)
« Intel €1000 and its variants e1000-82540em, e1000-82544gc, e1000-82545em (PCI)

All these network interfaces are software interfaces. Because every network interface must have a
unique MAC address, an address range has been assigned to Xensource that can be used by
these interfaces.

Virtual network interfaces and MAC addresses

@ The default configuration of MAC addresses in virtualized environments creates a
random MAC address that looks like 00:16:3E:xx:xx:xX. Normally, the amount of
available MAC addresses should be big enough to get only unique addresses.
However, if you have a large installation, or to make sure that no problems arise from
random MAC address assignment, you can also manually assign these addresses.

For debugging or system management purposes, it may be useful to know which virtual interface in
Dom0O is connected to which Ethernet device in a running guest. This information may be read from
the device naming in DomO. All virtual devices follow the rule vif<domain
number>.<interface number>.

For example, to know the device name for the third interface (eth2) of the VM Guest with id 5, the
device in DomO would be vif5.2. To obtain a list of all available interfaces, run the command ip
a.

The device naming does not contain any information about which bridge this interface is connected
to. However, this information is available in Dom0. To get an overview about which interface is
connected to which bridge, run the command bridge 1link. The output may look as follows:
>sudo bridge link

2: eth® state DOWN : <NO-CARRIER,BROADCAST,MULTICAST,SLAVE,UP> mtu 1500 master
bro

3: ethl state UP : <BROADCAST,MULTICAST,SLAVE,UP,LOWER UP> mtu 1500 master brl
In this example, there are three configured bridges: br0, brl and br2. Currently, br@ and brl
each have a real Ethernet device added: eth0 and eth1, respectively.

26.2. Host-based routing in Xen

Xen can be set up to use host-based routing in the controlling DomO, although this is not yet well
supported from YaST and requires certain amount of manual editing of configuration files. Thus,
this is a task that requires an advanced administrator.

218

The following configuration only works when using fixed IP addresses. Using DHCP is not
practicable with this procedure, because the IP address must be known to both the VM Guest and
the VM Host Server system.

The easiest way to create a routed guest is to change the networking from a bridged to a routed
network. As a requirement to the following procedures, a VM Guest with a bridged network setup
must be installed. For example, the VM Host Server is named earth with the IP 192.168.1.20, and
the VM Guest has the name alice with the IP 192.168.1.21.

Procedure 26.1. Configuring a routed IPv4 VM Guest
1. Make sure that alice is shut down. Use x1 commands to shut down and check.
2. Prepare the network configuration on the VM Host Server earth:

1. Create a hotplug interface to route the traffic. To accomplish this, create a file named /
etc/sysconfig/network/ifcfg-alice. 0 with the following content:

NAME="Xen guest alice"
BOOTPROTO="static"
STARTMODE="hotplug"

2. Ensure that IP forwarding is enabled:

1. In YaST, go to Network Settings > Routing.

2. Enter the Routing tab and activate Enable IPv4 Forwarding and Enable IPv6
Forwarding options.

3. Confirm the setting and quit YaST.
3. Apply the following configuration to firewalld:
= Add alice.O to the devices in the public zone:
>sudo firewall-cmd --zone=public --add-interface=alice.0
= Tell the firewall which address should be forwarded:

>sudo firewall-cmd --zone=public \
--add-forward-
port=port=80:proto=tcp:toport=80:toaddr="192.168.1.21/32,0/0"

» Make the runtime configuration changes permanent:
>sudo firewall-cmd --runtime-to-permanent

4. Add a static route to the interface of alice. To accomplish this, add the following line to
the end of /etc/sysconfig/network/routes:

192.168.1.21 - - alice.0

5. To make sure that the switches and routers that the VM Host Server is connected to
know about the routed interface, activate proxy arp on earth. Add the following lines
to /etc/sysctl.conf:

219

CHAPTER 26. VIRTUAL NETWORKING

net.ipv4.conf.default.proxy arp =1
net.ipv4.conf.all.proxy arp =1

6. Activate all changes with the commands:
>sudo systemctl restart systemd-sysctl wicked

3. Proceed with configuring the Xen configuration of the VM Guest by changing the vif interface
configuration for alice as described in the section called “XL—Xen management tool”. Make
the following changes to the text file you generate during the process:

1. Remove the snippet
bridge=bro

2. And add the following one:
vifname=vifalice.0
or
vifname=vifalice.@=emu
for a fully virtualized domain.

3. Change the script that is used to set up the interface to the following:
script=/etc/xen/scripts/vif-route-ifup

4. Activate the new configuration and start the VM Guest.

4. The remaining configuration tasks must be accomplished from inside the VM Guest.

1. Open a console to the VM Guest with X1 consoleDOMAIN and log in.
2. Check that the guest IP is set to 192.168.1.21.
3. Provide VM Guest with a host route and a default gateway to the VM Host Server. Do

this by adding the following lines to /etc/sysconfig/network/routes:

192.168.1.20 - - ethO
default 192.168.1.20 - -

5. Finally, test the network connection from the VM Guest to the world outside and from the
network to your VM Guest.

26.3. Creating a masqueraded network setup

Creating a masqueraded network setup is similar to the routed setup. However, there is no

proxy_arp needed, and certain firewall rules are different. To create a masqueraded network to a
guest dolly with the IP address 192.168.100.1 where the host has its external interface on bro,
proceed as follows. For easier configuration, only the already installed guest is modified to use a

masqueraded network:

220

Procedure 26.2. Configuring a masqueraded IPv4 VM guest
1. Shut down the VM Guest system with X1 shutdownDOMAIN.
2. Prepare the network configuration on the VM Host Server:

1. Create a hotplug interface to route the traffic. To accomplish this, create a file named /
etc/sysconfig/network/ifcfg-dolly. 0 with the following content:

NAME="Xen guest dolly"
BOOTPROTO="static"
STARTMODE="hotplug"

2. Edit the file /etc/sysconfig/SuSEfirewall2 and add the following
configurations:

= Add dolly.0 to the devices in FW_DEV_DMZ:
FW DEV _DMZ="dolly.0"

= Switch on the routing in the firewall:
FW ROUTE="yes"

= Switch on masquerading in the firewall:
FW_MASQUERADE="yes"

= Tell the firewall which network should be masqueraded:
FW MASQ NETS="192.168.100.1/32"

= Remove the networks from the masquerading exceptions:
FW_NOMASQ NETS=""

= Finally, restart the firewall with the command:
>sudo systemctl restart SuSEfirewall2

3. Add a static route to the interface of dolly. To accomplish this, add the following line to
the end of /etc/sysconfig/network/routes:

192.168.100.1 - - dolly.0
4. Activate all changes with the command:
>sudo systemctl restart wicked
3. Proceed with configuring the Xen configuration of the VM Guest.

1. Change the vif interface configuration for dolly as described in the section called “XL—
Xen management tool”.

2. Remove the entry:
bridge=bro

3. And add the following one:

221

CHAPTER 26. VIRTUAL NETWORKING

vifname=vifdolly.0
4. Change the script that is used to set up the interface to the following:
script=/etc/xen/scripts/vif-route-ifup
5. Activate the new configuration and start the VM Guest.
4. The remaining configuration tasks need to be accomplished from inside the VM Guest.

1. Open a console to the VM Guest with X1 consoleDOMAIN and log in.
2. Check whether the guest IP is set to 192.168.100.1.

3. Provide VM Guest with a host route and a default gateway to the VM Host Server. Do
this by adding the following lines to /etc/sysconfig/network/routes:

192.168.1.20 - - eth0
default 192.168.1.20 - -

5. Finally, test the network connection from the VM Guest to the outside world.
26.4. Special configurations

There are many network configuration possibilities available to Xen. The following configurations
are not activated by default:

26.4.1. Bandwidth throttling in virtual networks

With Xen, you may limit the network transfer rate a virtual guest may use to access a bridge. To
configure this, you need to modify the VM Guest configuration as described in the section called
“XL—Xen management tool”.

In the configuration file, first search for the device that is connected to the virtual bridge. The
configuration looks like the following:

vif = ['mac=00:16:3e:4f:94:a9,bridge=bro"']
To add a maximum transfer rate, add a parameter rate to this configuration as in:
vif = ['mac=00:16:3e:4f:94:a9,bridge=br0, rate=100Mb/s"']

The rate is either Mb/s (megabits per second) or MB/s (megabytes per second). In the above
example, the maximum transfer rate of the virtual interface is 100 megabits. By default, there is no
limitation to the bandwidth of a guest to the virtual bridge.

It is even possible to fine-tune the behavior by specifying the time window that is used to define the
granularity of the credit replenishment:

vif = ['mac=00:16:3e:4f:94:a9,bridge=br0, rate=100Mb/s@20ms"']

222

26.4.2. Monitoring the network traffic

To monitor the traffic on a specific interface, the little application iftop is a nice program that
displays the current network traffic in a terminal.

When running a Xen VM Host Server, you need to define the interface that is monitored. The
interface that DomO uses to get access to the physical network is the bridge device, for example,
br0. This, however, may vary on your system. To monitor all traffic to the physical interface, run a
terminal as root and use the command:

iftop -i bro

To monitor the network traffic of a special network interface of a specific VM Guest, supply the
correct virtual interface. For example, to monitor the first Ethernet device of the domain with id 5,
use the command:

ftop -1 vif5.0

To quit iftop, press the key Q. More options and possibilities are available in the man page man
8 iftop.

223

CHAPTER 27. MANAGING A VIRTUALIZATION ENVIRONMENT

Chapter 27. Managing a virtualization environment

Apart from using the recommended libvirt library (Part ll, “Managing virtual machines with
libvirt "), you can manage Xen guest domains with the x1 tool from the command line.

27.1. XL—Xen management tool

The x1 program is a tool for managing Xen guest domains. It is part of the xen-tools package.
x1 is based on the LibXenlight library, and can be used for general domain management, such as
domain creation, listing, pausing or shutting down. You need to be root to execute xL commands.

Note

@ x1 can only manage running guest domains specified by their configuration file. If a
guest domain is not running, you cannot manage it with x1.

Tip

@ To allow users to continue to have managed guest domains in the way the obsolete
xm command allowed, we now recommend using libvirt's virsh and virt-
manager tools. For more information, see Part Il, “Managing virtual machines with
libvirt .

x1 operations rely upon xenstored and xenconsoled services. Make sure you start
>systemctl start xencommons

at boot time to initialize all the daemons required by x1.

Set up a xenbro0 network bridge in the host domain

@ In the most common network configuration, you need to set up a bridge in the host
domain named xenbr0 to have a working network for the guest domains.

The basic structure of every x1 command is:
xl <subcommand> [options] domain id

where <subcommand> is the xI command to run, domain_id is the ID number assigned to a
domain or the name of the virtual machine, and OPTIONS indicates subcommand-specific options.

For a complete list of the available x1 subcommands, run xU help. For each command, there is a
more detailed help available that is obtained with the extra parameter - -help. More information
about the respective subcommands is available in the man page of x1.

224

For example, the xL list --help displays all options that are available to the list command. As
an example, the x1 list command displays the status of all virtual machines.

>sudo x1 list

Name ID Mem VCPUs State Time(s)
Domain-0 0 457 2 r----- 2712.9
sles1?2 7 512 1 -b---- 16.3
opensuse 512 1 12.9

The State information indicates if a machine is running, and in which state it is. The most common
flags are r (running) and b (blocked) where blocked means it is either waiting for 10, or sleeping
because there is nothing to do. For more details about the state flags, see man 1 x1.

Other useful x1 commands include:

* X1 create creates a virtual machine from a given configuration file.
* xL rebootreboots a virtual machine.
* x1 destroy immediately terminates a virtual machine.

* xL block-list displays all virtual block devices attached to a virtual machine.

27.1.1. Guest domain configuration file

When operating domains, X1 requires a domain configuration file for each domain. The default
directory to store such configuration files is /etc/xen/.

A domain configuration file is a plain text file. It consists of several KEY=VALUE pairs. Certain keys
are mandatory. General keys apply to any guest, and specific ones apply only to a specific guest
type (para or fully virtualized). A value can either be a "string" surrounded by single or double
guotes, a number, a boolean value, or a list of several values enclosed in brackets [valuel,
value2,

Example 27.1. Guest domain configuration file for SLED 12: /etc/xen/sled12.cfg

name= "sledl2"

builder = "hvm"
vncviewer = 1
memory = 512

disk = ['/var/lib/xen/images/sledl2.raw, hda', '/dev/cdrom,,hdc,cdrom']
vif = ['mac=00:16:3e:5f:48:e4,model=rt18139,bridge=bro"' |
boot = "n"

To start such domain, run xU create /etc/xen/sledl2.cfg.
27.2. Automatic start of guest domains
To make a guest domain start automatically after the host system boots, follow these steps:

1. Create the domain configuration file if it does not exist, and save it in the /etc/xen/
directory, for example, /etc/xen/domain name.cfqg.

225

CHAPTER 27. MANAGING A VIRTUALIZATION ENVIRONMENT

2. Make a symbolic link of the guest domain configuration file in the auto/ subdirectory.
>sudo ln -s /etc/xen/domain_name.cfg /etc/xen/auto/domain_name.cfg

3. On the next system boot, the guest domain defined in domain name. cfg is started.

27.3. Event actions

In the guest domain configuration file, you can define actions to be performed on a predefined set
of events. For example, to tell the domain to restart itself after it is powered off, include the
following line in its configuration file:

on_poweroff="restart"

A list of predefined events for a guest domain follows:
List of events
on_poweroff

Specifies what should be done with the domain if it shuts itself down.
on_reboot

Action to take if the domain shuts down with a reason code requesting a reboot.
on_watchdog

Action to take if the domain shuts down because of a Xen watchdog timeout.
on_crash

Action to take if the domain crashes.
For these events, you can define one of the following actions:
List of related actions
destroy

Destroy the domain.
restart

Destroy the domain and immediately create a new domain with the same configuration.
rename-restart

Rename the domain that terminated, and then immediately create a new domain with the
same configuration as the original.

226

preserve

Keep the domain. It can be examined, and later destroyed with xL destroy.
coredump-destroy

Write a core dump of the domain to /var/xen/dump/NAME and then destroy the domain.
coredump-restart

Write a core dump of the domain to /var/xen/dump/NAME and then restart the domain.
27.4. Time Stamp Counter

The Time Stamp Counter (TSC) may be specified for each domain in the guest domain
configuration file (for more information, see the section called “Guest domain configuration file”).

With the tsc_mode setting, you specify whether rdtsc instructions are executed “natively” (fast, but
TSC-sensitive applications may sometimes run incorrectly) or emulated (always run correctly, but
performance may suffer).

tsc_mode=0 (default)

Use this to ensure correctness while providing the best performance possible—for more
information, see https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.ixt.

tsc_mode=1 (always emulate)

Use this when TSC-sensitive apps are running and worst-case performance degradation is
known and acceptable.

tsc_mode=2 (never emulate)

Use this when all applications running in this VM are TSC-resilient and highest performance
is required.

tsc_mode=3 (PVRDTSCP)

High-TSC-frequency applications may be paravirtualized (modified) to obtain both
correctness and highest performance—any unmodified applications must be TSC-resilient.

For background information, see https://xenbits.xen.org/docs/4.3-testing/misc/tscmode. txt.
27.5. Saving virtual machines
Procedure 27.1. Save a virtual machine’s current state

1. Make sure the virtual machine to be saved is running.

227

https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt
https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt

CHAPTER 27. MANAGING A VIRTUALIZATION ENVIRONMENT

2. In the host environment, enter
>sudo x1 save IDSTATE-FILE

where ID is the virtual machine ID you want to save, and STATE-FILE is the name you
specify for the memory state file. By default, the domain is no longer running after you create
its snapshot. Use - ¢ to keep it running even after you create the snapshot.

27.6. Restoring virtual machines
Procedure 27.2. Restore a virtual machine’s current state

1. Make sure the virtual machine to be restored has not been started since you ran the save
operation.

2. In the host environment, enter
>sudo x1 restore STATE-FILE

where STATE-FILE is the previously saved memory state file. By default, the domain is
running after it is restored. To pause it after the restore, use -p.

27.7. Virtual machine states

A virtual machine’s state can be displayed by viewing the results of the x1 1ist command, which
abbreviates the state using a single character.

* I - running - The virtual machine is currently running and consuming allocated resources.

* b - blocked - The virtual machine’s processor is not running and not able to run. It is either
waiting for 1/O or has stopped working.

* p - paused - The virtual machine is paused. It does not interact with the hypervisor but still
maintains its allocated resources, such as memory.

s - shutdown - The guest operating system is in the process of being shut down, rebooted,
or suspended, and the virtual machine is being stopped.

* € - crashed - The virtual machine has crashed and is not running.

* d - dying - The virtual machine is shutting down or crashing.

228

Chapter 28. Block devices in Xen
28.1. Mapping physical storage to virtual disks

The disk specification for a Xen domain in the domain configuration file is as straightforward as the
following example:

disk = ['format=raw,vdev=hdc,access=ro,devtype=cdrom,target=/root/image.iso"']

It defines a disk block device based on the /root/image.iso disk image file. The is seen as
hdc by the guest, with read-only (ro) access. The type of the device is cdrom with raw format.

The following example defines an identical device, but using simplified positional syntax:
disk = ['/root/image.iso, raw,hdc,ro,cdrom']

You can include more disk definitions in the same line, each one separated by a comma. If a
parameter is not specified, then its default value is taken:

disk = ['/root/image.iso, raw,hdc,ro,cdrom','/dev/vg/guest-volume,, hda',"'..." 1]

List of parameters
target

Source block device or disk image path.
format

The format of the image file. Default is raw.
vdev

Virtual device as seen by the guest. Supported values are hd[x], xvd[x], sd[X] etc. See /usr/
share/doc/packages/xen/misc/vbd-interface.txt for more details. This
parameter is mandatory.

access

Whether the block device is provided to the guest in read-only or read-write mode.
Supported values are ro or r for read-only, and rw or w for read/write access. Default is ro
for devtype=cdrom, and rw for other device types.

devtype

Quallifies virtual device type. Supported value is cdrom.

229

CHAPTER 28. BLOCK DEVICES IN XEN

backendtype

The back-end implementation to use. Supported values are phy, tap, and qdisk. Normally
this option should not be specified as the back-end type is automatically determined.

script

Specifies that target is not a normal host path, but rather information to be interpreted by
the executable program. The specified script file is looked for in /etc/xen/scripts if it
does not point to an absolute path. These scripts are normally called block-
<script name>.

For more information about specifying virtual disks, see /usr/share/doc/packages/xen/
misc/xl-disk-configuration.txt.

28.2. Mapping network storage to virtual disk

Similar to mapping a local disk image (see the section called “Mapping physical storage to virtual
disks”), you can map a network disk as a virtual disk as well.

The following example shows mapping of an RBD (RADOS Block Device) disk with multiple Ceph
monitors and cephx authentication enabled:

disk = ['vdev=hdc, backendtype=qdisk, \
target=rbd:libvirt-pool/new-libvirt-image:\
id=libvirt:key=AQDsPWtW8JoXJBAAyLPQe7MhCC+JPkI3QuhaAw==:auth supported=cephx;non
e:\

mon host=137.65.135.205\\:6789;137.65.135.206\\:6789;137.65.135.207\\:6789"']

Following is an example of an NBD (Network Block Device) disk mapping:
disk = ['vdev=hdc, backendtype=qdisk, target=nbd:151.155.144.82:5555"]

28.3. File-backed virtual disks and loopback devices

When a virtual machine is running, each of its file-backed virtual disks consumes a loopback
device on the host. By default, the host allows up to 64 loopback devices to be consumed.

To simultaneously run more file-backed virtual disks on a host, you can increase the number of
available loopback devices by adding the following option to the hosts /etc/
modprobe.conf.local file.

options loop max loop=x
where X is the maximum number of loopback devices to create.

Changes take effect after the module is reloaded.

230

Tip

@ Enter rmmod loop and modprobe loop to unload and reload the module. In case
rmmod does not work, unmount all existing loop devices or reboot the computer.

28.4. Resizing block devices

While it is always possible to add new block devices to a VM Guest system, it is sometimes more
desirable to increase the size of an existing block device. In case such a system modification is
already planned during deployment of the VM Guest, several basic considerations should be done:

» Use a block device that may be increased in size. LVM devices and file system images are
commonly used.

» Do not partition the device inside the VM Guest, but use the main device directly to apply the
file system. For example, use /dev/xvdb directly instead of adding partitions to /dev/
xvdb.

* Make sure that the file system to be used can be resized. Sometimes, for example, with
Ext3, certain features must be switched off to be able to resize the file system. A file system
that can be resized online and mounted is XFS. Use the command xfs_growfs to resize
that file system after the underlying block device has been increased in size. For more
information about XFS, see man 8 xfs_growfs.

When resizing an LVM device that is assigned to a VM Guest, the new size is automatically known
to the VM Guest. No further action is needed to inform the VM Guest about the new size of the
block device.

When using file system images, a loop device is used to attach the image file to the guest. For
more information about resizing that image and refreshing the size information for the VM Guest,
see the section called “Sparse image files and disk space”.

28.5. Scripts for managing advanced storage scenarios

There are scripts that can help with managing advanced storage scenarios such as disk
environments provided by dmmd (“device mapper—multi disk”) including LVM environments built
upon a software RAID set, or a software RAID set built upon an LVM environment. These scripts
are part of the xen-tools package. After installation, they can be found in /etc/xen/scripts:

* block-dmmd
* block-drbhd-probe

* block-npiv

231

CHAPTER 28. BLOCK DEVICES IN XEN

The scripts allow for external commands to perform specific action, or series of actions of the block
devices before serving them up to a guest.

These scripts could formerly only be used with x1 or Libx1l using the disk configuration syntax
script=. They can now be used with libvirt by specifying the base name of the block script in the
<source> element of the disk. For example:

<source dev='dmmd:md;/dev/md0O;lvm;/dev/vgxen/lv-vmOl'/>

232

Chapter 29. Virtualization: configuration options and settings

The documentation in this section, describes advanced management tasks and configuration
options that may help technology innovators implement leading-edge virtualization solutions. It is
provided as a courtesy and does not imply that all documented options and tasks are supported by
Novell, Inc.

29.1. Virtual CD readers

Virtual CD readers can be set up when a virtual machine is created or added to an existing virtual
machine. A virtual CD reader can be based on a physical CD/DVD, or based on an ISO image.
Virtual CD readers work differently depending on whether they are paravirtual or fully virtual.

29.1.1. Virtual CD readers on paravirtual machines

A paravirtual machine can have up to 100 block devices composed of virtual CD readers and
virtual disks. On paravirtual machines, virtual CD readers present the CD as a virtual disk with
read-only access. Virtual CD readers cannot be used to write data to a CD.

After you have finished accessing a CD on a paravirtual machine, it is recommended that you
remove the virtual CD reader from the virtual machine.

Paravirtualized guests can use the device type devtype=cdrom. This partly emulates the
behavior of a real CD reader, and allows CDs to be changed. It is even possible to use the eject
command to open the tray of the CD reader.

29.1.2. Virtual CD readers on fully virtual machines

A fully virtual machine can have up to four block devices composed of virtual CD readers and
virtual disks. A virtual CD reader on a fully virtual machine interacts with an inserted CD in the way
you would expect a physical CD reader to interact.

When a CD is inserted in the physical CD reader on the host computer, all virtual machines with
virtual CD readers based on the physical CD reader, such as /dev/cdrom/, can read the inserted
CD. Assuming the operating system has automount functionality, the CD should automatically
appear in the file system. Virtual CD readers cannot be used to write data to a CD. They are
configured as read-only devices.

29.1.3. Adding virtual CD readers
Virtual CD readers can be based on a CD inserted into the CD reader or on an ISO image file.

1. Make sure that the virtual machine is running and the operating system has finished booting.

233

CHAPTER 29. VIRTUALIZATION: CONFIGURATION OPTIONS AND SETTINGS

2. Insert the desired CD into the physical CD reader or copy the desired ISO image to a
location available to DomO.

3. Select a new, unused block device in your VM Guest, such as /dev/xvdb.

4. Choose the CD reader or ISO image that you want to assign to the guest.

5. When using a real CD reader, use the following command to assign the CD reader to your
VM Guest. In this example, the name of the guest is alice:
>sudo x1 block-attach alice target=/dev/sr0,vdev=xvdb,access=ro

6. When assigning an image file, use the following command:

>sudo x1 block-attach alice target=/path/to/file.iso,vdev=xvdb,access=ro

7. A new block device, such as /dev/xvdb, is added to the virtual machine.

8. If the virtual machine is running Linux, complete the following:

1. Open a terminal in the virtual machine and enter fdisk -1 to verify that the device
was properly added. You can also enter 1s /sys/block to see all disks available to
the virtual machine.

The CD is recognized by the virtual machine as a virtual disk with a drive designation,
for example:

/dev/xvdb

2. Enter the command to mount the CD or ISO image using its drive designation. For
example,

>sudo mount -o ro /dev/xvdb /mnt

mounts the CD to a mount point named /mnt.

The CD or ISO image file should be available to the virtual machine at the specified
mount point.

9. If the virtual machine is running Windows, reboot the virtual machine.

Verify that the virtual CD reader appears in its My Computer section.

29.1.4. Removing virtual CD readers

1. Make sure that the virtual machine is running and the operating system has finished booting.
2. If the virtual CD reader is mounted, unmount it from within the virtual machine.
3. Enter X1 block-list alice on the host view of the guest block devices.

4. Enter XU block-detach aliceBLOCK DEV ID to remove the virtual device from the
guest. If that fails, try to add - f to force the removal.

5. Press the hardware eject button to eject the CD.

234

29.2. Remote access methods

Certain configurations, such as those that include rack-mounted servers, require a computer to run
without a video monitor, keyboard or mouse. This type of configuration is often called headless
and requires the use of remote administration technologies.

Typical configuration scenarios and technologies include:
Graphical desktop with X Window System server

If a graphical desktop, such as GNOME, is installed on the virtual machine host, you can use
a remote viewer, such as a VNC viewer. On a remote computer, log in and manage the
remote guest environment by using graphical tools, such as tigervnc or virt-viewer.

Text only

You can use the ssh command from a remote computer to log in to a virtual machine host
and access its text-based console. You can then use the x1 command to manage virtual
machines, and the virt-install command to create new virtual machines.

29.3. VNC viewer

VNC viewer is used to view the environment of the running guest system in a graphical way. You
can use it from DomO (known as local access or on-box access), or from a remote computer.

You can use the IP address of a VM Host Server and a VNC viewer to view the display of this VM
Guest. When a virtual machine is running, the VNC server on the host assigns the virtual machine
a port number to be used for VNC viewer connections. The assigned port number is the lowest port
number available when the virtual machine starts. The number is only available for the virtual
machine while it is running. After shutting down, the port number may be assigned to other virtual
machines.

For example, if ports 1 and 2 and 4 and 5 are assigned to the running virtual machines, the VNC
viewer assigns the lowest available port number, 3. If port number 3 is still in use the next time the
virtual machine starts, the VNC server assigns a different port number to the virtual machine.

To use the VNC viewer from a remote computer, the firewall must permit access to as many ports
as VM Guest systems run from. This means from port 5900 and up. For example, to run 10 VM
Guest systems, you need to open the TCP ports 5900:5910.

To access the virtual machine from the local console running a VNC viewer client, enter one of the
following commands:

evncviewer ::590#

evncviewer :#

235

CHAPTER 29. VIRTUALIZATION: CONFIGURATION OPTIONS AND SETTINGS

is the VNC viewer port number assigned to the virtual machine.

When accessing the VM Guest from a machine other than DomO, use the following syntax:
>vncviewer 192.168.1.20::590#

In this case, the IP address of DomO is 192.168.1.20.

29.3.1. Assigning VNC viewer port numbers to virtual machines

Although the default behavior of VNC viewer is to assign the first available port number, you should
assign a specific VNC viewer port number to a specific virtual machine.

To assign a specific port number on a VM Guest, edit the x| setting of the virtual machine and
change the vnclisten to the desired value. For example, for port number 5902, specify 2 only,
as 5900 is added automatically:

vfb = ['vnc=1l,vnclisten="localhost:2""']
For more information regarding editing the x| settings of a guest domain, see the section called “XL
—Xen management tool”.

Tip

@ Assign higher port numbers to avoid conflict with port numbers assigned by the VNC
viewer, which uses the lowest available port number.

29.3.2. Using SDL instead of a VNC viewer

If you access a virtual machine's display from the virtual machine host console (known as local or
on-box access), you should use SDL instead of VNC viewer. VNC viewer is faster for viewing
desktops over a network, but SDL is faster for viewing desktops from the same computer.

To set the default to use SDL instead of VNC, change the virtual machine's configuration
information to the following. For instructions, see the section called “XL—Xen management tool”.

vfb = ['sdl=1"']

Remember that, unlike a VNC viewer window, closing an SDL window terminates the virtual
machine.

29.4. Virtual keyboards

When a virtual machine is started, the host creates a virtual keyboard that matches the keymap
entry according to the virtual machine's settings. If there is no keymap entry specified, the virtual
machine's keyboard defaults to English (US).

236

To view a virtual machine's current keymap entry, enter the following command on the DomO:

>x1 list -1 VM NAME | grep keymap

To configure a virtual keyboard for a guest, use the following snippet:

vfb = ['keymap="de"']

For a complete list of supported keyboard layouts, see the Keymaps section of the xL.cfg man
page man 5 x1l.cfg.

29.5. Dedicating CPU resources

In Xen it is possible to specify how many and which CPU cores the DomO0 or VM Guest should use
to retain its performance. The performance of DomO is important for the overall system, as the disk
and network drivers are running on it. Also I/O intensive guests' workloads may consume lots of
Dom0Os' CPU cycles. However, the performance of VM Guests is also important, to be able to
accomplish the task they were set up for.

29.5.1. DomO

Dedicating CPU resources to DomO results in a better overall performance of the virtualized
environment because DomO has free CPU time to process I/O requests from VM Guests. Failing to
dedicate exclusive CPU resources to Dom0 may results in a poor performance and can cause the
VM Guests to function incorrectly.

Dedicating CPU resources involves three basic steps: modifying Xen boot line, binding Dom0Q's
VCPUs to a physical processor, and configuring CPU-related options on VM Guests:

1. First you need to append the dom@_max_vcpus=X to the Xen boot line. Do so by adding the
following line to /etc/default/grub:
GRUB CMDLINE XEN="dom@ max_ vcpus=X"

If /etc/default/grub already contains a line setting GRUB CMDLINE XEN, rather
append dom@_max_vcpus=X to this line.

X needs to be replaced by the number of VCPUs dedicated to DomO.

2. Update the GRUB 2 configuration file by running the following command:
>sudo grub2-mkconfig -o /boot/grub2/grub.cfg

3. Reboot for the change to take effect.

4. The next step is to bind (or “pin”) each DomOQ's VCPU to a physical processor.

>sudo x1 vcpu-pin Domain-0 0 0O
xl vcpu-pin Domain-0 1 1

237

CHAPTER 29. VIRTUALIZATION: CONFIGURATION OPTIONS AND SETTINGS

The first line binds Dom0's VCPU number 0 to the physical processor number 0, while the
second line binds Dom0's VCPU number 1 to the physical processor number 1.

5. Lastly, you need to make sure no VM Guest uses the physical processors dedicated to
VCPUs of Dom0. Assuming you are running an 8-CPU system, you need to add

cpus="2-8"

to the configuration file of the relevant VM Guest.

29.5.2. VM Guests

It is often necessary to dedicate specific CPU resources to a virtual machine. By default, a virtual
machine uses any available CPU core. Its performance can be improved by assigning a
reasonable number of physical processors to it as other VM Guests are not allowed to use them
after that. Assuming a machine with 8 CPU cores while a virtual machine needs to use 2 of them,
change its configuration file as follows:

vcpus=2

cpus="2,3"

The above example dedicates 2 processors to the VM Guest, and these being the third and fourth
one, (2 and 3 counted from zero). If you need to assign more physical processors, use the
cpus="2-8" syntax.

If you need to change the CPU assignment for a guest named “alice” in a hotplug manner, do the
following on the related DomO:

>sudo x1 vcpu-set alice 2
>sudo x1 vcpu-pin alice 0 2
>sudo xl vcpu-pin alice 1 3

The example dedicates 2 physical processors to the guest, and bind its VCPU 0 to physical
processor 2 and VCPU 1 to physical processor 3. Now check the assignment:

>sudo x1 vcpu-list alice

Name ID VCPUs CPU State Time(s) CPU Affinity
alice 4 0 2 -b- 1.9 2-3
alice 4 1 3 -b- 2.8 2-3

29.6. HVM features

In Xen, certain features are only available for fully virtualized domains. They are rarely used, but
still may be interesting in specific environments.

29.6.1. Specify boot device on boot

Just as with physical hardware, it is sometimes desirable to boot a VM Guest from a different
device than its own boot device. For fully virtual machines, it is possible to select a boot device with
the boot parameter in a domain xlI configuration file:

boot = BOOT DEVICE

238

BOOT _DEVICE can be one of c for hard disk, d for CD-ROM, or n for Network/PXE. You can
specify multiple options, and they will be attempted in the given order. For example,

boot = dc

boots from CD-ROM, and falls back to the hard disk if CD-ROM is not bootable.

29.6.2. Changing CPUIDs for guests

To be able to migrate a VM Guest from one VM Host Server to a different VM Host Server, the VM
Guest system may only use CPU features that are available on both VM Host Server systems. If
the actual CPUs are different on both hosts, it may be necessary to hide certain features before the
VM Guest is started. This maintains the possibility to migrate the VM Guest between both hosts.
For fully virtualized guests, this can be achieved by configuring the cpuid that is available to the
guest.

To gain an overview of the current CPU, have a look at /proc/cpuinfo. This contains all the
important information that defines the current CPU.

To redefine a CPU, first have a look at the respective cpuid definitions of the CPU vendor. These
are available from:

Intel

https://www.intel.com/Assets/PDF/appnote/241618.pdf

cpuid = "host,tm=0,sse3=0"

The syntax is a comma-separated list of key=value pairs, preceded by the word host. A few
keys take a numerical value, while all others take a single character which describes what to do
with the feature bit. See man 5 x1.cfg for a complete list of cpuid keys. The respective bits may
be changed by using the following values:

1
Force the corresponding bitto 1
0
Force the corresponding bit to 0
X
Use the values of the default policy
k

Use the values defined by the host

239

https://www.intel.com/Assets/PDF/appnote/241618.pdf

CHAPTER 29. VIRTUALIZATION: CONFIGURATION OPTIONS AND SETTINGS

Like k, but preserve the value over migrations
Tip

@ Remember that counting bits is done from right to left, starting with bit 0.

29.6.3. Increasing the number of PCI-IRQs

In case you need to increase the default number of PCI-IRQs available to Dom0 and/or VM Guest,
you can do so by modifying the Xen kernel command line. Use the command
extra_guest_irqs=DOMU_IRGS,DOMO_IRGS. The optional first number DOMU_IRGS is
common for all VM Guests, while the optional second number DOMO_IRGS (preceded by a
comma) is for Dom0. Changing the setting for VM Guest has no impact on DomO and vice versa.
For example to change Dom0 without changing VM Guest, use

extra guest irgs=,512

29.7. Virtual CPU scheduling

The Xen hypervisor schedules virtual CPUs individually across physical CPUs. With modern CPUs
supporting multiple threads on each core, virtual CPUs can run on the same core in different
threads and thus influence each other. The performance of a virtual CPU running in one thread can
be noticeably affected by what other virtual CPUs in other threads are doing. When these virtual
CPUs belong to different guest systems, these guests can influence each other. The effect can
vary, from variations in the guest CPU time accounting to worse scenarios such as side channel
attack.

Scheduling granularity addresses this problem. You can specify it at boot time by using a Xen boot
parameter:

sched-gran=GRANULARITY

Replace GRANULARITY with one of:
cpu

The regular scheduling of the Xen hypervisor. Virtual CPUs of different guests can share one
physical CPU core. This is the default.

core

Virtual CPUs of a virtual core are always scheduled together on one physical core. Two or
more virtual CPUs from different virtual cores will never be scheduled on the same physical
core. Therefore, certain physical cores may have several of their CPUs left idle, even if there

240

are virtual CPUs wanting to run. The impact on performance will depend on the actual
workload being run inside of the guest systems. In most of the analyzed cases, the observed
performance degradation, especially if under considerable load, was smaller than disabling
HyperThreading, which leaves all the cores with just one thread (see the smt boot option at

https://xenbits.xen.org/docs/unstable/misc/xen-command-line.html#smt-x86).

socket

241

The granularity goes even higher to a CPU socket level.

https://xenbits.xen.org/docs/unstable/misc/xen-command-line.html#smt-x86

CHAPTER 30. ADMINISTRATIVE TASKS

Chapter 30. Administrative tasks
30.1. The boot loader program

The boot loader controls how the virtualization software boots and runs. You can modify the boot
loader properties by using YaST, or by directly editing the boot loader configuration file.

The YaST boot loader program is located at YaST > System > Boot Loader. Click the Bootloader
Options tab and select the line containing the Xen kernel as the Default Boot Section.

Figure 30.1. Boot loader settings

Boot Loader Settings >

Boot Code Options = Kernel Parameters | Bootloader Options

Timeout in Seconds
8 2| [LJ Hide Menu on Boot

Default Boot Section
SLES 15-SP4, with Xen hypervisor v

Protect Boot Loader with Password

Help Cancel | | oK

Confirm with OK. Next time you boot the host, it can provide the Xen virtualization environment.
You can use the Boot Loader program to specify functionality, such as:

 Pass kernel command-line parameters.
« Specify the kernel image and initial RAM disk.
* Select a specific hypervisor.

» Pass additional parameters to the hypervisor. See https://xenbits.xen.org/docs/unstable/
misc/xen-command-line.html for their complete list.

You can customize your virtualization environment by editing the /etc/default/grub file. Add
the following line to this file: GRUB_CMDLINE XEN="<boot parameters>". Do not forget to run
grub2-mkconfig -o /boot/grub2/grub.cfg after editing the file.

242

https://xenbits.xen.org/docs/unstable/misc/xen-command-line.html
https://xenbits.xen.org/docs/unstable/misc/xen-command-line.html

30.2. Sparse image files and disk space

If the host's physical disk reaches a state where it has no available space, a virtual machine using
a virtual disk based on a sparse image file cannot write to its disk. Consequently, it reports 1/O

errors.

If this situation occurs, you should free up available space on the physical disk, remount the virtual
machine’s file system, and set the file system back to read-write.

To check the actual disk requirements of a sparse image file, use the command du -h <image
file>.

To increase the available space of a sparse image file, first increase the file size and then the file
system.

Back up before resizing

Touching the sizes of partitions or sparse files always bears the risk of data failure.
Do not work without a backup.

The resizing of the image file can be done online, while the VM Guest is running. Increase the size
of a sparse image file with:

>sudo dd if=/dev/zero of=<image file> count=0 bs=1M seek=<new size in MB>

For example, to increase the file /var/lib/xen/images/sles/disk0 to a size of 16GB, use
the command:

>sudo dd if=/dev/zero of=/var/lib/xen/images/sles/disk0 count=0 bs=1M seek=16000

Increasing non-sparse images

@ It is also possible to increase the image files of devices that are not sparse files.
However, you must know exactly where the previous image ends. Use the seek
parameter to point to the end of the image file and use a command similar to the
following:

>sudo dd if=/dev/zero of=/var/lib/xen/images/sles/disk® seek=8000
bs=1M count=2000

Be sure to use the right seek, else data loss may happen.

If the VM Guest is running during the resize operation, also resize the loop device that provides the
image file to the VM Guest. First detect the correct loop device with the command:

>sudo losetup -j /var/lib/xen/images/sles/disk0

243

CHAPTER 30. ADMINISTRATIVE TASKS

Then resize the loop device, for example, /dev/1oop0, with the following command:
>sudo losetup -c /dev/loop0®

Finally check the size of the block device inside the guest system with the command fdisk -1 /
dev/xvdb. Replace the device name with your increased disk.

The resizing of the file system inside the sparse file involves tools that are depending on the actual
file system. This is described in detail in the Storage Administration Guide in “Storage
Administration Guide”.

30.3. Migrating Xen VM Guest systems

With Xen it is possible to migrate a VM Guest system from one VM Host Server to another with
almost no service interruption. This could be used, for example, to move a busy VM Guest to a VM
Host Server that has stronger hardware or is not yet loaded. Or, if a service of a VM Host Server is
required, all VM Guest systems running on this machine can be migrated to other machines to
avoid interruption of service. These are only two examples—many more reasons may apply to your
personal situation.

Before starting, certain preliminary considerations regarding the VM Host Server should be taken
into account:

« All VM Host Server systems should use a similar CPU. The frequency is not so important,
but they should be using the same CPU family. To get more information about the used CPU,
use cat /proc/cpuinfo. Find more details about comparing host CPU features in the
section called “Detecting CPU features”.

« All resources that are used by a specific guest system must be available on all involved VM
Host Server systems—for example, all used block devices must exist on both VM Host
Server systems.

« If the hosts included in the migration process run in different subnets, make sure that either
DHCP relay is available to the guests, or for guests with static network configuration, set up
the network manually.

* Using special features like PCI Pass-Through may be problematic. Do not implement
these when deploying for an environment that should migrate VM Guest systems between
different VM Host Server systems.

e For fast migrations, a fast network is mandatory. If possible, use GB Ethernet and fast
switches. Deploying VLAN may also help avoid collisions.

244

https://fsteimke.github.io/xsltng-docs/suse/book-storage.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-storage.pdf

30.3.1. Detecting CPU features

By using the cpuid and xen _maskcalc.py tools, you can compare features of a CPU on the

host from where you are migrating the source VM Guest with the features of CPUs on the target

hosts. This way you can better predict if the guest migrations will be successful.

1. Run the cpuid -1r command on each DomoO that is supposed to run or receive the

migrated VM Guest and capture the output in text files, for example:

tux@vm _hostl >sudo cpuid -1r > vm hostl.txt
tux@vm _host2 >sudo cpuid -1r > vm host2.txt
tux@vm host3 >sudo cpuid -1r > vm host3.txt

. Copy all the output text files on a host with the xen_maskcalc. py script installed.

. Run the xen_maskcalc. py script on all output text files:

>sudo xen maskcalc.py vm hostl.txt vm host2.txt vm host3.txt
cpuid = [
"OXx00000001 : ecx=XOOXXXXXXOXXXXXXXXXOOXXXXXXXXXXX" ,
"Ox00000007,0x00 : ebX=XXXXXXXXXXXXXXXXXXO00Xx0000x0x0x00"
]

. Copy the output cpuid=[...] configuration snipped into the x1 configuration of the

migrated guestdomU. cfg or alternatively to its Libvirt's XML configuration.

. Start the source guest with the trimmed CPU configuration. The guest can now only use

CPU features which are present on each of the hosts.

Tip

@ libvirt also supports calculating a baseline CPU for migration. For more details,

refer to Virtualization Best Practices.

30.3.1.1. More information

You can find more details about cpuid at https://etallen.com/cpuid.html.

You can download the latest version of the CPU mask calculator from https://github.com/twizted/

xen_maskcalc.

245

https://etallen.com/cpuid.html
https://github.com/twizted/xen_maskcalc
https://github.com/twizted/xen_maskcalc

CHAPTER 30. ADMINISTRATIVE TASKS

30.3.2. Preparing block devices for migrations

The block devices needed by the VM Guest system must be available on all involved VM Host
Server systems. This is done by implementing a specific kind of shared storage that serves as a
container for the root file system of the migrated VM Guest system. Common possibilities include:

» 1SCST can be set up to give access to the same block devices from different systems at the
same time. For more information about iSCSI, see Chapter 15, Mass storage over IP
networks: iSCSI in “Storage Administration Guide”.

* NFS is a widely used root file system that can easily be accessed from different locations.
For more information, see Chapter 19, Sharing file systems with NFS in “Storage
Administration Guide”.

* DRBD can be used if only two VM Host Server systems are involved. This adds certain extra
data security, because the used data is mirrored over the network. For more information, see
the SUSE Linux Enterprise High Availability 15 SP7 documentation at hitps:/
documentation.suse.com/sle-ha-15/.

» SCSI can also be used if the available hardware permits shared access to the same disks.

* NPIV is a special mode to use Fibre channel disks. However, in this case, all migration hosts
must be attached to the same Fibre channel switch. For more information about NPIV, see
the section called “Mapping physical storage to virtual disks”. Commonly, this works if the
Fibre channel environment supports 4 Gbps or faster connections.

30.3.3. Migrating VM Guest systems

The actual migration of the VM Guest system is done with the command:
>sudo x1 migrate <domain name> <host>

The speed of the migration depends on how fast the memory print can be saved to disk, sent to the
new VM Host Server and loaded there. This means that small VM Guest systems can be migrated
faster than big systems with a lot of memory.

30.4. Monitoring Xen

For a regular operation of many virtual guests, having a possibility to check the sanity of all the
different VM Guest systems is indispensable. Xen offers several tools besides the system tools to
gather information about the system.

246

https://fsteimke.github.io/xsltng-docs/suse/book-storage.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-storage.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-storage.pdf
https://documentation.suse.com/sle-ha-15/
https://documentation.suse.com/sle-ha-15/

Monitoring the VM Host Server

@ Basic monitoring of the VM Host Server (I/O and CPU) is available via the Virtual
Machine Manager. Refer to the section called “Monitoring with Virtual Machine
Manager” for details.

30.4.1. Monitor Xen with xentop

The preferred terminal application to gather information about Xen virtual environment is xentop.
Be aware that this tool needs a rather broad terminal, else it inserts line breaks into the display.

xentop has several command keys that can give you more information about the system that is
monitored. For example:

D
Change the delay between the refreshes of the screen.

N
Also display network statistics. Note, that only standard configurations are displayed. If you
use a special configuration like a routed network, no network is displayed.

B

Display the respective block devices and their cumulated usage count.

For more information about xentop, see the manual page man 1 xentop.

virt-top

@ libvirt offers the hypervisor-agnostic tool virt-top, which is recommended for
monitoring VM Guests. See the section called “Monitoring with virt-top ” for
details.

30.4.2. Additional tools

There are many system tools that also help monitoring or debugging a running SUSE Linux
Enterprise system. Many of these are covered in Chapter 2, System monitoring utilities in “System
Analysis and Tuning Guide”. Especially useful for monitoring a virtualization environment are the
following tools:

247

https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf

CHAPTER 30. ADMINISTRATIVE TASKS

ip
The command-line utility ip may be used to monitor arbitrary network interfaces. This is
especially useful if you have set up a network that is routed or applied a masqueraded
network. To monitor a network interface with the name alice.0, run the following
command:
>watch ip -s link show alice.0

bridge

In a standard setup, all the Xen VM Guest systems are attached to a virtual network bridge.
bridge allows you to determine the connection between the bridge and the virtual network
adapter in the VM Guest system. For example, the output of bridge link may look like

the following:
2: ethO state DOWN : <NO-CARRIER, ...,UP> mtu 1500 master br0@
8: vnetO state UNKNOWN : <BROADCAST, ...,LOWER UP> mtu 1500 master virbr0 \

state forwarding priority 32 cost 100

This shows that there are two virtual bridges defined on the system. One is connected to the
physical Ethernet device eth0, the other one is connected to a VLAN interface vnet0.

iptables-save

Especially when using masquerade networks, or if several Ethernet interfaces are set up
together with a firewall setup, it may be helpful to check the current firewall rules.

The command iptables may be used to check all the different firewall settings. To list all
the rules of a chain, or even of the complete setup, you may use the commands iptables-
save or iptables -S.

30.5. Providing host information for VM Guest systems

In a standard Xen environment, the VM Guest systems have only limited information about the VM

Host Server system they are running on. If a guest should know more about the VM Host Server it

runs on, vhostmd can provide more information to selected guests. To set up your system to run

vhostmd, proceed as follows:

1. Install the package vhostmd on the VM Host Server.

2. To add or remove metric sections from the configuration, edit the file /etc/vhostmd/

vhostmd. conf. However, the default works well.

3. Check the validity of the vhostmd. conf configuration file with the command:

>cd /etc/vhostmd
>xmllint --postvalid --noout vhostmd.conf

248

4. Start the vhostmd daemon with the command sudo systemctl start vhostmd.

If vhostmd should be started automatically during start-up of the system, run the command:
>sudo systemctl enable vhostmd

5. Attach the image file /dev/shm/vhostmdO to the VM Guest system named alice with the
command:

>x1 block-attach opensuse /dev/shm/vhostmd0@, ,xvdb, ro

6. Log on the VM Guest system.
7. Install the client package vim-dump-metrics.

8. Run the command vm-dump-metrics. To save the result to a file, use the option -d
<filename>.

The result of the vm-dump-metrics is an XML output. The respective metric entries follow the
DTD /etc/vhostmd/metric.dtd.

For more information, see the manual pages man 8 vhostmd and /usr/share/doc/
vhostmd/README on the VM Host Server system. On the guest, see the man page man 1 vm-
dump-metrics.

249

CHAPTER 31. XENSTORE: CONFIGURATION DATABASE SHARED BETWEEN DOMAINS

Chapter 31. XenStore: configuration database shared between
domains

This section introduces basic information about XenStore, its role in the Xen environment, the
directory structure of files used by XenStore, and the description of XenStore's commands.

31.1. Introduction

XenStore is a database of configuration and status information shared between VM Guests and
the management tools running in Dom0. VM Guests and the management tools read and write to
XenStore to convey configuration information, status updates, and state changes. The XenStore
database is managed by DomO and supports simple operations, such as reading and writing a key.
VM Guests and management tools can be notified of any changes in XenStore by watching entries
of interest. The xenstored daemon is managed by the xencommons service.

XenStore is located on DomO in a single database file /var/lib/xenstored/tdb (tdb
represents tree database).

31.2. File system interface

XenStore database content is represented by a virtual file system similar to /proc (for more
information on /proc, see the section called “The /proc file system” in “System Analysis and
Tuning Guide”). The tree has three main paths: /vm, /local/domain, and /tool.

« /vm - stores information about the VM Guest configuration.
« /local/domain - stores information about VM Guest on the local node.
« /tool - stores general information about multiple tools.

Tip

@ Each VM Guest has two different ID numbers. The universal unique identifier (UUID)
remains the same even if the VM Guest is migrated to another machine. The domain
identifier (DOMID) is an identification number that represents a particular running
instance. It typically changes when the VM Guest is migrated to another machine.

31.2.1. XenStore commands
The file system structure of the XenStore database can be operated with the following commands:
xenstore-1s

Displays the full dump of the XenStore database.

250

https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf

xenstore-read path_to_xenstore_entry

Displays the value of the specified XenStore entry.
xenstore-exists xenstore_path

Reports whether the specified XenStore path exists.
xenstore-list xenstore_path

Displays all the children entries of the specified XenStore path.
xenstore-write path_to_xenstore_entry

Updates the value of the specified XenStore entry.
xenstore-rm xenstore_path

Removes the specified XenStore entry or directory.
xenstore-chmod xenstore_path mode

Updates the read/write permission on the specified XenStore path.
xenstore-control

Sends a command to the xenstored back-end, such as triggering an integrity check.

31.2.2. /vm

The /vm path is indexed by the UUID of each VM Guest, and stores configuration information such
as the number of virtual CPUs and the amount of allocated memory. There is a /vm/<uuid>
directory for each VM Guest. To list the directory content, use xenstore-1list.

>sudo xenstore-list /vm

00000000-0000-0000-0000-000000000000

9b30841b-43bc-2af9-2ed3-5a649f466d79-1

The first line of the output belongs to DomO, and the second one to a running VM Guest. The
following command lists all the entries related to the VM Guest:

251

CHAPTER 31. XENSTORE: CONFIGURATION DATABASE SHARED BETWEEN DOMAINS

>sudo xenstore-list /vm/9b30841b-43bc-2af9-2ed3-5a649f466d79-1
image

rtc

device

pool name
shadow _memory
uuid

on reboot

start time

on poweroff
bootloader args
on crash

vCpus

vcpu avail
bootloader

name

To read a value of an entry, for example, the number of virtual CPUs dedicated to the VM Guest,
use xenstore-read:

>sudo xenstore-read /vm/9b30841b-43bc-2af9-2ed3-5a649f466d79-1/vcpus
1

Alist of selected /vm/<uuid> entries follows:
uuid

UUID of the VM Guest. It does not change during the migration process.
on_reboot

Specifies whether to destroy or restart the VM Guest in response to a reboot request.
on_poweroff

Specifies whether to destroy or restart the VM Guest in response to a halt request.
on_crash

Specifies whether to destroy or restart the VM Guest in response to a crash.
vcpus

Number of virtual CPUs allocated to the VM Guest.
vcpu_avail

Bitmask of active virtual CPUs for the VM Guest. The bitmask has several bits equal to the
value of vcpus, with a bit set for each online virtual CPU.

name

The name of the VM Guest.

252

Regular VM Guests (not Dom0) use the /vm/<uuid>/image path:

>sudo xenstore-list /vm/9b30841b-43bc-2af9-2ed3-5a649f466d79-1/image
ostype

kernel

cmdline

ramdisk

dmargs

device-model

display

An explanation of the used entries follows:
ostype
The OS type of the VM Guest.
kernel
The path on DomO to the kernel for the VM Guest.
cmdline
The kernel command line for the VM Guest used when booting.
ramdisk
The path on DomO to the RAM disk for the VM Guest.
dmargs

Shows arguments passed to the QEMU process. If you look at the QEMU process with ps,
you should see the same arguments as in /vim/<uuid>/image/dmargs.

31.2.3. /local/domain/<domid>

This path is indexed by the running domain (VM Guest) ID, and contains information about the
running VM Guest. Remember that the domain ID changes during VM Guest migration. The
following entries are available:

vm
The path of the /vm directory for this VM Guest.
on_reboot, on_poweroff, on_crash, name
See identical options in the section called “ /vm ”
domid

Domain identifier for the VM Guest.

253

CHAPTER 31. XENSTORE: CONFIGURATION DATABASE SHARED BETWEEN DOMAINS

cpu
The current CPU to which the VM Guest is pinned.
cpu_weight

The weight assigned to the VM Guest for scheduling purposes. Higher weights use the
physical CPUs more often.

Apart from the individual entries described above, there are also several subdirectories under /
local/domain/<domid>, containing specific entries. To see all entries available, refer to
XenStore Reference.

/local/domain/<domid>/memory

Contains memory information. /local/domain/<domid>/memory/target contains
target memory size for the VM Guest (in kilobytes).

/local/domain/<domid>/console
Contains information about a console used by the VM Guest.
/local/domain/<domid>/backend

Contains information about all back-end devices used by the VM Guest. The path has
subdirectories of its own.

/local/domain/<domid>/device

Contains information about the front-end devices for the VM Guest.
/local/domain/<domid>/device-misc

Contains miscellaneous information about devices.
/local/domain/<domid>/store

Contains information about the VM Guest's store.

254

https://wiki.xen.org/wiki/XenStore_Reference

Chapter 32. Xen as a high-availability virtualization host

Setting up two Xen hosts as a failover system has several advantages compared to a setup where
every server runs on dedicated hardware.

« Failure of a single server does not cause major interruption of the service.
* A single big machine is normally way cheaper than multiple smaller machines.
» Adding new servers as needed is a trivial task.

» The usage of the server is improved, which has positive effects on the power consumption of
the system.

The setup of migration for Xen hosts is described in the section called “Migrating Xen VM Guest
systems”. In the following, several typical scenarios are described.

32.1. Xen HA with remote storage

Xen can directly provide several remote block devices to the respective Xen guest systems. These
include iISCSI, NPIV and NBD. They may be used to do live migrations. When a storage system is
already in place, first try to use the same device type you already used in the network.

If the storage system cannot be used directly but provides a possibility to offer the needed space
over NFS, it is also possible to create image files on NFS. If NFS is available on all Xen host
systems, this method also allows live migrations of Xen guests.

When setting up a new system, one of the main considerations is whether a dedicated storage
area network should be implemented. The following possibilities are available:

Table 32.1. Xen remote storage

Method Complexity | Comments

All block device traffic goes over the same Ethernet interface as

Ethernet low the network traffic. This may be limiting the performance of the
guest.
Running the storage traffic over a dedicated Ethernet interface
Ethernet

i) may eliminate a bottleneck on the server side. However,
dedicated to medium))
planning your own network with your own IP address range and

storage. , . . , .
a VLAN dedicated to storage requires certain considerations.
NPIV is a method to virtualize Fibre channel connections. This is
NPIV high available with adapters that support a data rate of at least 4 Gbit/

s and allows the setup of complex storage systems.

255

CHAPTER 32. XEN AS A HIGH-AVAILABILITY VIRTUALIZATION HOST

Typically, a 1 Gbit/s Ethernet device can fully use a typical hard disk or storage system. When
using fast storage systems, such an Ethernet device may limit the speed of the system.

32.2. Xen HA with local storage

For space or budget reasons, it may be necessary to rely on storage that is local to the Xen host
systems. To still maintain the possibility of live migrations, it is necessary to build block devices that
are mirrored to both Xen hosts. The software that allows this is called Distributed Replicated Block
Device (DRBD).

If a system that uses DRBD to mirror the block devices or files between two Xen hosts should be
set up, both hosts should use the identical hardware. If one of the hosts has slower hard disks,
both hosts suffer from this limitation.

During the setup, each of the required block devices should use its own DRBD device. The setup
of such a system is a complex task.

32.3. Xen HA and private bridges

When using several guest systems that need to communicate between each other, it is possible to
do this over the regular interface. However, for security reasons it may be advisable to create a
bridge that is only connected to guest systems.

In an HA environment that also should support live migrations, such a private bridge must be
connected to the other Xen hosts. This is possible by using dedicated physical Ethernet devices
and a dedicated network.

A different implementation method is using VLAN interfaces. In that case, all the traffic goes over
the regular Ethernet interface. However, the VLAN interface does not get the regular traffic,
because only the VLAN packets that are tagged for the correct VLAN are forwarded.

For more information about the setup of a VLAN interface see the section called “Using VLAN
interfaces”.

256

Chapter 33. Xen: converting a paravirtual (PV) guest into a fully
virtual (FV/HVM) guest

This chapter explains how to convert a Xen paravirtual machine into a Xen fully virtualized

machine.

Procedure 33.1. Guest side

To start the guest in FV mode, you need to run the following steps inside the guest.

257

1. Before converting the guest, apply all pending patches and reboot the guest.

2. FV machines use the -default kernel. If this kernel is not already installed, install the

kernel-default package (while running in PV mode).

3. PV machines typically use disk names such as vda*. These names must be changed to the

FV hd* syntax. This change must be done in the following files:
- /etc/fstab
o /boot/grub/menu.lst (SLES 11 only)
> /boot/grub*/device.map
o /etc/sysconfig/bootloader
o /etc/default/grub (SLES 12, 15, openSUSE)

Prefer UUIDs

@ You should use UUIDs or logical volumes within your /etc/fstab. Using
UUIDs simplifies the use of attached network storage, multipathing and
virtualization. To find the UUID of your disk, use the command blkid.

4. To avoid any error regenerating the initrd with the required modules, you can create a

symbolic link from /dev/hda2 to /dev/xvda2 etc. by using the 1n:

ln -sf /dev/xvda2 /dev/hda2
In -sf /dev/xvdal /dev/hdal

. PV and FV machines use different disk and network driver modules. These FV modules

must be added to the initrd manually. The expected modules are xen-vbd (for disk) and
xen-vnif (for network). These are the only PV drivers for a fully virtualized VM Guest. All
other modules, such as ata piix, ata generic and libata, should be added
automatically.

CHAPTER 33. XEN: CONVERTING A PARAVIRTUAL (PV) GUEST INTO A FULLY VIRTUAL (FV/HVM) GUEST

Adding modules to the initrd

@ > On SLES 11, you can add modules to the INITRD MODULES line in the
/etc/sysconfig/kernel file. For example:

INITRD MODULES="xen-vbd xen-vnif"

Run dracut to build a new initrd containing the modules.

-On SLES 12, 15 and openSUSE, open or create /etc/
dracut.conf.d/10-virt.conf and add the modules with
force drivers by adding a line as in the example below (mind the
leading whitespace):

force drivers+=" xen-vbd xen-vnif"
Run dracut -f --kver KERNEL_VERSION-default to build a new

initrd (for the default version of the kernel) that contains the required
modules.

Find your kernel versionUse the uname -r command to get the
current version used on your system.

6. Before shutting down the guest, set the default boot parameter to the -default kernel
using yast bootloader.

7. Under SUSE Linux Enterprise Server 11, if you have an X server running on your guest, you
need to adjust the /etc/X11/xorg.conf file to adjust the X driver. Search for fbdev and
change to cirrus.

Section "Device"
Driver "cirrus"

EndSection

SUSE Linux Enterprise Server 12/15 and Xorg

@ Under SUSE Linux Enterprise Server 12/15, Xorg automatically adjusts the
driver needed to be able to get a working X server.

8. Shut down the guest.

258

Procedure 33.2. Host side

The following steps explain the action that you need to perform on the host.

259

1. To start the guest in FV mode, the configuration of the VM must be modified to match an FV

configuration. Editing the configuration of the VM can easily be done using virsh edit

[DOMAIN]. The following changes are recommended:

o

o

o

o

o

o

o

o

Make sure the machine, the type, and the loader entries in the OS section are
changed from xenpv to xenfv. The updated OS section should look similar to:

<0S>
<type arch='x86 64' machine='xenfv'>hvm</type>
<loader>/usr/1lib/xen/boot/hvmloader</loader>
<boot dev='hd'/>

</0S>

In the OS section, remove anything that is specific to PV guests:

» <bootloader>pygrub</bootloader>
. <kernel>/usr/lib/grub2/x86 64-xen/grub.xen</kernel>

. <cmdline>xen-fbfront.video=4,1024,768</cmdline>
In the devices section, add the gemu emulator as:
<emulator>/usr/lib/xen/bin/gemu-system-i386</emulator>

Update the disk configuration so the target device and bus use the FV syntax. This
requires replacing the xen disk bus with ide, and the vda target device with hda. The
changes should look similar to:

<target dev='hda' bus='ide'/>

Change the bus for the mouse and keyboard from xen to ps2. Also add a new USB
tablet device:
<input type='mouse' bus='ps2'/>
<input type='keyboard' bus='ps2'/>
<input type='tablet' bus='usb'/>
Change the console target type from xen to serial:
<console type='pty'>
<target type='serial' port='0'/>
</console>
Change the video configuration from xen to cirrus, with 8 MB of VRAM:
<video>
<model type='cirrus' vram='8192' heads='l' primary='yes'/>
</video>

If desired, add acpi and apic to the features of the VM:

CHAPTER 33. XEN: CONVERTING A PARAVIRTUAL (PV) GUEST INTO A FULLY VIRTUAL (FV/HVM) GUEST

<features>
<acpi/>
<apic/>
</features>
2. Start the guest (using virsh or virt-manager). If the guest is running kernel-default (as

verified through uname -a), the machine is running in Fully Virtual mode.

guestfs-tools

@ To script this process, or work on disk images directly, you can use the guestfs-tools
suite (see the section called “Guestfs tools” for more information). Several tools exist
to help modify disk images.

260

Part V. Managing virtual machines with QEMU

34 QEMU overview 262
35 Setting up a KVM VM Host Server 263
36 Guest installation 272

37 Running virtual machines with gemu-system-ARCH
286

38 Virtual machine administration using QEMU monitor
312

261

CHAPTER 34. QEMU OVERVIEW

Chapter 34. QEMU overview

QEMU is a fast, cross-platform open source machine emulator which can emulate many hardware
architectures. QEMU lets you run a complete unmodified operating system (VM Guest) on top of
your existing system (VM Host Server). You can also use QEMU for debugging purposes—you can
easily stop your running virtual machine, inspect its state, and save and restore it later.

QEMU mainly consists of the following parts:

* Processor emulator.

* Emulated devices, such as graphic card, network card, hard disks, or mouse.

» Generic devices used to connect the emulated devices to the related host devices.
» Debugger.

» User interface used to interact with the emulator.

QEMU is central to KVM and Xen Virtualization, where it provides the general machine emulation.
Xen's usage of QEMU is partially hidden from the user, while KVM's usage exposes most QEMU
features transparently. If the VM Guest hardware architecture is the same as the VM Host Server's
architecture, QEMU can use the KVM acceleration (SUSE only supports QEMU with the KVM
acceleration loaded).

Apart from providing a core virtualization infrastructure and processor-specific drivers, QEMU also
provides an architecture-specific user space program for managing VM Guests. Depending on the
architecture this program is one of:

» gemu-system-i386
e gemu-system-s390x
* gemu-system-x86_64

e gemu-system-aarch64

In the following this command is called gemu-system-ARCH; in examples the qemu-system-
x86_64 command is used.

262

Chapter 35. Setting up a KVM VM Host Server

This section documents how to set up and use SUSE Linux Enterprise Serverl5 SP7 as a QEMU-
KVM based virtual machine host.

Resources

@ The virtual guest system needs the same hardware resources as if it were installed
on a physical machine. The more guests you plan to run on the host system, the
more hardware resources—CPU, disk, memory and network—you need to add to the
VM Host Server.

35.1. CPU support for virtualization

To run KVM, your CPU must support virtualization, and virtualization needs to be enabled in BIOS.
The file /proc/cpuinfo includes information about your CPU features.

To find out whether your system supports virtualization, see the section called “KVM hardware
requirements”.

35.2. Required software

The KVM host requires several packages to be installed. To install all necessary packages, do the
following:

1. Verify that the yast2-vm package is installed. This package is YaST's configuration tool that
simplifies the installation of virtualization hypervisors.

2. Run YaST > Virtualization > Install Hypervisor and Tools.

263

CHAPTER 35. SETTING UP A KVM VM HOST SERVER

Figure 35.1. Installing the KVM hypervisor and tools

Choose Hypervisor(s) to install

Server: Minimal system to get a running Hypervisor
Tools: Configure, manage and monitor virtual machines

A disabled checkbox means the Hypervisor item has already been installed

Xen Hypervisor

v| Xen server Xen tools

KVM Hypervisor
KVM tools

Cancel Accept

3. Select KVM server and preferably also KVM tools, and confirm with Accept.

4. During the installation process, you can optionally let YaST create a Network Bridge for you
automatically. If you do not plan to dedicate an additional physical network card to your
virtual guests, network bridge is a standard way to connect the guest machines to the
network.

Figure 35.2. Network bridge

Network Bridge.

For normal network configurations hosting virtual
machines, a network bridge is recommended.

Configure a default network bridge?

No Yes

5. After all the required packages are installed (and new network setup activated), try to load
the KVM kernel module relevant for your CPU type—kvm_intel or kvm amd:

#modprobe kvm intel
Check if the module is loaded into memory:

>lsmod | grep kvm
kvm intel 64835 6
kvm 411041 1 kvm_intel

264

Now the KVM host is ready to serve KVM VM Guests. For more information, see Chapter 37,
Running virtual machines with gemu-system-ARCH.

35.3. KVM host-specific features

You can improve the performance of KVM-based VM Guests by letting them fully use specific

features of the VM Host Server's hardware (paravirtualization). This section introduces techniques

to make the guests access the physical host's hardware directly—without the emulation layer—to

make the most use of it.

Tip

@ Examples included in this section assume basic knowledge of the gemu-system-

ARCH command line options. For more information, see Chapter 37, Running virtual
machines with gemu-system-ARCH.

35.3.1. Using the host storage with virtio-scsi

virtio-scsi is an advanced storage stack for KVM. It replaces the former virtio-blk stack

for SCSI devices pass-through. It has several advantages over virtio-blk:

Improved scalability

KVM guests have a limited number of PCI controllers, which results in a limited number of
attached devices. virtio-scsi solves this limitation by grouping multiple storage devices
on a single controller. Each device on a virtio-scsi controller is represented as a logical
unit, or LUN.

Standard command set

virtio-blk uses a small set of commands that need to be known to both the virtio-
blk driver and the virtual machine monitor, and so introducing a new command requires
updating both the driver and the monitor.

By comparison, virtio-scsi does not define commands, but rather a transport protocol
for these commands following the industry-standard SCSI specification. This approach is
shared with other technologies, such as Fibre Channel, ATAPI and USB devices.

Device naming

265

virtio-blk devices are presented inside the guest as /dev/vdX, which is different from
device names in physical systems and may cause migration problems.

virtio-scsi keeps the device names identical to those on physical systems, making the
virtual machines easily relocatable.

CHAPTER 35. SETTING UP A KVM VM HOST SERVER

SCSI device pass-through

For virtual disks backed by a whole LUN on the host, it is preferable for the guest to send
SCSI commands directly to the LUN (pass-through). This is limited in virtio-blk, as
guests need to use the virtio-blk protocol instead of SCSI command pass-through, and,
moreover, it is not available for Windows guests. virtio-scsi natively removes these
limitations.

35.3.1.1. virtio-scsi usage

KVM supports the SCSI pass-through feature with the virtio-scsi-pci device:

#gemu-system-x86 64 [...] \
-device virtio-scsi-pci,id=scsi

35.3.2. Accelerated networking with vhost-net

The vhost-net module is used to accelerate KVM's paravirtualized network drivers. It provides
better latency and greater network throughput. Use the vhost-net driver by starting the guest
with the following example command line:

#gemu-system-x86 64 [...] \
-netdev tap,id=guest0,vhost=on,script=no \
-net nic,model=virtio,netdev=quest0,macaddr=00:16:35:AF:94:4B

guestO is an identification string of the vhost-driven device.

35.3.3. Scaling network performance with multiqueue virtio-net

As the number of virtual CPUs increases in VM Guests, QEMU offers a way of improving the
network performance using multiqueue. Multiqueue virtio-net scales the network performance by
allowing VM Guest virtual CPUs to transfer packets in parallel. Multiqueue support is required on
both the VM Host Server and VM Guest sides.

Performance benefit
The multiqueue virtio-net solution is most beneficial in the following cases:

* Network traffic packets are large.

* VM Guest has many connections active at the same time, mainly between the
guest systems, or between the guest and the host, or between the guest and
an external system.

* The number of active queues is equal to the number of virtual CPUs in the VM
Guest.

266

Note

@ While multiqueue virtio-net increases the total network throughput, it increases CPU
consumption as it uses of the virtual CPU's power.

Procedure 35.1. How to enable multiqueue virtio-net

The following procedure lists important steps to enable the multiqueue feature with qemu-
system-ARCH. It assumes that a tap network device with multiqueue capability (supported since
kernel version 3.8) is set up on the VM Host Server.

1. In gemu-system-ARCH, enable multiqueue for the tap device:
-netdev tap,vhost=on, queues=2*N

where N stands for the number of queue pairs.

2. In gemu-system-ARCH, enable multiqueue and specify MSI-X (Message Signaled Interrupt)
vectors for the virtio-net-pci device:

-device virtio-net-pci,mg=on,vectors=2*N+2

where the formula for the number of MSI-X vectors results from: N vectors for TX (transmit)
queues, N for RX (receive) queues, one for configuration purposes, and one for possible VQ
(vector quantization) control.

3. In VM Guest, enable multiqueue on the relevant network interface (eth0 in this example):
>sudo ethtool -L ethO® combined 2*N
The resulting qemu-system-ARCH command line looks similar to the following example:

gemu-system-x86 64 [...] -netdev tap,id=guest0,queues=8,vhost=on \
-device virtio-net-pci,netdev=guest0,mg=on,vectors=10

The id of the network device (guest0) needs to be identical for both options.
Inside the running VM Guest, specify the following command with root privileges:
>sudo ethtool -L eth® combined 8

Now the guest system networking uses the multiqueue support from the gemu-system-ARCH
hypervisor.

35.3.4. VFIO: secure direct access to devices

Directly assigning a PCI device to a VM Guest (PCI pass-through) avoids performance issues
caused by avoiding any emulation in performance-critical paths. VFIO replaces the traditional KVM
PCI Pass-Through device assignment. A prerequisite for this feature is a VM Host Server
configuration as described in Requirements for VFIO and SR-IOV.

267

CHAPTER 35. SETTING UP A KVM VM HOST SERVER

To be able to assign a PCI device via VFIO to a VM Guest, you need to find out which IOMMU
Group it belongs to. The IOMMU (input/output memory management unit that connects a direct
memory access-capable 1/0 bus to the main memory) API supports the notion of groups. A group is
a set of devices that can be isolated from all other devices in the system. Groups are therefore the
unit of ownership used by VFIO.

Procedure 35.2. Assigning a PCI device to a VM Guest via VFIO

1. Identify the host PCI device to assign to the guest.

>sudo lspci -nn

Lo

00:10.0 Ethernet controller [0200]: Intel Corporation 82576 \
Virtual Function [8086:10ca] (rev 01)

[...]

Note down the device ID, 00:10.0 in this example, and the vendor ID (8086:10ca).
2. Find the IOMMU group of this device:

>sudo readlink /sys/bus/pci/devices/0000\:00\:10.0/iommu_group
../../../kernel/iommu_groups/20

The IOMMU group for this device is 20. Now you can check the devices belonging to the

same IOMMU group:

>sudo 1s -1 /sys/bus/pci/devices/0000\:01\:10.0/iommu_group/devices/
[...] 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0
[...] 0000:01:10.0 -> ../../../../devices/pci0000:00/0000:00:1e.
0/0000:01:10.0

[...] 0000:01:10.1 -> ../../../../devices/pci0000:00/0000:00:1e.
0/0000:01:10.1

3. Unbind the device from the device driver:

>sudo echo "0000:01:10.0" > /sys/bus/pci/devices/0000\:01\:10.0/driver/
unbind

4. Bind the device to the vfio-pci driver using the vendor ID from step 1:
>sudo echo "8086 153a" > /sys/bus/pci/drivers/vfio-pci/new id

A new device /dev/vfio/IOMMU GROUP is created as a result, /dev/vfio/20 in this
case.

5. Change the ownership of the newly created device:
>sudo chown gemu.qgemu /dev/vfio/DEVICE
6. Now run the VM Guest with the PCI device assigned.

>sudo gemu-system-ARCH [...] -device
vfio-pci,host=00:10.0,id=ID

268

No hotplugging

0 As of SUSE Linux Enterprise Serverl5 SP7, hotplugging of PCI devices passed to a
VM Guest via VFIO is not supported.

You can find more detailed information on the VFIO driver in the /usr/src/linux/
Documentation/vfio. txt file (package kernel-source needs to be installed).

35.3.5. VirtFS: sharing directories between host and guests

VM Guests normally run in a separate computing space—they are provided their own memory
range, dedicated CPUs, and file system space. The ability to share parts of the VM Host Server's
file system makes the virtualization environment more flexible by simplifying mutual data
exchange. Network file systems, such as CIFS and NFS, have been the traditional way of sharing
directories. But as they are not specifically designed for virtualization purposes, they suffer from
major performance and feature issues.

KVM introduces a new optimized method called VirtFS (sometimes called “file system pass-
through”). VirtFS uses a paravirtual file system driver, which avoids converting the guest
application file system operations into block device operations, and then again into host file system
operations.

You typically use VirtFS for the following situations:

* To access a shared directory from several guests, or to provide guest-to-guest file system
access.

« To replace the virtual disk as the root file system to which the guest's RAM disk connects
during the guest boot process.

 To provide storage services to different customers from a single host file system in a cloud
environment.

35.3.5.1. Implementation
In QEMU, the implementation of VirtFS is simplified by defining two types of devices:

evirtio-9p-pci device which transports protocol messages and data between the host
and the guest.

» fsdev device which defines the export file system properties, such as file system type and
security model.

269

CHAPTER 35. SETTING UP A KVM VM HOST SERVER

Example 35.1. Exporting host's file system with VirtFS

>sudo gemu-system-x86 64 [...] \
-fsdev local,id=expl@,path=/tmp/@,security model=mapped® \
-device virtio-9p-pci, fsdev=expl@,mount tag=v tmp@®

O [dentification of the file system to be exported.
8 File system path on the host to be exported.

© Security model to be used—mapped keeps the guest file system modes and permissions
isolated from the host, while none invokes a “pass-through” security model in which permission
changes on the guest's files are reflected on the host as well.

O The exported file system ID defined before with - fsdev id=.
© Mount tag used later on the guest to mount the exported file system.

Such an exported file system can be mounted on the guest as follows:
>sudo mount -t 9p -o trans=virtio v tmp /mnt

where v_tmp is the mount tag defined earlier with -device mount tag=and /mnt is the mount
point where you want to mount the exported file system.

35.3.6. KSM: sharing memory pages between guests

Kernel Same Page Merging (KSM) is a Linux kernel feature that merges identical memory pages
from multiple running processes into one memory region. Because KVM guests run as processes
under Linux, KSM provides the memory overcommit feature to hypervisors for more efficient use of
memory. Therefore, if you need to run multiple virtual machines on a host with limited memory,
KSM may be helpful to you.

KSM stores its status information in the files under the /sys/kernel/mm/ksm directory:

>ls -1 /sys/kernel/mm/ksm
full scans

merge across nodes

pages shared

pages sharing
pages to scan

pages unshared

pages volatile

run

sleep millisecs

For more information on the meaning of the /sys/kernel/mm/ksm/* files, see /usr/src/
linux/Documentation/vm/ksm. txt (package kernel-source).

270

To use KSM, do the following.

1. Although SLES includes KSM support in the kernel, it is disabled by default. To enable it, run
the following command:

#echo 1 > /sys/kernel/mm/ksm/run

2. Now run several VM Guests under KVM and inspect the content of files pages sharing
and pages_shared, for example:

>while [1]; do cat /sys/kernel/mm/ksm/pages shared; sleep 1; done
13522
13523
13519
13518
13520
13520
13528

271

CHAPTER 36. GUEST INSTALLATION

Chapter 36. Guest installation

The libvirt-based tools such as virt-manager and virt-install offer convenient
interfaces to set up and manage virtual machines. They act as a kind of wrapper for the qemu-
system-ARCHcommand. However, it is also possible to use gemu-system-ARCH directly without
using libvirt-based tools.

gemu-system-ARCH and libvirt

Virtual Machines created with qemu-system-ARCH are not visible for the 1ibvirt-
based tools.

36.1. Basic installation with qemu-system-ARCH

In the following example, a virtual machine for a SUSE Linux Enterprise Server 11 installation is
created. For detailed information on the commands, refer to the respective man pages.

If you do not already have an image of a system that you want to run in a virtualized environment,
you need to create one from the installation media. In such case, you need to prepare a hard disk
image, and obtain an image of the installation media or the media itself.

Create a hard disk with qemu-img.
>gemu-img create@ -f raw® /images/sles/hda® 8GO

O The subcommand create tells gemu-1img to create a new image.
® Specify the disk's format with the - f parameter.
© The full path to the image file.

O The size of the image, 8 GB in this case. The image is created as a Sparse image file that
grows when the disk is filled with data. The specified size defines the maximum size to which
the image file can grow.

After at least one hard disk image is created, you can set up a virtual machine with qemu-
system-ARCH that boots into the installation system:

#gemu-system-x86 64 -name "sles"@-machine accel=kvm -M pc® -m 7680 \

-smp 2@ -boot dO® \

-drive file=/images/sles/hda,if=virtio,index=0,media=disk, format=raw® \
-drive file=/isos/SLE-15-SP7-0Online-ARCH-GM-medial.iso,index=1,media=cdrom@ \
-net nic,model=virtio,macaddr=52:54:00:05:11:11@ -net user \

-vga cirrus® -balloon virtio®

© Name of the virtual machine that is displayed in the window caption and be used for the VNC
server. This name must be unique.

272

0 Specifies the machine type. Use gemu-system-ARCH-M 7 to display a list of valid parameters.
pc is the default Standard PC.

© Maximum amount of memory for the virtual machine.
O Defines an SMP system with two processors.

© Specifies the boot order. Valid values are a, b (floppy 1 and 2), c (first hard disk), d (first CD-
ROM), or n to p (Ether-boot from network adapter 1-3). Defaults to c.

O Defines the first (index=0) hard disk. It is accessed as a paravirtualized (if=virtio) drive in
raw format.

O The second (index=1) image drive acts as a CD-ROM.

O Defines a paravirtualized (model=virtio) network adapter with the MAC address
52:54:00:05:11:11. Be sure to specify a unigue MAC address, otherwise a network conflict
may occur.

© Specifies the graphic card. If you specify none, the graphic card is disabled.

@ Defines the paravirtualized balloon device that allows to dynamically change the amount of
memory (up to the maximum value specified with the parameter -m).

After the installation of the guest operating system finishes, you can start the related virtual
machine without the need to specify the CD-ROM device:

#qgemu-system-x86 64 -name "sles" -machine type=pc,accel=kvm -m 768 \

-smp 2 -boot c \

-drive file=/images/sles/hda,if=virtio,index=0,media=disk, format=raw \

-net nic,model=virtio,macaddr=52:54:00:05:11:11 \
-vga cirrus -balloon virtio

36.2. Managing disk images with qemu-img

In the previous section (see the section called “Basic installation with gemu-system-ARCH "), we
used the qemu-img command to create an image of a hard disk. You can, however, use qemu-
img for general disk image manipulation. This section introduces gemu-img subcommands to help
manage the disk images flexibly.

36.2.1. General information on gemu-img invocation

gemu-img uses subcommands (like zypper does) to do specific tasks. Each subcommand
understands a different set of options. Certain options are general and used by more of these
subcommands, while others are unique to the related subcommand. See the gemu-img man page
(man 1 qemu-img) for a list of all supported options. qemu-img uses the following general
syntax:

>gemu-img subcommand [options]

273

CHAPTER 36. GUEST INSTALLATION

and supports the following subcommands:
create
Creates a new disk image on the file system.
check
Checks an existing disk image for errors.
compare
Check if two images have the same content.
map
Dumps the metadata of the image file name and its backing file chain.
amend
Amends the image format specific options for the image file name.
convert
Converts an existing disk image to a new one in a different format.
info
Displays information about the relevant disk image.
snapshot
Manages snapshots of existing disk images.
commit
Applies changes made to an existing disk image.
rebase
Creates a new base image based on an existing image.
resize

Increases or decreases the size of an existing image.

274

36.2.2. Creating, converting, and checking disk images

This section describes how to create disk images, check their condition, convert a disk image from
one format to another, and get detailed information about a particular disk image.

36.2.2.1. gemu-img create

Use gemu-img create to create a new disk image for your VM Guest operating system. The
command uses the following syntax:

>gemu-img create -f fmt@ -o options® fname® size@®

© The format of the target image. Supported formats are raw and qcow2.

@® Certain image formats support additional options to be passed on the command line. You can
specify them here with the -0 option. The raw image format supports only the size option, so it
is possible to insert -0 size=8G instead of adding the size option at the end of the command.

© Path to the target disk image to be created.

O Size of the target disk image (if not already specified with the -0 size=<image size> option.
Optional suffixes for the image size are K (kilobyte), M (megabyte), G (gigabyte), or T (terabyte).

To create a new disk image sles. raw in the directory /images growing up to a maximum size of
4 GB, run the following command:

>gemu-img create -f raw -o size=4G /images/sles.raw
Formatting '/images/sles.raw', fmt=raw size=4294967296

>ls -1 /images/sles.raw
-rw-r--r-- 1 tux users 4294967296 Nov 15 15:56 /images/sles.raw

>gemu-img info /images/sles.raw
image: /images/slesll.raw

file format: raw

virtual size: 4.0G (4294967296 bytes)
disk size: 0

As you can see, the virtual size of the newly created image is 4 GB, but the actual reported disk
size is 0 as no data has been written to the image yet.

275

CHAPTER 36. GUEST INSTALLATION

VM Guest images on the Btrfs file system

@ If you need to create a disk image on the Birfs file system, you can use nocow=on to
reduce the performance overhead created by the copy-on-write feature of Btrfs:

>gemu-img create -0 nocow=on test.img 8G

If you, however, want to use copy-on-write, for example, for creating snapshots or
sharing them across virtual machines, then leave the command line without the
nocow option.

36.2.2.2. gemu-img convert

Use gemu-img convert to convert disk images to another format. To get a complete list of
image formats supported by QEMU, run gemu-img-h and look at the last line of the output. The
command uses the following syntax:

>gemu-img convert -c@ -f fmt@® -0 out fmt® -o options@® fname® out fname®

O Applies compression on the target disk image. Only gcow and gcow2 formats support
compression.

8 The format of the source disk image. It is normally autodetected and can therefore be omitted.
© The format of the target disk image.

O Specify additional options relevant for the target image format. Use -0 ? to view the list of
options supported by the target image format.

© Path to the source disk image to be converted.

O Path to the converted target disk image.

>gemu-img convert -0 vmdk /images/sles.raw \
/images/sles.vmdk

>ls -1 /images/

-rw-r--r-- 1 tux users 4294967296 16. lis 10.50 sles.raw
-rw-r--r-- 1 tux users 2574450688 16. lis 14.18 sles.vmdk

To see a list of options relevant for the selected target image format, run the following command
(replace vmdk with your image format):

276

>gemu-img convert -0 vmdk /images/sles.raw \
/images/sles.vmdk -0 ?
Supported options:

size Virtual disk size

backing file File name of a base image

compat6 VMDK version 6 image

subformat VMDK flat extent format, can be one of {monolithicSparse \

(default) | monolithicFlat | twoGbMaxExtentSparse | twoGbMaxExtentFlat}
scsi SCSI image

36.2.2.3. gemu-img check

Use qemu-img check to check the existing disk image for errors. Not all disk image formats
support this feature. The command uses the following syntax:

>gemu-img check -f fmt@ fname®

O The format of the source disk image. It is normally autodetected and can therefore be omitted.
8 Path to the source disk image to be checked.

If no error is found, the command returns no output. Otherwise, the type and number of errors
found is shown.

>gemu-img check -f qcow2 /images/sles.qcow?2
ERROR: invalid cluster offset=0x2af0000
[...]

ERROR: invalid cluster offset=0x34ab0000
378 errors were found on the image.

36.2.2.4. Increasing the size of an existing disk image

When creating a new image, you must specify its maximum size before the image is created (see
the section called “gemu-img create”). After you have installed the VM Guest and have been using
it for certain time, the initial size of the image may no longer be sufficient. In that case, add more
space to it.

To increase the size of an existing disk image by 2 gigabytes, use:
>gemu-img resize /images/sles.raw +2GB
Note
@ You can resize the disk image using the formats raw and qcow?2. To resize an image

in another format, convert it to a supported format with gemu-img convert first.

The image now contains an empty space of 2 GB after the final partition. You can resize the
existing partitions or add new ones.

277

CHAPTER 36. GUEST INSTALLATION

36.2.2.5. Advanced options for the qcow?2 file format

gcow?2 is the main disk image format used by QEMU. Its size grows on demand, and the disk
space is only allocated when it is needed by the virtual machine.

A gcow2 formatted file is organized in units of constant size. These units are called clusters.
Viewed from the guest side, the virtual disk is also divided into clusters of the same size. QEMU
defaults to 64 kB clusters, but you can specify a different value when creating a new image:

>gemu-img create -f gcow2 -0 cluster size=128K virt disk.qgcow2 4G

A qcow2 image contains a set of tables organized in two levels that are called the L1 and L2
tables. There is just one L1 table per disk image, while there can be many L2 tables depending on
how big the image is.

To read or write data to the virtual disk, QEMU needs to read its corresponding L2 table to find out
the relevant data location. Because reading the table for each I/O operation consumes system
resources, QEMU keeps a cache of L2 tables in memory to speed up disk access.

36.2.2.5.1. Choosing the right cache size

The cache size relates to the amount of allocated space. L2 cache can map the following amount
of virtual disk:

disk size = 12 cache size * cluster size / 8
With the default 64 kB of cluster size, that is
disk size = 12 cache size * 8192

Therefore, to have a cache that maps n gigabytes of disk space with the default cluster size, you
need

12 cache size = disk size GB * 131072

QEMU uses 1 MB (1048576 bytes) of L2 cache by default. Following the above formulas, 1 MB of
L2 cache covers 8 GB (1048576 / 131072) of virtual disk. This means that the performance is fine
with the default L2 cache size if your virtual disk size is up to 8 GB. For larger disks, you can speed
up the disk access by increasing the L2 cache size.

36.2.2.5.2. Configuring the cache size

You can use the -drive option on the QEMU command line to specify the cache sizes.
Alternatively when communicating via QMP, use the blockdev-add command. For more
information on QMP, see the section called “OMP - QEMU machine protocol”.

The following options configure the cache size for the virtual guest:

278

12-cache-size
The maximum size of the L2 table cache.
refcount-cache-size

The maximum size of the refcount block cache. For more information on refcount, see
https://raw.githubusercontent.com/gemu/gemu/master/docs/gcow?2-cache.txt.

cache-size
The maximum size of both caches combined.
When specifying values for the options above, be aware of the following:

 The size of both the L2 and refcount block caches needs to be a multiple of the cluster size.

« If you only set one of the options, QEMU automatically adjusts the other options so that the
L2 cache is 4 times bigger than the refcount cache.

The refcount cache is used much less often than the L2 cache, therefore you can keep it small:

#gemu-system-ARCH [...] \
-drive file=disk image.qcow2,12-cache-size=4194304, refcount-cache-size=262144

36.2.2.5.3. Reducing the memory usage

The larger the cache, the more memory it consumes. There is a separate L2 cache for each qcow?2
file. When using a lot of big disk images, you may need a considerably large amount of memory.
Memory consumption is even worse if you add backing files (the section called “Manipulate disk
images effectively”) and snapshots (see the section called “Managing snapshots of virtual
machines with gemu-img”) to the guest's setup chain.

This is why QEMU introduced the cache-clean-interval setting. It defines an interval in
seconds after which all cache entries that have not been accessed are removed from memory.

The following example removes all unused cache entries every 10 minutes:
#qgemu-system-ARCH [...] -drive file=hd.qcow2,cache-clean-interval=600

If this option is not set, the default value is 0 and it disables this feature.

36.2.3. Managing snapshots of virtual machines with gemu-img

Virtual Machine snapshots are snhapshots of the complete environment in which a VM Guest is
running. The snapshot includes the state of the processor (CPU), memory (RAM), devices, and all
writable disks.

279

https://raw.githubusercontent.com/qemu/qemu/master/docs/qcow2-cache.txt

CHAPTER 36. GUEST INSTALLATION

Snapshots are helpful when you need to save your virtual machine in a particular state. For
example, after you configured network services on a virtualized server and want to quickly start the
virtual machine in the same state you last saved it. Or you can create a snapshot after the virtual
machine has been powered off to create a backup state before you try something experimental
and make VM Guest unstable. This section introduces the latter case, while the former is described
in Chapter 38, Virtual machine administration using QEMU monitor.

To use snapshots, your VM Guest must contain at least one writable hard disk image in gcow2
format. This device is normally the first virtual hard disk.

Virtual Machine snapshots are created with the savevm command in the interactive QEMU
monitor. To make identifying a particular snapshot easier, you can assign it a tag. For more
information on QEMU monitor, see Chapter 38, Virtual machine administration using QEMU
monitor.

Once your qcow?2 disk image contains saved snapshots, you can inspect them with the qemu-img
snapshot command.

Shut down the VM Guest

Do not create or delete virtual machine snapshots with the gqemu-img snapshot
command while the virtual machine is running. Otherwise, you may damage the disk
image with the state of the virtual machine saved.

36.2.3.1. Listing existing snapshots

Use gemu-img snapshot -1DISK_IMAGE to view a list of all existing snapshots saved in the
disk image image. You can get the list even while the VM Guest is running.

>gemu-img snapshot -1 /images/sles.qcow2
Snapshot list:

] 1) TAG® VM SIZE® DATE® VM CLOCK®
1 booting 4.4M 2013-11-22 10:51:10 00:00:20.476
2 booted 184M 2013-11-22 10:53:03 00:02:05.394
3 logged in 273M 2013-11-22 11:00:25 00:04:34.843
4 ff _and term running 372M 2013-11-22 11:12:27 00:08:44.965

O Unique auto-incremented identification number of the snapshot.
8 Unique description string of the snapshot. It is meant as a human-readable version of the ID.

© The disk space occupied by the snapshot. The more memory is consumed by running
applications, the bigger the snapshot is.

O Time and date the snapshot was created.

© The current state of the virtual machine's clock.

280

36.2.3.2. Creating snapshots of a powered-off virtual machine

Use gemu-img snapshot -cSNAPSHOT_TITLEDISK_IMAGE to create a snapshot of the
current state of a virtual machine that was previously powered off.
>gemu-img snapshot -c backup snapshot /images/sles.qgcow?2

>gemu-img snapshot -1 /images/sles.qcow?2
Snapshot list:

ID TAG VM SIZE DATE VM CLOCK
1 booting 4.4M 2013-11-22 10:51:10 00:00:20.476
2 booted 184M 2013-11-22 10:53:03 00:02:05.394
3 logged in 273M 2013-11-22 11:00:25 00:04:34.843
4 ff and term running 372M 2013-11-22 11:12:27 00:08:44.965
5 backup snapshot 0 2013-11-22 14:14:00 00:00:00.000

If something breaks in your VM Guest and you need to restore the state of the saved snapshot (ID
5 in our example), power off your VM Guest and execute the following command:

>gemu-img snapshot -a 5 /images/sles.qcow2

The next time you run the virtual machine with qemu-system-ARCH, it will be in the state of
shapshot number 5.

Note

@ The gemu-img snapshot -c command is not related to the savevm command of
QEMU monitor (see Chapter 38, Virtual machine administration using QEMU
monitor). For example, you cannot apply a snapshot with gemu-img snapshot -a
on a snapshot created with savevm in QEMU's monitor.

36.2.3.3. Deleting snapshots

Use gemu-img snapshot -dSNAPSHOT IDDISK IMAGE to delete old or unneeded snapshots
of a virtual machine. This saves disk space inside the qcow2 disk image as the space occupied by
the snapshot data is restored:

>gemu-img snapshot -d 2 /images/sles.qcow?2
36.2.4. Manipulate disk images effectively

Imagine the following real-life situation: you are a server administrator who runs and manages
several virtualized operating systems. One group of these systems is based on one specific
distribution, while another group (or groups) is based on different versions of the distribution or
even on a different (and maybe non-Unix) platform. To make the case even more complex,
individual virtual guest systems based on the same distribution differ according to the department
and deployment. A file server typically uses a different setup and services than a Web server does,
while both may still be based on SUSE® Linux Enterprise Server.

281

CHAPTER 36. GUEST INSTALLATION

With QEMU it is possible to create “base” disk images. You can use them as template virtual
machines. These base images save you plenty of time because you do not need to install the
same operating system more than once.

36.2.4.1. Base and derived images

First, build a disk image as usual and install the target system on it. For more information, see the
section called “Basic installation with gemu-system-ARCH " and the section called “Creating,
converting, and checking disk images”. Then build a new image while using the first one as a base
image. The base image is also called a backing file. After your new derived image is built, never
boot the base image again, but boot the derived image instead. Several derived images may
depend on one base image at the same time. Therefore, changing the base image can damage
the dependencies. While using your derived image, QEMU writes changes to it and uses the base
image only for reading.

It is a good practice to create a base image from a freshly installed (and, if needed, registered)
operating system with no patches applied and no additional applications installed or removed.
Later on, you can create another base image with the latest patches applied and based on the
original base image.

36.2.4.2. Creating derived images

Note

@ While you can use the raw format for base images, you cannot use it for derived
images because the raw format does not support the backing file option. Use,
for example, the qcow2 format for the derived images.

For example, /images/sles base. raw is the base image holding a freshly installed system.

>gemu-img info /images/sles base.raw
image: /images/sles base.raw

file format: raw

virtual size: 4.0G (4294967296 bytes)
disk size: 2.4G

The image's reserved size is 4 GB, the actual size is 2.4 GB, and its format is raw. Create an
image derived from the /images/sles base. raw base image with:

>gemu-img create -f qcow2 /images/sles derived.qcow2 \

-0 backing file=/images/sles base.raw

Formatting '/images/sles derived.qcow2', fmt=qcow2 size=4294967296 \
backing file='/images/sles base.raw' encryption=off cluster size=0

Look at the derived image details:

282

>gemu-img info /images/sles derived.qcow2

image: /images/sles derived.qcow2

file format: qcow?2

virtual size: 4.0G (4294967296 bytes)

disk size: 140K

cluster size: 65536

backing file: /images/sles base.raw \

(actual path: /images/sles base.raw)

Although the reserved size of the derived image is the same as the size of the base image (4 GB),
the actual size is 140 KB only. The reason is that only changes made to the system inside the
derived image are saved. Run the derived virtual machine, register it, if needed, and apply the
latest patches. Do any other changes in the system such as removing unneeded or installing new
software packages. Then shut the VM Guest down and examine its details once more:

>gemu-img info /images/sles derived.qcow?2

image: /images/sles derived.qcow?2

file format: qcow2

virtual size: 4.0G (4294967296 bytes)

disk size: 1.1G

cluster size: 65536

backing file: /images/sles base.raw \

(actual path: /images/sles base.raw)

The disk size value has grown to 1.1 GB, which is the disk space occupied by the changes on

the file system compared to the base image.

36.2.4.3. Rebasing derived images

After you have modified the derived image (applied patches, installed specific applications,
changed environment settings, etc.), it reaches the desired state. At that point, you can merge the
original base image and the derived image to create a hew base image.

Your original base image (/images/sles base. raw) holds a freshly installed system. It can be
a template for new modified base images, while the new one can contain the same system as the
first one plus all security and update patches applied, for example. After you have created this new
base image, you can use it as a template for more specialized derived images as well. The new
base image becomes independent of the original one. The process of creating base images from
derived ones is called rebasing:

>gemu-img convert /images/sles derived.qcow2 \
-0 raw /images/sles base2.raw

This command created the new base image /images/sles baseZ2. raw using the raw format.

>gemu-img info /images/sles base2.raw
image: /images/slesll base2.raw

file format: raw

virtual size: 4.0G (4294967296 bytes)
disk size: 2.8G

283

CHAPTER 36. GUEST INSTALLATION

The new image is 0.4 gigabytes bigger than the original base image. It uses no backing file, and
you can easily create new derived images based upon it. This lets you create a sophisticated
hierarchy of virtual disk images for your organization, saving a lot of time and work.

36.2.4.4. Mounting an image on a VM Host Server

It can be useful to mount a virtual disk image under the host system. It is strongly recommended to
read Chapter 21, libguestfs and use dedicated tools to access a virtual machine image. However, if
you need to do this manually, follow this guide.

Linux systems can mount an internal partition of a raw disk image using a loopback device. The
first example procedure is more complex but more illustrative, while the second one is
straightforward:

Procedure 36.1. Mounting disk image by calculating partition offset

1. Set a loop device on the disk image whose partition you want to mount.
>losetup /dev/loop0® /images/sles base.raw
2. Find the sector size and the starting sector number of the partition you want to mount.

>fdisk -lu /dev/loop0O

Disk /dev/loop0O: 4294 MB, 4294967296 bytes

255 heads, 63 sectors/track, 522 cylinders, total 8388608 sectors
Units = sectors of 1 * 512 = 512@ bytes

Disk identifier: 0x000ceca8

Device Boot Start End Blocks Id System
/dev/loopOpl 63 1542239 771088+ 82 Linux swap
/dev/loopOp2 * 15422400 8385929 3421845 83 Linux

O The disk sector size.

8 The starting sector of the partition.

3. Calculate the partition start offset:
sector size * sector start = 512 * 1542240 = 789626880

4. Delete the loop and mount the partition inside the disk image with the calculated offset on a
prepared directory.

>losetup -d /dev/loop0

>mount -o loop,offset=789626880 \

/images/sles base.raw /mnt/sles/

>1ls -1 /mnt/sles/

total 112

drwxr-xr-x 2 root root 4096 Nov 16 10:02 bin
drwxr-xr-x 3 root root 4096 Nov 16 10:27 boot
drwxr-xr-x 5 root root 4096 Nov 16 09:11 dev
[...]

drwxrwxrwt 14 root root 4096 Nov 24 09:50 tmp
drwxr-xr-x 12 root root 4096 Nov 16 09:16 usr
drwxr-xr-x 15 root root 4096 Nov 16 09:22 var

284

5. Copy one or more files onto the mounted partition and unmount it when finished.

>cp /etc/X11l/xorg.conf /mnt/sles/root/tmp
>ls -1 /mnt/sles/root/tmp
>umount /mnt/sles/

Do not write to images currently in use

Never mount a partition of an image of a running virtual machine in a read-write
mode. This could corrupt the partition and break the whole VM Guest.

285

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

Chapter 37. Running virtual machines with gemu-system-ARCH

Once you have a virtual disk image ready (for more information on disk images, see the section
called “Managing disk images with gemu-img), it is time to start the related virtual machine. the
section called “Basic installation with qemu-system-ARCH " introduced simple commands to
install and run a VM Guest. This chapter focuses on a more detailed explanation of gemu-
system-ARCH usage, and shows solutions for more specific tasks. For a complete list of gemu-
system-ARCH's options, see its man page (man 1 gemu).

37.1. Basic gemu-system-ARCH invocation
The gemu-system-ARCH command uses the following syntax:

gemu-system-ARCH OPTIONS@ -drive file=DISK IMAGE®

O gemu-system-ARCH understands many options. Most of them define parameters of the
emulated hardware, while others affect more general emulator behavior. If you do not supply
any options, default values are used, and you need to supply the path to a disk image to be run.

© Path to the disk image holding the guest system you want to virtualize. qemu-system-ARCH
supports many image formats. Use gemu-img- -help to list them.

286

AArché64 architecture

0 KVM support is available only for 64-bit Arm® architecture (AArch64). Running
QEMU on the AArch64 architecture requires you to specify:

*« A machine type designed for QEMU Arm® virtual machines using the -
machine virt-VERSION NUMBER option.

« A firmware image file using the -bios option.

You can specify the firmware image files alternatively using the -drive
options, for example:

-drive file=/usr/share/edk2/aarch64/QEMU EFI-
pflash.raw,if=pflash, format=raw
-drive file=/var/lib/libvirt/qgemu/nvram/
opensuse VARS.fd,if=pflash, format=raw
*A CPU of the VM Host Server using the -cpu host option (default is

cortex-15).

« The same Generic Interrupt Controller (GIC) version as the host using the -
machine gic-version=host option (default is 2).

« If a graphic mode is needed, a graphic device of type virtio-gpu-pci.

For example:

>sudo gemu-system-aarch64 [...] \
-bios /usr/share/qemu/gemu-uefi-aarch64.bin \
-cpu host \
-device virtio-gpu-pci \
-machine virt,accel=kvm,gic-version=host

37.2. General qemu-system-ARCH options

This section introduces general qemu-system-ARCH options and options related to the basic
emulated hardware, such as the virtual machine's processor, memory, model type, or time
processing methods.

-name NAME_OF GUEST

Specifies the name of the running guest system. The name is displayed in the window
caption and used for the VNC server.

-boot OPTIONS

Specifies the order in which the defined drives are booted. Drives are represented by letters,
where a and b stand for the floppy drives 1 and 2, ¢ stands for the first hard disk, d stands
for the first CD-ROM drive, and n to p stand for Ether-boot network adapters.

287

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

For example, gemu-system-ARCH [...] -boot order=ndc first tries to boot from the
network, then from the first CD-ROM drive, and finally from the first hard disk.

-pidfile FILENAME

Stores the QEMU's process identification number (PID) in a file. This is useful if you run
QEMU from a script.

-nodefaults

By default QEMU creates basic virtual devices even if you do not specify them on the
command line. This option turns this feature off, and you must specify every single device
manually, including graphical and network cards, parallel or serial ports, or virtual consoles.
Even QEMU monitor is not attached by default.

-daemonize

“Daemonizes” the QEMU process after it is started. QEMU detaches from the standard input
and standard output after it is ready to receive connections on any of its devices.

SeaBIOS BIOS implementation

@ SeaBIOS is the default BIOS used. You can boot USB devices, any drive (CD-ROM,
Floppy or a hard disk). It has USB mouse and keyboard support and supports
multiple VGA cards. For more information about SeaBIOS, refer to the SeaBIOS
Website.

37.2.1. Basic virtual hardware

37.2.1.1. Machine type

You can specify the type of the emulated machine. Run qemu-system-ARCH -M help to view a
list of supported machine types.

ISA-PC

@ The machine type isapc: ISA-only-PC is unsupported.

37.2.1.2. CPU model

To specify the type of the processor (CPU) model, run qemu-system-ARCH -cpuMODEL. Use
gemu-system-ARCH -cpu help to view a list of supported CPU models.

288

https://www.seabios.org/SeaBIOS
https://www.seabios.org/SeaBIOS

37.2.1.3. Other basic options

The following is a list of most commonly used options while launching gemu from command line.
To see all options available refer to gemu-doc man page.

-m MEGABYTES
Specifies how many megabytes are used for the virtual RAM size.
-balloon virtio

Specifies a paravirtualized device to dynamically change the amount of virtual RAM
assigned to VM Guest. The top limit is the amount of memory specified with -m.

-smp NUMBER_OF_CPUS

Specifies how many CPUs to emulate. QEMU supports up to 255 CPUs on the PC platform
(up to 64 with KVM acceleration used). This option also takes other CPU-related parameters,
such as number of sockets, number of cores per socket, or number of threads per core.

The following is an example of a working gemu-system-ARCH command line:

>sudo gemu-system-x86 64 \
-name "SLES 15 SP7" \
-M pc-i440fx-2.7 -m 512 \
-machine accel=kvm -cpu kvm64 -smp 2 \
-drive format=raw,file=/images/sles.raw

Figure 37.1. QEMU window with SLES as VM Guest

Activities May 17 08:52

€ earch

289

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

-no-acpi

Disables ACPI support.

QEMU starts with CPU stopped. To start CPU, enter ¢ in QEMU monitor. For more
information, see Chapter 38, Virtual machine administration using QEMU monitor.

37.2.2. Storing and reading configuration of virtual devices
-readconfig CFG_FILE

Instead of entering the devices configuration options on the command line each time you
want to run VM Guest, gemu-system-ARCH can read it from a file that was either previously
saved with -writeconfig or edited manually.

-writeconfig CFG_FILE

Dumps the current virtual machine's devices configuration to a text file. It can be
consequently re-used with the - readconfig option.

>sudo gemu-system-x86 64 -name "SLES 15 SP7" \
-machine accel=kvm -M pc-i440fx-2.7 -m 512 -cpu kvm64 \
-smp 2 /images/sles.raw -writeconfig /images/sles.cfg
(exited)
>cat /images/sles.cfg
gemu config file

[drive]
index = "0O"
media = "disk"
file = "/images/sles base.raw"

This way you can effectively manage the configuration of your virtual machines' devices in a
well-arranged way.

37.2.3. Guest real-time clock
-rtc OPTIONS

Specifies the way the RTC is handled inside a VM Guest. By default, the clock of the guest is
derived from that of the host system. Therefore, it is recommended that the host system
clock is synchronized with an accurate external clock, for example, via NTP service.

If you need to isolate the VM Guest clock from the host one, specify clock=vm instead of
the default clock=host.

You can also specify the initial time of the VM Guest's clock with the base option:

>sudo gemu-system-x86 64 [...] -rtc clock=vm,base=2010-12-03T01:02:00

290

Instead of a time stamp, you can specify utc or Llocaltime. The former instructs VM Guest
to start at the current UTC value (Coordinated Universal Time, see https://en.wikipedia.org/
wiki/UTC), while the latter applies the local time setting.

37.3. Using devices in QEMU

QEMU virtual machines emulate all devices needed to run a VM Guest. QEMU supports, for
example, several types of network cards, block devices (hard and removable drives), USB devices,
character devices (serial and parallel ports), or multimedia devices (graphic and sound cards). This
section introduces options to configure multiple types of supported devices.

Tip

@ If your device, such as -drive, needs a special driver and driver properties to be
set, specify them with the -device option, and identify with drive= suboption. For
example:

>sudo gemu-system-x86 64 [...] -drive if=none,id=drive0, format=raw \
-device virtio-blk-pci,drive=drive0,scsi=off ...

To get help on available drivers and their properties, use -device ? and -device
DRIVER,?.

37.3.1. Block devices

Block devices are vital for virtual machines. These are fixed or removable storage media called
drives. One of the connected hard disks typically holds the guest operating system to be
virtualized.

Virtual Machine drives are defined with -drive. This option has many sub-options, so me of which
are described in this section. For the complete list, see the man page (man 1 gemu).

Sub-options for the -drive option
file=image_fname

Specifies the path to the disk image that to be used with this drive. If not specified, an empty
(removable) drive is assumed.

if=drive_interface

Specifies the type of interface to which the drive is connected. Currently only floppy, scsi,
ide, or virtio are supported by SUSE. virtio defines a paravirtualized disk driver.
Default is ide.

291

https://en.wikipedia.org/wiki/UTC
https://en.wikipedia.org/wiki/UTC

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

index=index_of_connector

Specifies the index number of a connector on the disk interface (see the if option) where
the drive is connected. If not specified, the index is automatically incremented.

media=type

Specifies the type of media. Can be disk for hard disks, or cdrom for removable CD-ROM
drives.

format=img_fmt

Specifies the format of the connected disk image. If not specified, the format is autodetected.

Currently, SUSE supports raw and qcow2 formats.

cache=method

Specifies the caching method for the drive. Possible values are unsafe, writethrough,

writeback, directsync, or none. To improve performance when using the qcow2 image
format, select writeback. none disables the host page cache and, therefore, is the safest
option. Default for image files is writeback. For more information, see Chapter 19, Disk
cache modes.

9

Tip

To simplify defining block devices, QEMU understands several shortcuts which you
may find handy when entering the gemu - system-ARCH command line.

You can use
>sudo gemu-system-x86 64 -cdrom /images/cdrom.iso
instead of

>sudo gemu-system-x86 64 -drive format=raw,file=/images/
cdrom.iso,index=2,media=cdrom

and

>sudo gemu-system-x86 64 -hda /images/imageil.raw -hdb /images/
image2.raw -hdc \
/images/image3.raw -hdd /images/image4.raw

instead of

>sudo gemu-system-x86 64 -drive format=raw,file=/images/
imagel.raw,index=0,media=disk \

-drive format=raw,file=/images/image2.raw,index=1,media=disk \
-drive format=raw,file=/images/image3.raw,index=2,media=disk \
-drive format=raw,file=/images/image4.raw,index=3,media=disk

292

Using host drives instead of images

@ As an alternative to using disk images (see the section called “Managing disk images
with qemu-1img ") you can also use existing VM Host Server disks, connect them as
drives, and access them from VM Guest. Use the host disk device directly instead of
disk image file names.

To access the host CD-ROM drive, use

>sudo gemu-system-x86 64 [...] -drive file=/dev/cdrom,media=cdrom
To access the host hard disk, use

>sudo gemu-system-x86 64 [...] -drive file=/dev/hdb,media=disk

A host drive used by a VM Guest must not be accessed concurrently by the VM Host
Server or another VM Guest.

37.3.1.1. Freeing unused guest disk space

A Sparse image file is a type of disk image file that grows in size as the user adds data to it, taking
up only as much disk space as is stored in it. For example, if you copy 1 GB of data inside the
sparse disk image, its size grows by 1 GB. If you then delete, for example, 500 MB of the data, the
image size does not by default decrease as expected.

This is why the discard=on option is introduced on the KVM command line. It tells the hypervisor
to automatically free the “holes” after deleting data from the sparse guest image. This option is
valid only for the if=scsi drive interface:

>sudo gemu-system-x86 64 [...] -drive format=img format,file=/path/to/file.img,i
f=scsi,discard=on

Support status

o if=scsi is not supported. This interface does not map to virtio-scsi, but rather to the
Isi SCSI adapter.

37.3.1.2. 10Threads

IOThreads are dedicated event loop threads for virtio devices to perform 1/O requests to improve
scalability, especially on an SMP VM Host Server with SMP VM Guests using many disk devices.
Instead of using QEMU's main event loop for 1/O processing, IOThreads allow spreading 1/0O work
across multiple CPUs and can improve latency when properly configured.

293

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

IOThreads are enabled by defining I0Thread objects. virtio devices can then use the objects for
their I/O event loops. Many virtio devices can use a single I0Thread object, or virtio devices and
IOThread objects can be configured in a 1:1 mapping. The following example creates a single
IOThread with ID iothread0 which is then used as the event loop for two virtio-blk devices.
>sudo gemu-system-x86 64 [...] -object iothread,id=iothread0\

-drive if=none,id=drive0, cache=none,aio=native,\

format=raw, file=filename -device virtio-blk-pci,drive=drive0,scsi=off,\
iothread=iothread® -drive if=none,id=drivel, cache=none,aio=native,\

format=raw, file=filename -device virtio-blk-pci,drive=drivel,scsi=off,\
iothread=iothread0® [...]

The following gemu command line example illustrates a 1:1 virtio device to IOThread mapping:

>sudo gemu-system-x86 64 [...] -object iothread,id=iothread0\

-object iothread,id=iothreadl -drive if=none,id=drive0,cache=none,aio=native,\

format=raw, file=filename -device virtio-blk-pci,drive=drive0,scsi=off,\

iothread=iothread® -drive if=none,id=drivel, cache=none,aio=native,\

format=raw, file=filename -device virtio-blk-pci,drive=drivel,scsi=off,\
iothread=iothreadl [...]

37.3.1.3. Bio-based 1/0 path for virtio-blk

For better performance of I/O-intensive applications, a new I/O path was introduced for the virtio-
blk interface in kernel version 3.7. This bio-based block device driver skips the I/O scheduler, and
thus shortens the I/O path in guest and has lower latency. It is especially useful for high-speed
storage devices, such as SSD disks.

The driver is disabled by default. To use it, do the following:

1. Append virtio blk.use bio=1 to the kernel command line on the guest. You can do so
via YaST > System > Boot Loader.

You can do it also by editing /etc/default/grub, searching for the line that contains
GRUB_CMDLINE LINUX DEFAULT=, and adding the kernel parameter at the end. Then run
grub2-mkconfig >/boot/grub2/grub.cfg to update the grub2 boot menu.

2. Reboot the guest with the new kernel command line active.
Bio-based driver on slow devices

@ The bio-based virtio-blk driver does not help on slow devices such as spin hard disks.
The reason is that the benefit of scheduling is larger than what the shortened bio path
offers. Do not use the bio-based driver on slow devices.

37.3.1.4. Accessing iSCSI resources directly

QEMU now integrates with Libiscsi. This allows QEMU to access iSCSI resources directly and
use them as virtual machine block devices. This feature does not require any host iSCSI initiator

294

configuration, as is needed for a libvirt iISCSI target based storage pool setup. Instead it directly
connects guest storage interfaces to an iSCSI target LUN via the user space library libiscsi. iSCSI-
based disk devices can also be specified in the libvirt XML configuration.

RAW image format

@ This feature is only available using the RAW image format, as the iSCSI protocol has
certain technical limitations.

The following is the QEMU command line interface for iSCSI connectivity.

virt-manager limitation

@ The use of libiscsi based storage provisioning is not yet exposed by the virt-manager
interface, but instead it would be configured by directly editing the guest xml. This
new way of accessing iSCSI based storage is to be done at the command line.

>sudo gemu-system-x86 64 -machine accel=kvm \

-drive file=iscsi://192.168.100.1:3260/iqn.2016-08.com.example:314605ab-
a88e-49af-bdeb-664808a3443b/0,\

format=raw,if=none,id=mydrive, cache=none \

-device ide-hd,bus=ide.0,unit=0,drive=mydrive ...

Here is an example snippet of guest domain xml which uses the protocol based iSCSI:
<devices>

<disk type='network' device='disk'>
<driver name='qgemu' type='raw'/>
<source protocol='iscsi' name='iqgn.2013-07.com.example:iscsi-nopool/2'>
<host name='example.com' port='3260'/>
</source>
<auth username='myuser'>
<secret type='iscsi' usage='libvirtiscsi'/>
</auth>
<target dev='vda' bus='virtio'/>
</disk>
</devices>

Contrast that with an example which uses the host based iSCSI initiator which virt-manager sets
up:

<devices>

<disk type='block' device='disk'>
<driver name='gemu' type='raw' cache='none' io='native'/>
<source dev='/dev/disk/by-path/scsi-0:0:0:0'/>
<target dev='hda' bus='ide'/>
<address type='drive' controller='0' bus='0' target='0' unit='0'/>
</disk>
<controller type='ide' index='0'>
<address type='pci' domain='0x0000' bus='0x00' slot='0x01"
function="'0x1"'/>
</controller>
</devices>

295

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

37.3.1.5. Using RADOS block devices with QEMU

RADOS Block Devices (RBD) store data in a Ceph cluster. They allow snapshotting, replication
and data consistency. You can use an RBD from your KVM-managed VM Guests similarly to how
you use other block devices.

For more details, refer to the SUSE Enterprise Storage Administration Guide, chapter Ceph as a
Back-end for QEMU KVM Instance.

37.3.2. Graphic devices and display options

This section describes QEMU options affecting the type of the emulated video card and the way
VM Guest graphical output is displayed.

37.3.2.1. Defining video cards

QEMU uses -vga to define a video card used to display VM Guest graphical output. The -vga
option understands the following values:

none

Disables video cards on VM Guest (no video card is emulated). You can still access the
running VM Guest via the serial console.

std
Emulates a standard VESA 2.0 VBE video card. Use it if you intend to use high display
resolution on VM Guest.

qxI
QXL is a paravirtual graphic card. It is VGA compatible (including VESA 2.0 VBE support).
gx1 is recommended when using the spice video protocol.

virtio

Paravirtual VGA graphic card.

37.3.2.2. Display options
The following options affect the way VM Guest graphical output is displayed.
-display gtk

Display video output in a GTK window. This interface provides Ul elements to configure and
control the VM during runtime.

296

https://documentation.suse.com/ses/html/ses-all/cha-ceph-kvm.html
https://documentation.suse.com/ses/html/ses-all/cha-ceph-kvm.html
https://documentation.suse.com/ses/html/ses-all/cha-ceph-kvm.html
https://documentation.suse.com/ses/html/ses-all/cha-ceph-kvm.html
https://documentation.suse.com/ses/html/ses-all/cha-ceph-kvm.html

-display sdl

Display video output via SDL in a separate graphics window. For more information, see the
SDL documentation.

-spice option[,option[,...1]

Enables the spice remote desktop protocol.
-display vnc

Refer to the section called “Viewing a VM Guest with VNC” for more information.
-nographic

Disables QEMU's graphical output. The emulated serial port is redirected to the console.

After starting the virtual machine with -nographic, press Ctrl1—AH in the virtual console to
view the list of other useful shortcuts, for example, to toggle between the console and the
QEMU monitor.

>sudo gemu-system-x86 64 -hda /images/sles base.raw -nographic

h print this help

X exit emulator

s save disk data back to file (if -snapshot)
t toggle console timestamps

b send break (magic sysrq)
C

C

s

switch between console and monitor
-a sends C-a
essed C-a c)

~O0O0O0O0O0n00n
1
SO0V Y

p
EMU 2.3.1 monitor - type 'help' for more information
gemu)

Q
(
-no-frame

Disables decorations for the QEMU window. Convenient for dedicated desktop work space.
-full-screen

Starts QEMU graphical output in full screen mode.
-no-quit

Disables the close button of the QEMU window and prevents it from being closed by force.

-alt-grab, -ctrl-grab

By default, the QEMU window releases the “captured” mouse after pressing Ctrl-Alt. You
can change the key combination to either Ctrl-Alt-Shift (-alt-grab), or the right
Ctrl key (-ctrl-grab).

297

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

37.3.3. USB devices

There are two ways to create USB devices usable by the VM Guest in KVM: you can either
emulate new USB devices inside a VM Guest, or assign an existing host USB device to a VM
Guest. To use USB devices in QEMU you first need to enable the generic USB driver with the -
usb option. Then you can specify individual devices with the -usbdevice option.

37.3.3.1. Emulating USB devices in VM Guest

SUSE currently supports the following types of USB devices: disk, host, serial, braille,
net, mouse, and tablet.

Types of USB devices for the -usbdevice option
disk

Emulates a mass storage device based on file. The optional format option is used rather
than detecting the format.

>sudo gemu-system-x86 64 [...] -usbdevice
disk:format=raw:/virt/usb disk.raw

host
Pass through the host device (identified by bus.addr).
serial
Serial converter to a host character device.
braille
Emulates a braille device using BrlAPI to display the braille output.
net
Emulates a network adapter that supports CDC Ethernet and RNDIS protocols.
mouse

Emulates a virtual USB mouse. This option overrides the default PS/2 mouse emulation. The
following example shows the hardware status of a mouse on VM Guest started with gemu -
system-ARCH [...] -usbdevice mouse:

298

>sudo hwinfo --mouse

20: USB 00.0: 10503 USB Mouse
[Created at usb.122]

UDI: /org/freedesktop/Hal/devices/usb device 627 1 1 if0
[...]

Hardware Class: mouse

Model: "Adomax QEMU USB Mouse"

Hotplug: USB

Vendor: usb 0x0627 "Adomax Technology Co., Ltd"

?evi?e: usb 0x0001 "QEMU USB Mouse"

tablet

Emulates a pointer device that uses absolute coordinates (such as touchscreen). This option
overrides the default PS/2 mouse emulation. The tablet device is useful if you are viewing
VM Guest via the VNC protocol. See the section called “Viewing a VM Guest with VNC” for
more information.

37.3.4. Character devices

Use -chardev to create a new character device. The option uses the following general syntax:
gemu-system-x86 64 [...] -chardev BACKEND TYPE,id=ID STRING

where BACKEND_TYPE can be one of null, socket, udp, msmouse, vc, file, pipe,
console, serial, pty, stdio, braille, tty, or parport. All character devices must have a
unique identification string up to 127 characters long. It is used to identify the device in other
related directives. For the complete description of all back-end's sub-options, see the man page
(man 1 qemu). A brief description of the available back-ends follows:

null

Creates an empty device that outputs no data and drops any data it receives.

stdio
Connects to QEMU's process standard input and standard output.
socket

Creates a two-way stream socket. If PATH is specified, a Unix socket is created:

>sudo gemu-system-x86 64 [...] -chardev \
socket,id=unix socketl,path=/tmp/unix socketl,server

The SERVER suboption specifies that the socket is a listening socket.

If PORT is specified, a TCP socket is created:

>sudo gemu-system-x86 64 [...] -chardev \
socket,id=tcp socketl,host=localhost,port=7777,server,nowait

299

udp

vcC

file

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

The command creates a local listening (server) TCP socket on port 7777. QEMU does not
block waiting for a client to connect to the listening port (nowait).

Sends all network traffic from VM Guest to a remote host over the UDP protocol.

>sudo gemu-system-x86 64 [...] \
-chardev udp,id=udp fwd,host=mercury.example.com,port=7777

The command binds port 7777 on the remote host mercury.example.com and sends VM
Guest network traffic there.

Creates a new QEMU text console. You can optionally specify the dimensions of the virtual
console:

>sudo gemu-system-x86 64 [...] -chardev vc,id=vcl,width=640,height=480 \
-mon chardev=vcl

The command creates a new virtual console called vcl of the specified size, and connects
the QEMU monitor to it.

Logs all traffic from VM Guest to a file on VM Host Server. The path is required and is
automatically created if it does not exist.

>sudo gemu-system-x86 64 [...] \
-chardev file,id=gemu logl,path=/var/log/qemu/guestl.log

By default QEMU creates a set of character devices for serial and parallel ports, and a special

console for QEMU monitor. However, you can create your own character devices and use them for

the mentioned purposes. The following options may help you:

-serial CHAR_DEV

Redirects the VM Guest's virtual serial port to a character device CHAR_DEV on VM Host
Server. By default, it is a virtual console (vc) in graphical mode, and stdio in non-graphical
mode. The -serial understands many sub-options. See the man page man 1 ¢gemu for a
complete list of them.

You can emulate up to four serial ports. Use -serial none to disable all serial ports.

-parallel DEVICE

Redirects the VM Guest's parallel port to a DEVICE. This option supports the same devices
as -serial.

300

Tip

@ With SUSE Linux Enterprise Server as a VM Host Server, you can directly use
the hardware parallel port devices /dev/parportN where N is the number of
the port.

You can emulate up to three parallel ports. Use -parallel none to disable all parallel
ports.

-monitor CHAR DEV

Redirects the QEMU monitor to a character device CHAR_DEV on VM Host Server. This
option supports the same devices as -serial. By default, it is a virtual console (vc) in a
graphical mode, and stdio in non-graphical mode.

For a complete list of available character devices back-ends, see the man page (man 1 qemu).
37.4. Networking in QEMU

Use the -netdev option in combination with -device to define a specific type of networking and
a network interface card for your VM Guest. The syntax for the -netdev option is

-netdev typel[,prop[=valuell[,...]]

Currently, SUSE supports the following network types: user, bridge, and tap. For a complete
list of -netdev sub-options, see the man page (man 1 gemu).

Supported -netdev sub-options
bridge

Uses a specified network helper to configure the TAP interface and attach it to a specified
bridge. For more information, see the section called “Bridged networking”.

user

Specifies user-mode networking. For more information, see the section called “User-mode
networking”.

tap

Specifies bridged or routed networking. For more information, see the section called
“Bridged networking”.

301

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

37.4.1. Defining a network interface card

Use -netdev together with the related -device option to add a new emulated network card:

>sudo gemu-system-x86 64 [...] \

-netdev tap@,id=hostnet0 \

-device virtio-net-pci®,netdev=hostnet0,vlan=10,\
macaddr=00:16:35:AF:94:4B@, name=ncardl

O Specifies the network device type.

@ Specifies the model of the network card. Use qemu-system-ARCH -device help and
search for the Network devices:section to get the list of all network card models supported
by QEMU on your platform.

Currently, SUSE supports the models rt18139, e1000 and its variants e1000-82540em
€1000-82544gc and e1000-82545em, and virtio-net-pci. To view a list of options for a
specific driver, add he'lp as a driver option:
>sudo gemu-system-x86 64 -device e1000,help
€1000.mac=macaddr
€1000.vlan=vlan
€l000.netdev=netdev
€1000.bootindex=int32
€l1000.autonegotiation=on/off
€l000.mitigation=on/off
€l000.addr=pci-devfn
€l1000.romfile=str
€1000. rombar=uint32
€1000.multifunction=on/off
€1000.command serr_enable=on/off
© Connects the network interface to VLAN number 1. You can specify your own number—it is

mainly useful for identification purpose. If you omit this suboption, QEMU uses the default 0.

O Specifies the Media Access Control (MAC) address for the network card. It is a unique identifier
and you are advised to always specify it. If not, QEMU supplies its own default MAC address
and creates a possible MAC address conflict within the related VLAN.

37.4.2. User-mode networking

The -netdev user option instructs QEMU to use user-mode networking. This is the default if no
networking mode is selected. Therefore, these command lines are equivalent:

>sudo gemu-system-x86 64 -hda /images/sles base.raw

>sudo gemu-system-x86 64 -hda /images/sles base.raw -netdev user,id=hostnet0

This mode is useful to allow the VM Guest to access the external network resources, such as the
Internet. By default, no incoming traffic is permitted and therefore, the VM Guest is not visible to
other machines on the network. No administrator privileges are required in this networking mode.

302

The user-mode is also useful for doing a network boot on your VM Guest from a local directory on
VM Host Server.

The VM Guest allocates an IP address from a virtual DHCP server. VM Host Server (the DHCP
server) is reachable at 10.0.2.2, while the IP address range for allocation starts from 10.0.2.15. You
can use ssh to connect to VM Host Server at 10.0.2.2, and scp to copy files back and forth.

37.4.2.1. Command line examples
This section shows several examples on how to set up user-mode networking with QEMU.

Example 37.1. Restricted user-mode networking

>sudo gemu-system-x86 64 [...] \

-netdev user@,id=hostnet0 \

-device virtio-net-pci,netdev=hostnet0d,vlan=1@,name=user netl®,restrict=yes®

O Specifies user-mode networking.
@ Connects to VLAN number 1. If omitted, defaults to O.

© Specifies a human-readable name of the network stack. Useful when identifying it in the QEMU
monitor.

O Isolates VM Guest. It then cannot communicate with VM Host Server and no network packets
are routed to the external network.
Example 37.2. User-mode networking with custom IP range

>sudo gemu-system-x86 64 [...] \
-netdev user,id=hostnet0 \

-device virtio-net-pci,netdev=hostnet0,net=10.2.0.0/8@,host=10.2.0.6@,\
dhcpstart=10.2.0.200,hostname=tux_kvm guest®

O Specifies the IP address of the network that VM Guest sees and optionally the netmask. Default
is 10.0.2.0/8.

8 Specifies the VM Host Server IP address that VM Guest sees. Default is 10.0.2.2.

© Specifies the first of the 16 IP addresses that the built-in DHCP server can assign to VM Guest.
Default is 10.0.2.15.

O Specifies the host name that the built-in DHCP server assigns to VM Guest.

Example 37.3. User-mode networking with network-boot and TFTP

>sudo gemu-system-x86 64 [...] \

-netdev user,id=hostnet0 \

-device virtio-net-pci,netdev=hostnet0,tftp=/images/tftp dir@,\
bootfile=/images/boot/pxelinux.0@®

303

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

O Activates a built-in TFTP (a file transfer protocol with the functionality of a basic FTP) server.
The files in the specified directory are visible to a VM Guest as the root of a TFTP server.

@ Broadcasts the specified file as a BOOTP (a network protocol that offers an IP address and a
network location of a boot image, often used in diskless workstations) file. When used together
with tftp, the VM Guest can boot via the network from the local directory on the host.

Example 37.4. User-mode networking with host port forwarding

>sudo gemu-system-x86 64 [...] \
-netdev user,id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,hostfwd=tcp::2222-:22

Forwards incoming TCP connections to the port 2222 on the host to the port 22 (SSH) on VM
Guest. If sshd is running on VM Guest, enter

>ssh gemu_host -p 2222

where gemu_host is the host name or IP address of the host system, to get a SSH prompt from
VM Guest.

37.4.3. Bridged networking

With the -netdev tap option, QEMU creates a network bridge by connecting the host TAP
network device to a specified VLAN of VM Guest. Its network interface is then visible to the rest of
the network. This method does not work by default and needs to be explicitly specified.

First, create a network bridge and add a VM Host Server physical network interface to it, such as
etho:

1. Start YaST Control Center and select System > Network Settings.

2. Click Add and select Bridge from the Device Type drop-down box in the Hardware Dialog
window. Click Next.

3. Choose whether you need a dynamically or statically assigned IP address, and fill the related
network settings if applicable.

4. In the Bridged Devices pane, select the Ethernet device to add to the bridge.
Click Next. When asked about adapting an already configured device, click Continue.

5. Click OK to apply the changes. Check if the bridge is created:

>bridge link
2: ethO state UP : <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 master br@ \
state forwarding priority 32 cost 100

304

37.4.3.1. Connecting to a bridge manually

Use the following example script to connect VM Guest to the newly created bridge interface bro.
Several commands in the script are run via the sudo mechanism because they require root
privileges.

Required software

@ To manage a network bridge, you need to have the tunctl package installed.

#!/bin/bash

bridge=bro@

tap=$(sudo tunctl -u $(whoami) -b)@

sudo ip link set $tap up®

sleep 1s@

sudo ip link add name $bridge type bridge

sudo ip link set $bridge up

sudo ip link set $tap master $bridge®

gemu-system-x86 64 -machine accel=kvm -m 512 -hda /images/sles base.raw \
-netdev tap,id=hostnet0 \

-device virtio-net-pci,netdev=hostnet0,vlan=0,macaddr=00:16:35:AF:94:4B,\
ifname=$tap@®, script=no@, downscript=no

sudo ip link set $tap nomaster®

sudo ip link set $tap down®

sudo tunctl -d $tap®

© Name of the bridge device.

8 Prepare a new TAP device and assign it to the user who runs the script. TAP devices are virtual
network devices often used for virtualization and emulation setups.

© Bring up the newly created TAP network interface.

O Make a 1-second pause to make sure the new TAP network interface is really up.

© Add the new TAP device to the network bridge bro.

O The ifname= suboption specifies the name of the TAP network interface used for bridging.

O Before qemu-system-ARCH connects to a network bridge, it checks the script and
downscript values. If it finds the specified scripts on the VM Host Server file system, it runs
the script before it connects to the network bridge and downscript after it exits the network
environment. You can use these scripts to set up and tear down the bridged interfaces. By
default, /etc/qemu-ifup and /etc/gemu-ifdown are examined. If script=no and
downscript=no are specified, the script execution is disabled and you need to take care of it
manually.

© Deletes the TAP interface from a network bridge bro.

305

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

© Sets the state of the TAP device to down.

@ Tear down the TAP device.

37.4.3.2. Connecting to a bridge with gemu-bridge-helper

Another way to connect VM Guest to a network through a network bridge is via the gemu-
bridge-helper helper program. It configures the TAP interface for you, and attaches it to the
specified bridge. The default helper executable is /usr/lib/gemu-bridge-helper. The helper
executable is setuid root, which is only executable by the members of the virtualization group
(kvm). Therefore the gemu-system-ARCH command itself does not need to be run under root
privileges.

The helper is automatically called when you specify a hetwork bridge:

gemu-system-x86 64 [...] \
-netdev bridge,id=hostnet0,vlan=0,br=bro \
-device virtio-net-pci,netdev=hostnet0

You can specify your own custom helper script that takes care of the TAP device (de)configuration,
with the helper=/path/to/your/helper option:

gemu-system-x86 64 [...] \
-netdev bridge,id=hostnet0,vlan=0,br=br0, helper=/path/to/bridge-helper \
-device virtio-net-pci,netdev=hostnet0

Tip

@ To define access privileges to qemu-bridge-helper, inspect the /etc/qemu/
bridge.conf file. For example, the following directive

allow bro

allows the gemu-system-ARCH command to connect its VM Guest to the network
bridge bro.

37.5. Viewing a VM Guest with VNC

By default QEMU uses a GTK (a cross-platform toolkit library) window to display the graphical
output of a VM Guest. With the -vnc option specified, you can make QEMU listen on a specified
VNC display and redirect its graphical output to the VNC session.

306

Tip

@ When working with QEMU's virtual machine via VNC session, it is useful to work with
the -usbdevice tablet option.

Moreover, if you need to use another keyboard layout than the default en-us, specify

it with the -k option.
The first suboption of -vnc must be a display value. The -vnc option understands the following
display specifications:
host:display

Only connections from host on the display number display are accepted. The TCP port
on which the VNC session is then running is normally a 5900 + display number. If you do
not specify host, connections are accepted from any host.

unix:path

The VNC server listens for connections on Unix domain sockets. The path option specifies
the location of the related Unix socket.

none

The VNC server functionality is initialized, but the server itself is not started. You can start
the VNC server later with the QEMU monitor. For more information, see Chapter 38, Virtual
machine administration using QEMU monitor.

Following the display value there may be one or more option flags separated by commas. Valid
options are:

reverse
Connect to a listening VNC client via a reverse connection.
websocket

Opens an additional TCP listening port dedicated to VNC Websocket connections. By
definition the Websocket port is 5700+display.

password

Require that password-based authentication is used for client connections.

307

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

tls
Require that clients use TLS when communicating with the VNC server.
x509=/path/to/certificate/dir

Valid if TLS is specified. Require that x509 credentials are used for negotiating the TLS
session.

x509verify=/path/to/certificate/dir

Valid if TLS is specified. Require that x509 credentials are used for negotiating the TLS
session.

sasl

Require that the client uses SASL to authenticate with the VNC server.
acl

Turn on access control lists for checking of the x509 client certificate and SASL party.
lossy

Enable lossy compression methods (gradient, JPEG, ...).
non-adaptive

Disable adaptive encodings. Adaptive encodings are enabled by default.
share=[allow-exclusive|force-shared|ignore]

Set display sharing policy.

Note

@ For more details about the display options, see the gemu-doc man page.

An example VNC usage:

tux >sudo gemu-system-x86 64 [...] -vnc :5
(on the client:)
wilber >vncviewer venus:5 &

308

Figure 37.2. QEMU VNC session

Remote View Bookmarks Help

=&| Connect =& c\ir E E & | % Send Ctrl-Alt-Del

Activities Jun2 07:48

37.5.1. Secure VNC connections

The default VNC server setup does not use any form of authentication. In the previous example,
any user can connect and view the QEMU VNC session from any host on the network.

There are several levels of security that you can apply to your VNC client/server connection. You
can either protect your connection with a password, use x509 certificates, use SASL
authentication, or even combine several authentication methods in one QEMU command.

For more information about configuring x509 certificates on a VM Host Server and the client, see
the section called “Remote TLS/SSL connection with x509 certificate (qemu+tls or xen+tls)”
and the section called “Configuring the client and testing the setup”.

The Remmina VNC viewer supports advanced authentication mechanisms. For this example, let
us assume that the server x509 certificates ca-cert.pem, server-cert.pem, and server-
key.pem are located in the /etc/pki/qemu directory on the host. The client certificates can be
placed in any custom directory, as Remmina asks for their path on the connection start-up.

Example 37.5. Password authentication

gemu-system-x86 64 [...] -vnc :5,password -monitor stdio

Starts the VM Guest graphical output on VNC display number 5 which corresponds to port 5905.
The password suboption initializes a simple password-based authentication method. There is no
password set by default and you need to set one with the change vnc password command in
QEMU monitor:

309

CHAPTER 37. RUNNING VIRTUAL MACHINES WITH QEMU-SYSTEM-ARCH

QEMU 2.3.1 monitor - type 'help' for more information
(gemu) change vnc password
Password: ***x*

You need the -monitor stdio option here, because you would not be able to manage the
QEMU monitor without redirecting its input/output.

Figure 37.3. Authentication dialog in Remmina

+ VNC ~ | =
Name Server Last time used

G SLE15SP2 10.100.51.239:1 2018-02-01 - 11:44:29

@ SLE15SP1 10.100.51.239:1 2018-02-02 - 13:52:43

‘B Testing VNC Session pinkiepie.suse.cz:10 2018-02-02 - 13:59:25

@ Tumbleweed Tt ot o
Connecting to 'Testing VNC Session'... X
@openSUSE42.3

Connecting to Testing VNC Session'...

VNC password

Save VNC password

Cancel OK

Example 37.6. x509 certificate authentication

The QEMU VNC server can use TLS encryption for the session and x509 certificates for
authentication. The server asks the client for a certificate and validates it against the CA certificate.
Use this authentication type if your company provides an internal certificate authority.

gemu-system-x86 64 [...] -vnc :5,tls,x509verify=/etc/pki/qgemu

Example 37.7. x509 certificate and password authentication

You can combine the password authentication with TLS encryption and x509 certificate
authentication to create a two-layer authentication model for clients. Remember to set the
password in the QEMU monitor after you run the following command:

gemu-system-x86 64 [...] -vnc :5,password,tls,x509verify=/etc/pki/qgemu \
-monitor stdio

Example 37.8. SASL authentication
Simple Authentication and Security Layer (SASL) is a framework for authentication and data
security in Internet protocols. It integrates several authentication mechanisms, like PAM, Kerberos,

LDAP and more. SASL keeps its own user database, so the connecting user accounts do not need
to exist on VM Host Server.

For security reasons, you are advised to combine SASL authentication with TLS encryption and
x509 certificates:

310

gemu-system-x86 64 [...] -vnc :5,tls,x509,sasl -monitor stdio

311

CHAPTER 38. VIRTUAL MACHINE ADMINISTRATION USING QEMU MONITOR

Chapter 38. Virtual machine administration using QEMU monitor

When a virtual machine is invoked by the qemu-system-ARCH command, for example gemu-
system-x86_64, a monitor console is provided for performing interaction with the user. Using the
commands available in the monitor console, it is possible to inspect the running operating system,
change removable media, take screenshots or audio grabs and control other aspects of the virtual
machine.

Note

@ The following sections list selected useful QEMU monitor commands and their
purpose. To get the full list, enter help in the QEMU monitor command line.

38.1. Accessing monitor console

No monitor console for Libvirt

@ You can access the monitor console only if you started the virtual machine directly
with the qemu-system-ARCH command and are viewing its graphical output in a
built-in QEMU window.

If you started the virtual machine with libvirt, for example, using virt-manager,
and are viewing its output via VNC or Spice sessions, you cannot access the monitor
console directly. You can, however, send the monitor command to the virtual machine
via virsh:

#virsh gemu-monitor-command COMMAND

The way you access the monitor console depends on which display device you use to view the
output of a virtual machine. Find more details about displays in the section called “Display options”.
For example, to view the monitor while the -display gtk option is in use, press Ctrl-Alt-2.
Similarly, when the -nographic option is in use, you can switch to the monitor console by
pressing the following key combination: Ctrl—AC.

To get help while using the console, use help or ?. To get help for a specific command, use
helpCOMMAND.

38.2. Getting information about the guest system

To get information about the guest system, use info. If used without any option, the list of
possible options is printed. Options determine which part of the system is analyzed:

312

info version
Shows the version of QEMU.
info commands
Lists available QMP commands.
info network
Shows the network state.
info chardev
Shows the character devices.
info block
Information about block devices, such as hard disks, floppy drives, or CD-ROMs.
info blockstats
Read and write statistics on block devices.
info registers
Shows the CPU registers.
info cpus
Shows information about available CPUs.
info history
Shows the command line history.
info irq
Shows the interrupt statistics.
info pic
Shows the i8259 (PIC) state.
info pci

Shows the PCI information.

313

CHAPTER 38. VIRTUAL MACHINE ADMINISTRATION USING QEMU MONITOR

info tlb
Shows virtual to physical memory mappings.
info mem
Shows the active virtual memory mappings.
info jit
Shows dynamic compiler information.
info kvm
Shows the KVM information.
info numa
Shows the NUMA information.
info usb
Shows the guest USB devices.
info usbhost
Shows the host USB devices.
info profile
Shows the profiling information.
info capture
Shows the capture (audio grab) information.

info snapshots

Shows the currently saved virtual machine snapshots.

info status
Shows the current virtual machine status.
info mice

Shows which guest mice are receiving events.

314

info vnc
Shows the VNC server status.
info name
Shows the current virtual machine name.
info uuid
Shows the current virtual machine UUID.
info usernet
Shows the user network stack connection states.
info migrate
Shows the migration status.
info balloon
Shows the balloon device information.
info qtree
Shows the device tree.
info qdm
Shows the gdev device model list.
info roms
Shows the ROMs.
info migrate_cache_size
Shows the current migration xbzrle (“Xor Based Zero Run Length Encoding”) cache size.
info migrate capabilities
Shows the status of the multiple migration capabilities, such as xbzrle compression.
info mtree

Shows the VM Guest memory hierarchy.

315

CHAPTER 38. VIRTUAL MACHINE ADMINISTRATION USING QEMU MONITOR

info trace-events
Shows available trace-events and their status.
38.3. Changing VNC password

To change the VNC password, use the change vnc password command and enter the new
password:

(gemu) change vnc password
Password: ¥kt
(gemu)

38.4. Managing devices

To add a new disk while the guest is running (hotplug), use the drive_add and device_add
commands. First define a new drive to be added as a device to bus 0:

(gemu) drive add 0 if=none,file=/tmp/test.img, format=raw,id=diskl
0K

You can confirm your new device by querying the block subsystem:

(gemu) info block
[...]

diskl: removable=1 locked=0 tray-open=0 file=/tmp/test.img ro=0 drv=raw \
encrypted=0 bps=0 bps rd=0 bps wr=0 iops=0 iops rd=0 iops wr=0

After the new drive is defined, it needs to be connected to a device so that the guest can see it.
The typical device would be a virtio-blk-pci or scsi-disk. To get the full list of available
values, run:

(gemu) device add ?
name "VGA", bus PCI
name "usb-storage", bus usb-bus
[.

name "virtio-blk-pci", bus virtio-bus

Now add the device

(gemu) device add virtio-blk-pci,drive=diskl,id=myvirtiol
and confirm with

(gemu) info pci
[ooal
Bu 0, device 4, function 0:
SCSI controller: PCI device laf4:1001
IRQ 0.
BARO: I/0 at Oxffffffffffffffff [Ox003e].
BAR1: 32 bit memory at Oxffffffffffffffff [Ox00000ffe].
id "myvirtiol"

316

Tip

@ Devices added with the device_add command can be removed from the guest with
device_del. Enter help device _del on the QEMU monitor command line for
more information.

To release the device or file connected to the removable media device, use the ejectDEVICE
command. Use the optional - f to force ejection.

To change removable media (like CD-ROMSs), use the changeDEVICE command. The name of
the removable media can be determined using the info block command:

(gemu)info block
idel-cd0: type=cdrom removable=1 locked=0 file=/dev/sr@ ro=1 drv=host device
(qemu)change idel-cd0@ /path/to/image

38.5. Controlling keyboard and mouse

It is possible to use the monitor console to emulate keyboard and mouse input if necessary. For
example, if your graphical user interface intercepts certain key combinations at low level (such as
Ctrl-Alt—F1 in X Window Syustem), you can still enter them using the sendkeyKEYS:

sendkey ctrl-alt-fl

To list the key names used in the KEYS option, enter sendkey and press Tab.
To control the mouse, the following commands can be used:
mouse_move DX dy [DZ]

Move the active mouse pointer to the specified coordinates dx, dy with the optional scroll
axis dz.

mouse_button VAL
Change the state of the mouse buttons (1=left, 2=middle, 4=right).
mouse_set INDEX

Set which mouse device receives events. Device index numbers can be obtained with the
info mice command.

38.6. Changing available memory

If the virtual machine was started with the -balloon virtio option (the paravirtualized balloon
device is therefore enabled), you can change the available memory dynamically. For more

317

CHAPTER 38. VIRTUAL MACHINE ADMINISTRATION USING QEMU MONITOR

information about enabling the balloon device, see the section called “Basic installation with gemu -
system-ARCH ".

To get information about the balloon device in the monitor console and to determine whether the
device is enabled, use the info balloon command:

(gemu) info balloon

If the balloon device is enabled, use the balloonMEMORY IN_MB command to set the
requested amount of memory:

(gemu) balloon 400

38.7. Dumping virtual machine memory

To save the content of the virtual machine memory to a disk or console output, use the following
commands:

memsave ADDR SIZE FILENAME

Saves virtual memory dump starting at ADDR of size SIZE to file FILENAME
pmemsave ADDR SIZE FILENAME

Saves physical memory dump starting at ADDR of size SIZE to file FILENAME-
X IFMT ADDR

Makes a virtual memory dump starting at address ADDR and formatted according to the
FMT string. The FMT string consists of three parameters COUNTFORMATSIZE:

The COUNT parameter is the number of items to be dumped.

The FORMAT can be X (hex), d (signed decimal), u (unsigned decimal), o (octal), ¢ (char) or
i (assembly instruction).

The SIZE parameter can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86, h or w
can be specified with the 1 format to respectively select 16 or 32-bit code instruction size.

xp IFMT ADDR

Makes a physical memory dump starting at address ADDR and formatted according to the
FMT string. The FMT string consists of three parameters COUNTFORMATSIZE:

The COUNT parameter is the number of the items to be dumped.

The FORMAT can be x (hex), d (signed decimal), u (unsigned decimal), o (octal), ¢ (char) or
i (asm instruction).

318

The SIZE parameter can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86, h or w
can be specified with thei format to respectively select 16 or 32-bit code instruction size.

38.8. Managing virtual machine snapshots

Managing snapshots in QEMU monitor is not supported by SUSE yet. The information found in this
section may be helpful in specific cases.

Virtual Machine snapshots are snapshots of the complete virtual machine including the state of
CPU, RAM and the content of all writable disks. To use virtual machine snapshots, you must have
at least one non-removable and writable block device using the qcow?2 disk image format.

Snapshots are helpful when you need to save your virtual machine in a particular state. For
example, after you have configured network services on a virtualized server and want to quickly
start the virtual machine in the same state that was saved last. You can also create a snapshot
after the virtual machine has been powered off to create a backup state before you try something
experimental and make VM Guest unstable. This section introduces the former case, while the
latter is described in the section called “Managing snapshots of virtual machines with gemu-img”.

The following commands are available for managing snapshots in QEMU monitor:
savevm NAME

Creates a new virtual machine snapshot under the tag NAME or replaces an existing
shapshot.

loadvm NAME

Loads a virtual machine snapshot tagged NAME.
delvm

Deletes a virtual machine snapshot.
info snapshots

Prints information about available snapshots.

(gemu) info snapshots
Snapshot list:

] 1) TAGO® VM SIZE® DATE® VM CLOCK®

1 booting 4.4M 2013-11-22 10:51:10 00:00:20.476
2 booted 184M 2013-11-22 10:53:03 00:02:05.394
3 logged in 273M 2013-11-22 11:00:25 00:04:34.843
4 ff and term running 372M 2013-11-22 11:12:27 00:08:44.965

© Unique auto-incremented identification number of the snapshot.

2]

319

CHAPTER 38. VIRTUAL MACHINE ADMINISTRATION USING QEMU MONITOR

Unique description string of the snapshot. It is meant as a human readable version of the
ID.

© The disk space occupied by the snapshot. The more memory is consumed by running
applications, the bigger the snapshot is.

O Time and date the snapshot was created.
© The current state of the virtual machine's clock.
38.9. Suspending and resuming virtual machine execution
The following commands are available for suspending and resuming virtual machines:
stop
Suspends the execution of the virtual machine.
cont
Resumes the execution of the virtual machine.
system_reset

Resets the virtual machine. The effect is similar to the reset button on a physical machine.
This may leave the file system in an unclean state.

system_powerdown

Sends an ACPI shutdown request to the machine. The effect is similar to the power button
on a physical machine.

qorquit
Terminates QEMU immediately.
38.10. Live migration

The live migration process allows to transmit any virtual machine from one host system to another
host system without any interruption in availability. It is possible to change hosts permanently or
only during maintenance.

The requirements for live migration:

« All requirements from the section called “Migration requirements” are applicable.
* Live migration is only possible between VM Host Servers with the same CPU features.

» AHCI interface, VirtFS feature, and the -mem-path command line option are not compatible
with migration.

320

» The guest on the source and destination hosts must be started in the same way.

» -snapshot gemu command line option should not be used for migration (and this gemu
command line option is not supported).

Support status

0 The postcopy mode is not yet supported in SUSE Linux Enterprise Server. It is

released as a technology preview only. For more information about postcopy, see
https://wiki.gemu.org/Features/PostCopyLiveMigration.

More recommendations can be found at the following Web site: https://www.linux-kvm.org/page/
Migration

The live migration process has the following steps:

1.
2.

The virtual machine instance is running on the source host.

The virtual machine is started on the destination host in the frozen listening mode. The
parameters used are the same as on the source host plus the -incoming tcp:IP:PORT
parameter, where /P specifies the IP address and PORT specifies the port for listening to the
incoming migration. If O is set as IP address, the virtual machine listens on all interfaces.

.On the source host, switch to the monitor console and use the migrate -d
tcp:DESTINATION_IP:PORT command to initiate the migration.

. To determine the state of the migration, use the info migrate command in the monitor
console on the source host.

. To cancel the migration, use the migrate_cancel command in the monitor console on the
source host.

.To set the maximum tolerable downtime for migration in seconds, use the
migrate_set_downtimeNUMBER_OF _SECONDS command.

.To set the maximum speed for migration in bytes per second, use the
migrate_set_speedBYTES_PER_SECOND command.

38.11. QMP - QEMU machine protocol

QMP is a JSON-based protocol that allows applications—such as libvirt—to communicate with

a running QEMU instance. There are several ways you can access the QEMU monitor using QMP

commands.

38.11.1. Access QMP via standard input/output

The most flexible way to use QMP is by specifying the -mon option. The following example creates

a QMP instance using standard input/output. In the following examples, -> marks lines with

321

https://wiki.qemu.org/Features/PostCopyLiveMigration
https://www.linux-kvm.org/page/Migration
https://www.linux-kvm.org/page/Migration

CHAPTER 38. VIRTUAL MACHINE ADMINISTRATION USING QEMU MONITOR

commands sent from client to the running QEMU instance, while <- marks lines with the output
returned from QEMU.
>sudo gemu-system-x86 64 [...] \

-chardev stdio,id=mon0 \
-mon chardev=mon@,mode=control,pretty=on

<_
"QMP": {
"version": {
"gemu": {
"micro": O,
"minor": O,
"major": 2
T
"package": ""
"capabilities": [
}
}

When a new QMP connection is established, QMP sends its greeting message and enters
capabilities negotiation mode. In this mode, only the qmp_capabilities command works. To
exit capabilities negotiation mode and enter command mode, the qmp_capabilities command
must be issued first:

-> { "execute": "gmp_ capabilities" }

<-

"return": {

}
}

"return": {}is a QMP's success response.

QMP's commands can have arguments. For example, to eject a CD-ROM drive, enter the
following:

->{ "execute": "eject", "arguments": { "device": "idel-cdO" } }
<-
"timestamp": {
"seconds": 1410353381,
"microseconds": 763480

Iy
"event": "DEVICE TRAY MOVED",
"data": {
"device": "idel-cd0",
"tray-open": true
}
}
{
"return": {
}
}

38.11.2. Access QMP via telnet

Instead of the standard input/output, you can connect the QMP interface to a network socket and
communicate with it via a specified port:

322

>sudo gemu-system-x86 64 [...] \
-chardev socket,id=mon0,host=1localhost,port=4444,server,nowait \
-mon chardev=mon0O,mode=control,pretty=on

And then run telnet to connect to port 4444

>telnet localhost 4444
Trying ::1...

Connected to localhost.
Escape character is '~]'.

< -
"QMP": {
"version": {
nqemuu: {
"micro": 0O,
"minor": 0O,
"major": 2
Ilpackagell: nn

“&apabilities": [

}

You can create several monitor interfaces at the same time. The following example creates one
HMP instance—human monitor which understands “normal” QEMU monitor's commands—on the
standard input/output, and one QMP instance on localhost port 4444:

>sudo gemu-system-x86 64 [...] \

-chardev stdio,id=mon@ -mon chardev=mon0O,mode=readline \

-chardev socket,id=monl,host=1localhost,port=4444,server,nowait \
-mon chardev=monl,mode=control,pretty=on

38.11.3. Access QMP via Unix socket

Invoke QEMU using the - gmp option, and create a Unix socket:

>sudo gemu-system-x86 64 [...] \
-gmp unix:/tmp/gmp-sock,server --monitor stdio

QEMU waiting for connection on: unix:./gmp-sock,server

To communicate with the QEMU instance via the /tmp/gmp-sock socket, use nc (see man 1 nc
for more information) from another terminal on the same host:

>sudo nc -U /tmp/gmp-sock
<- {"QMP": {"version": {"gemu": {"micro": 0, "minor": 0, "major": 2} [...]

38.11.4. Access QMP via Libvirt's virsh command

If you run your virtual machines under libvirt (see Partll, “Managing virtual machines with
libvirt ”), you can communicate with its running guests by running the virsh qemu-
monitor-command:

323

CHAPTER 38. VIRTUAL MACHINE ADMINISTRATION USING QEMU MONITOR

>sudo virsh gemu-monitor-command vm guestl \
--pretty '{"execute":"query-kvm"}'
<- {
"return": {
"enabled": true,
"present": true

},
"id": "libvirt-8"
}

In the above example, we ran the simple command query-kvm which checks if the host is
capable of running KVM and if KVM is enabled.

Generating human-readable output

@ To use the standard human-readable output format of QEMU instead of the JSON
format, use the - -hmp option:

>sudo virsh gemu-monitor-command vm guestl --hmp "query-kvm"

324

Part VI. Troubleshooting

39 Integrated help and package documentation
326

40 Gathering system information and logs 327

325

CHAPTER 39. INTEGRATED HELP AND PACKAGE DOCUMENTATION

Chapter 39. Integrated help and package documentation

Virtualization packages provide commands for managing many aspects of a virtualization host. It is
not possible or expected to remember all options supported by these commands. A basic
installation of a Xen or KVM host includes manual pages and integrated help for shell commands.
The documentation sub-packages provide additional content beyond what is provided by the basic
installation.

Manual pages for shell commands

Most commands include a man page that provides detailed information about the command,
describes any options, and in certain cases gives example command usage. For example, to
see the manual for the virt-install command type:

>man virt-install

Integrated help for shell commands

Commands also include integrated help, providing more compact and topic-driven
documentation. For example, to see a brief description of the virt-install command

type:

>virt-install --help

Integrated help can also be used to see the details of a specific option. For example, to see
the sub-options supported by the disk option type:

>virt-install --disk help

Documentation sub-packages

Many of the virtualization packages provide additional content in their documentation sub-
package. As an example, the libvirt-doc package contains all the documentation
available at https:/libvirt.org, plus sample code demonstrating the use of the libvirt C API.
Use the rpm command to view the contents of a documentation sub-package. For example,
to see the contents of Libvirt-doc:

rpm -ql libvirt-doc

326

https://libvirt.org

Chapter 40. Gathering system information and logs

When a virtualization host encounters a problem, it is often necessary to collect a detailed system
report, which can be done with the help of the supportconfig tool. See Chapter 48, Gathering
system information for support in “Administration Guide” for more information about
supportconfig.

In certain cases, the information gathered by supportconfig is insufficient, and logs generated
from a custom logging or debugging configuration may be required to determine the cause of a
problem.

40.1. libvirt log controls

libvirt provides logging facilities for both the library and the daemon. The behavior of the
logging facility is controlled by adjusting the log level, filter and output settings.

Log level

libvirt log messages are classified into four priority levels: DEBUG, INFO, WARNING
and ERROR. The DEBUG level is verbose and capable of generating gigabytes of
information in a short time. The volume of log messages progressively decreases with the
INFO, WARNING and ERROR log levels. ERROR is the default log level.

Log filters

Log filters provide a way to log only messages matching a specific component and log level.
Log filters allow collecting the verbose DEBUG log messages of specific components, but
only ERROR level log messages from the rest of the system. By default, no log filters are
defined.

Log outputs

Log outputs allow specifying where the filtered log messages are sent. Messages can be
sent to a file, the standard error stream of the process, or journald. By default, filtered log
messages are sent to journald.

See https://libvirt.org/logging.html for more details on Libvirt's log controls.

A default Libvirt installation has the log level set to ERROR, no log filters defined, and log
outputs set to journald. Log messages from the libvirt daemon can be viewed with the
journalctl command:

#journalctl --unit libvirtd

The default log facility settings are fine for normal operations and provide useful messages for
applications and users of Libvirt, but internal issues often require DEBUG level messages. As

327

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf
https://libvirt.org/logging.html

CHAPTER 40. GATHERING SYSTEM INFORMATION AND LOGS

an example, consider a potential bug in the interaction between libvirt and the QEMU monitor.
In this case, we only need to see the debug messages of the communication between libvirt

and QEMU. The following example creates a log filter to select debug messages from the QEMU
driver and send them to a file named /tmp/libvirtd. log

log filters="1l:gemu.gemu monitor json"
log outputs="1l:file:/tmp/libvirtd.log"

Log controls for the libvirt daemon can be found in /etc/libvirt/libvirtd.conf. The
daemon must be restarted after making any changes to the configuration file.

#systemctl restart libvirtd.service

328

Glossary
General
Create Virtual Machine Wizard

A software program available in YaST and Virtual Machine Manager that provides a
graphical interface to guide you through the steps to create virtual machines. It can also be
run in text mode by entering virt-install at a command prompt in the host environment.

Dom0O

The term is used in Xen environments, and refers to a virtual machine. The host operating
system is a virtual machine running in a privileged domain and can be called Dom0O. All other
virtual machines on the host run in unprivileged domains and can be called domain U's.

hardware-assisted

Intel* and AMD* provide virtualization hardware-assisted technology. This reduces the
frequency of VM IN/OUT (fewer VM traps), because software is a major source of overhead,
and increases the efficiency (the execution is done by the hardware). Moreover, this reduces
the memory footprint, provides better resource control, and allows secure assignment of
specific 1/0 devices.

Host Environment

The desktop or command line environment that allows interaction with the host computer's
environment. It provides a command line environment and can also include a graphical
desktop, such as GNOME or IceWM. The host environment runs as a special type of virtual
machine that has privileges to control and manage other virtual machines. Other commonly
used terms include DomoO, privileged domain, and host operating system.

Hypervisor

The software that coordinates the low-level interaction between virtual machines and the
underlying physical computer hardware.

KVM
See Chapter 4, Introduction to KVM virtualization
Paravirtualized Frame Buffer

The video output device that drives a video display from a memory buffer containing a
complete frame of data for virtual machine displays running in paravirtual mode.

329

GLOSSARY

VHS
Virtualization Host Server
The physical computer running a SUSE virtualization platform software. The virtualization
environment consists of the hypervisor, the host environment, virtual machines and
associated tools, commands and configuration files. Other commonly used terms include
host, Host Computer, Host Machine (HM), Virtual Server (VS), Virtual Machine Host (VMH),
and VM Host Server (VHS).

VirtFS

VIirtFS is a new paravirtualized file system interface designed for improving pass-through
technologies in the KVM environment. It is based on the VirtlO framework.

Virtual Machine

A virtualized PC environment (VM) capable of hosting a guest operating system and
associated applications. Could be also called a VM Guest.

Virtual Machine Manager

A software program that provides a graphical user interface for creating and managing virtual
machines.

Virtualized
A guest operating system or application running on a virtual machine.
Xen

See Chapter 3, Introduction to Xen virtualization

x|
A set of commands for Xen that lets administrators manage virtual machines from a
command prompt on the host computer. It replaced the deprecated xm tool stack.

CPU

CPU capping

Virtual CPU capping allows you to set vCPU capacity to 1-100 percent of the physical CPU
capacity.

330

CPU hotplugging

CPU hotplugging is used to describe the functions of replacing/adding/removing a CPU
without shutting down the system.

CPU over-commitment

Virtual CPU over-commitment is the ability to assign more virtual CPUs to VMs than the
actual number of physical CPUs present in the physical system. This procedure does not
increase the overall performance of the system, but may be useful for testing purposes.

CPU pinning

Processor affinity, or CPU pinning enables the binding and unbinding of a process or a
thread to a central processing unit (CPU) or a range of CPUs.

Network
Bridged Networking

A type of network connection that lets a virtual machine be identified on an external network
as a unique identity that is separate from and unrelated to its host computer.

Empty Bridge

A type of network bridge that has no physical network device or virtual network device
provided by the host. This lets virtual machines communicate with other virtual machines on
the same host but not with the host or on an external network.

External Network

The network outside a host's internal network environment.
Internal Network

A type of network configuration that restricts virtual machines to their host environment.
Local Bridge

A type of network bridge that has a virtual network device but no physical network device
provided by the host. This lets virtual machines communicate with the host and other virtual
machines on the host. Virtual machines can communicate on an external network through
the host.

Network Address Translation (NAT)

A type of network connection that lets a virtual machine use the IP address and MAC
address of the host.

331

GLOSSARY

No Host Bridge

A type of network bridge that has a physical network device but no virtual network device
provided by the host. This lets virtual machines communicate on an external network but not
with the host. This lets you separate virtual machine network communications from the host
environment.

Traditional Bridge

A type of network bridge that has both a physical network device and a virtual network
device provided by the host.

Storage
AHCI

The Advanced Host Controller Interface (AHCI) is a technical standard defined by Intel* that
specifies the operation of Serial ATA (SATA) host bus adapters in a non-implementation-
specific manner.

Block Device

Data storage devices, such as CD-ROM drives or disk drives, that move data in the form of
blocks. Partitions and volumes are also considered block devices.

File-Backed Virtual Disk
A virtual disk based on a file, also called a disk image file.
Raw Disk

A method of accessing data on a disk at the individual byte level instead of through its file
system.

Sparse image file

A disk image file that does not reserve its entire amount of disk space but expands as data is
written to it.

xvda

The drive designation given to the first virtual disk on a paravirtual machine.

332

Acronyms
ACPI

Advanced Configuration and Power Interface (ACPI) specification provides an open
standard for device configuration and power management by the operating system.

AER
Advanced Error Reporting

AER is a capability provided by the PCI Express specification which allows for reporting of
PCI errors and recovery from some of them.

APIC
Advanced Programmable Interrupt Controller (APIC) is a family of interrupt controllers.
BDF
Bus:Device:Function
Notation used to succinctly describe PCI and PCle devices.
CG
Control Groups
Feature to limit, account and isolate resource usage (CPU, memory, disk I/O, etc.).
EDF
Earliest Deadline First
This scheduler provides weighted CPU sharing in an intuitive way and uses real-time
algorithms to ensure time guarantees.
EPT

Extended Page Tables

Performance in a virtualized environment is close to that in a native environment.
Virtualization does create some overheads, however. These come from the virtualization of
the CPU, the MMU, and the 1/O devices. In some recent x86 processors AMD and Intel have
begun to provide hardware extensions to help bridge this performance gap. In 2006, both
vendors introduced their first generation hardware support for x86 virtualization with AMD-
Virtualization (AMD-V) and Intel® VT-x technologies. Recently Intel introduced its second
generation of hardware support that incorporates MMU-virtualization, called Extended Page

333

GLOSSARY

Tables (EPT). EPT-enabled systems can improve performance compared to using shadow
paging for MMU virtualization. EPT increases memory access latencies for a few workloads.
This cost can be reduced by effectively using large pages in the guest and the hypervisor.

FLASK
Flux Advanced Security Kernel

Xen implements a type of mandatory access control via a security architecture called FLASK
using a module of the same name.

HAP
High Assurance Platform
HAP combines hardware and software technologies to improve workstation and network
security.

HVM
Hardware Virtual Machine (commonly called like this by Xen).

IOMMU
Input/Output Memory Management Unit
IOMMU (AMD* technology) is a memory management unit (MMU) that connects a direct
memory access-capable (DMA-capable) I/0 bus to the main memory.

KSM
Kernel Same Page Merging
KSM allows for automatic sharing of identical memory pages between guests to save host
memory. KVM is optimized to use KSM if enabled on the VM Host Server.

MMU
Memory Management Unit
is a computer hardware component responsible for handling accesses to memory requested
by the CPU. Its functions include translation of virtual addresses to physical addresses (that
is, virtual memory management), memory protection, cache control, bus arbitration and in
simpler computer architectures (especially 8-bit systems) bank switching.

PAE

Physical Address Extension

334

PCID

PCle

32-bit x86 operating systems use Physical Address Extension (PAE) mode to enable
addressing of more than 4 GB of physical memory. In PAE mode, page table entries (PTESs)
are 64 bits in size.

Process-context identifiers

These are a facility by which a logical processor may cache information for multiple linear-
address spaces so that the processor may retain cached information when software
switches to a different linear address space. INVPCID instruction is used for fine-grained
TLB flush, which is benefit for kernel.

Peripheral Component Interconnect Express

PCle was designed to replace older PCI, PCI-X and AGP bus standards. PCle has
numerous improvements including a higher maximum system bus throughput, a lower I/O
pin count and smaller physical footprint. Moreover it also has a more detailed error detection
and reporting mechanism (AER), and a native hotplug functionality. It is also backward
compatible with PCI.

PSE and PSE36

PT

QXL

335

Page Size Extended

PSE refers to a feature of x86 processors that allows for pages larger than the traditional 4
KiB size. PSE-36 capability offers 4 more bits, in addition to the normal 10 bits, which are
used inside a page directory entry pointing to a large page. This allows a large page to be
located in 36-bit address space.

Page Table

A page table is the data structure used by a virtual memory system in a computer operating
system to store the mapping between virtual addresses and physical addresses. Virtual
addresses are those unique to the accessing process. Physical addresses are those unique
to the hardware (RAM).

QXL is a cirrus VGA framebuffer (8M) driver for virtualized environment.

GLOSSARY

RVI or NPT
Rapid Virtualization Indexing, Nested Page Tables

An AMD second generation hardware-assisted virtualization technology for the processor
memory management unit (MMU).

SATA
Serial ATA

SATA is a computer bus interface that connects host bus adapters to mass storage devices
such as hard disks and optical drives.

Seccomp2-based sandboxing

Sandboxed environment where only predetermined system calls are permitted for added
protection against malicious behavior.

SMEP
Supervisor Mode Execution Protection

This prevents the execution of user-mode pages by the Xen hypervisor, making many
application-to-hypervisor exploits much harder.

SPICE

Simple Protocol for Independent Computing Environments
SXP

An SXP file is a Xen Configuration File.
TCG

Tiny Code Generator

Instructions are emulated rather than executed by the CPU.
THP

Transparent Huge Pages

This allows CPUs to address memory using pages larger than the default 4 KB. This helps
reduce memory consumption and CPU cache usage. KVM is optimized to use THP (via
madvise and opportunistic methods) if enabled on the VM Host Server.

336

TLB
Translation Lookaside Buffer

TLB is a cache that memory management hardware uses to improve virtual address
translation speed. All current desktop, notebook, and server processors use a TLB to map
virtual and physical address spaces, and it is nearly always present in any hardware that
uses virtual memory.

VCPU
A scheduling entity, containing each state for virtualized CPU.
VDI
Virtual Desktop Infrastructure
VFIO
Since kernel v3.6; a new method of accessing PCI devices from user space called VFIO.
VHS
Virtualization Host Server
VM root

VMM will run in VMX root operation and guest software will run in VMX non-root operation.
Transitions between VMX root operation and VMX non-root operation are called VMX
transitions.

VMCS
Virtual Machine Control Structure

VMX non-root operation and VMX transitions are controlled by a data structure called a
virtual-machine control structure (VMCS). Access to the VMCS is managed through a
component of processor state called the VMCS pointer (one per logical processor). The
value of the VMCS pointer is the 64-bit address of the VMCS. The VMCS pointer is read and
written using the instructions VMPTRST and VMPTRLD. The VMM configures a VMCS
using the VMREAD, VMWRITE, and VMCLEAR instructions. A VMM could use a different
VMCS for each virtual machine that it supports. For a virtual machine with multiple logical
processors (virtual processors), the VMM could use a different VMCS for each virtual
processor.

337

GLOSSARY

VMDq
Virtual Machine Device Queue

Multi-queue network adapters exist which support multiple VMs at the hardware level, having
separate packet queues associated to the different hosted VMs (by means of the IP
addresses of the VMs).

VMM
Virtual Machine Monitor (Hypervisor)
When the processor encounters an instruction or event of interest to the Hypervisor (VMM),
it exits from guest mode back to the VMM. The VMM emulates the instruction or other event,
at a fraction of native speed, and then returns to guest mode. The transitions from guest
mode to the VMM and back again are high-latency operations, during which guest execution
is completely stalled.

VMX
Virtual Machine eXtensions

VPID
New support for software control of TLB (VPID improves TLB performance with small VMM
development effort).

VT-d
Virtualization Technology for Directed 1/0O
Like IOMMU for Intel*.

vTPM

Component to establish end-to-end integrity for guests via Trusted Computing.

338

https://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices

Appendix A. Virtual machine drivers

Virtualization allows the consolidation of workloads on newer, more powerful, energy-efficient
hardware. Paravirtualized operating systems such as SUSE® Linux Enterprise Server and other
Linux distributions are aware of the underlying virtualization platform, and can therefore interact
efficiently with it. Unmodified operating systems such as Microsoft Windows* are unaware of the
virtualization platform and expect to interact directly with the hardware. Because this is not possible
when consolidating servers, the hardware must be emulated for the operating system. Emulation
can be slow, but it is especially troubling for high-throughput disk and network subsystems. Most
performance loss occurs in this area.

The SUSE Linux Enterprise Virtual Machine Driver Pack (VMDP) contains 32-bit and 64-bit
paravirtualized network, bus and block drivers for several Microsoft Windows operating systems.
These drivers bring many of the performance advantages of paravirtualized operating systems to
unmodified operating systems: only the paravirtualized device driver (not the rest of the operating
system) is aware of the virtualization platform. For example, a paravirtualized disk device driver
appears as a normal, physical disk to the operating system. However, the device driver interacts
directly with the virtualization platform (with no emulation). This helps to efficiently deliver disk
access, allowing the disk and network subsystems to operate at near native speeds in a virtualized
environment, without requiring changes to existing operating systems.

The SUSE® Linux Enterprise Virtual Machine Driver Pack is available as an add-on product for
SUSE Linux Enterprise Server. For detailed information refer to https://www.suse.com/products/
vmdriverpack/.

For more information, refer to the Official VMDP Installation Guide.

339

https://www.suse.com/products/vmdriverpack/
https://www.suse.com/products/vmdriverpack/
https://documentation.suse.com/sle-vmdp/2.5/html/vmdp/index.html
https://documentation.suse.com/sle-vmdp/2.5/html/vmdp/index.html

APPENDIX B. CONFIGURING GPU PASS-THROUGH FOR NVIDIA CARDS

Appendix B. Configuring GPU Pass-Through for NVIDIA cards
B.1. Introduction

This article describes how to assign an NVIDIA GPU graphics card on the host machine to a
virtualized guest.

B.2. Prerequisites

* GPU pass-through is supported on the AMDG64/Intel 64 architecture only.
» The host operating system needs to be SLES 12 SP3 or newer.

* This article deals with a set of instructions based on V100/T1000 NVIDIA cards, and is
meant for GPU computation purposes only.

« Verify that you are using an NVIDIA Tesla product—Maxwell, Pascal, or Volta.

» To manage the host system, you need an additional display card on the host that you can
use when configuring the GPU pass-through, or a functional SSH environment.

B.3. Configuring the host

B.3.1. Verify the host environment

1. Verify that the host operating system is SLES 12 SP3 or newer:

>cat /etc/issue
Welcome to SUSE Linux Enterprise Server 15 (x86 64) - Kernel \r (\1).

2. Verify that the host supports VT-d technology and that it is already enabled in the firmware
settings:

>dmesg | grep -e "Directed I/O"
[12.819760] DMAR: Intel(R) Virtualization Technology for Directed I/0

If VT-d is not enabled in the firmware, enable it and reboot the host.

3. Verify that the host has an extra GPU or VGA card:
>lspci | grep -i "vga"
07:00.0 VGA compatible controller: Matrox Electronics Systems Ltd. \
MGA G200e [Pilot] ServerEngines (SEP1) (rev 05)
With a Tesla V100 card:

>lspci | grep -i nvidia
03:00.0 3D controller: NVIDIA Corporation GV100 [Tesla V100 PCIe] (rev al)

With a T1000 Mobile (available on Dell 5540):
>lspci | grep -i nvidia

01:00.0 3D controller: NVIDIA Corporation TU117GLM [Quadro T1000 Mobile]
(rev al)

340

B.3.2. Enable IOMMU

IOMMU is disabled by default. You need to enable it at boot time in the /etc/default/grub
configuration file.

1. For Intel-based hosts:

GRUB CMDLINE LINUX="intel iommu=on iommu=pt rd.driver.pre=vfio-pci"
For AMD-based hosts:

GRUB_CMDLINE LINUX="iommu=pt amd_ iommu=on rd.driver.pre=vfio-pci"

. When you save the modified /etc/default/grub file, re-generate the main GRUB 2

configuration file /boot/grub2/grub.cfg:

>sudo grub2-mkconfig -o /boot/grub2/grub.cfg

. Reboot the host and verify that IOMMU is enabled:

>dmesg | grep -e DMAR -e IOMMU

B.3.3. Blacklist the Nouveau driver

To assign the NVIDIA card to a VM guest, we need to prevent the host OS from loading the built-in
nouveau driver for NVIDIA GPUs. Create the file /etc/modprobe.d/60-blacklist-
nouveau. conf with the following content:

blacklist nouveau

B.3.4. Configure VFIO and isolate the GPU used for pass-through

1. Find the card vendor and model IDs. Use the bus number identified in the section called

“Verify the host environment”, for example, 03:00. 0:

>lspci -nn | grep 03:00.0
03:00.0 3D controller [0302]: NVIDIA Corporation GV100 [Tesla V100 PCIe]
[10de:1db4] (rev al)

. Create the file /etc/modprobe.d/vfio. conf with the following content:

options vfio-pci ids=10de:1db4

Note

@ Verify that your card does not need an extra ids= parameter. For certain
cards, you must specify the audio device too, therefore device's ID must also
be added to the list, otherwise you cannot use the card.

B.3.5. Load the VFIO driver

There are three ways you can load the VFIO driver.

341

APPENDIX B. CONFIGURING GPU PASS-THROUGH FOR NVIDIA CARDS

B.3.5.1. Including the driver in the initrd file

1. Create the file /etc/dracut.conf.d/gpu-passthrough.conf and add the following
content (mind the leading whitespace):

add drivers+=" vfio vfio iommu typel vfio pci vfio virqfd"
2. Re-generate the initrd file:

>sudo dracut --force /boot/initrd $(uname -r)

B.3.5.2. Adding the driver to the list of auto-loaded modules

Create the file /etc/modules-load.d/vfio-pci.conf and add the following content:

vfio

vfio iommu_typel
vfio pci

kvm

kvm_intel

B.3.5.3. Loading the driver manually
To load the driver manually at runtime, execute the following command:
>sudo modprobe vfio-pci

B.3.6. Disable MSR for Microsoft Windows guests

For Microsoft Windows guests, we recommend disabling MSR (model-specific register) to avoid
the guest crashing. Create the file /etc/modprobe.d/kvm. conf and add the following content:

options kvm ignore msrs=1
B.3.7. Install UEFI firmware

For proper GPU pass-through functionality, the host needs to boot using UEFI firmware (that is, not
using a legacy-style BIOS boot sequence). Install the gemu - ovmf package if not already installed:

>sudo zypper install gemu-ovmf
B.3.8. Reboot the host machine

For most of the changes in the above steps to take effect, you need to reboot the host machine:

>sudo shutdown -r now

342

B.4. Configuring the guest

This section describes how to configure the guest virtual machine so that it can use the host's
NVIDIA GPU. Use Virtual Machine Manager or virt-install to install the guest VM. Find more

details in Chapter 10, Guest installation.

B.4.1. Requirements for the guest configuration

During the guest VM installation, select Customize configuration before install and configure the

following devices:

« Use Q35 chipset if possible.
« Install the guest VM using UEFI firmware.
» Add the following emulated devices:
Graphic: Spice or VNC
Device: gxl, VGA or Virtio
Find more information in the section called “Video”.

» Add the host PCI device (03:00.0 in our example) to the guest. Find more information in
the section called “Assigning a host PCI device to a VM Guest”.

* For the best performance, we recommend using virtio drivers for the network card and
storage.

B.4.2. Install the graphic card driver

B.4.2.1. Linux guest

Procedure B.1. RPM-based distributions

343

1. Download the driver RPM package from hitps://www.nvidia.com/download/

driverResults.aspx/131159/en-us.

2. Install the downloaded RPM package:

>sudo rpm -i nvidia-diag-driver-local-repo-sles123-390.30-1.0-1.x86 64.rpm

3. Refresh repositories and install cuda-drivers. This step is different for non-SUSE

distributions:

>sudo zypper refresh && zypper install cuda-drivers

4. Reboot the guest VM:

>sudo shutdown -r now

https://www.nvidia.com/download/driverResults.aspx/131159/en-us
https://www.nvidia.com/download/driverResults.aspx/131159/en-us

APPENDIX B. CONFIGURING GPU PASS-THROUGH FOR NVIDIA CARDS

Procedure B.2. Generic installer

1. Because the installer needs to compile the NVIDIA driver modules, install the gcc-c++ and
kernel-devel packages.

2. Disable Secure Boot on the guest, because NVIDIA's driver modules are unsigned. On
SUSE distributions, you can use the YaST GRUB 2 module to disable Secure Boot. Find
more information in the section called “Implementation on SUSE Linux Enterprise Server ” in
“Administration Guide”.

3. Download the driver installation script from https://www.nvidia.com/Download/index.aspx?
lang=en-us, make it executable and run it to complete the driver installation:

>chmod +x NVIDIA-Linux-x86 64-460.73.01.run
>sudo ./NVIDIA-Linux-x86 64-460.73.01.run

4. Download CUDA drivers from https://developer.nvidia.com/cuda-downloads?

and install following the on-screen instructions.

Display issues

@ After you have installed the NVIDIA drivers, the Virtual Machine Manager display
loses its connection to the guest OS. To access the guest VM, you must either login
via ssh, change to the console interface, or install a dedicated VNC server in the
guest. To avoid a flickering screen, stop and disable the display manager:

>sudo systemctl stop display-manager && systemctl disable display-
manager

Procedure B.3. Testing the Linux driver installation

1. Change the directory to the CUDA sample templates:
>cd /usr/local/cuda-9.1/samples/0 Simple/simpleTemplates
2. Compile and run the simpleTemplates file:

>make && ./simpleTemplates

runTest<float, 32>

GPU Device 0: "Tesla V100-PCIE-16GB" with compute capability 7.0
CUDA device [Tesla V100-PCIE-16GB] has 80 Multi-Processors
Processing time: 495.006000 (ms)

Compare 0K

runTest<int, 64>

GPU Device 0: "Tesla V100-PCIE-16GB" with compute capability 7.0
CUDA device [Tesla V100-PCIE-16GB] has 80 Multi-Processors
Processing time: 0.203000 (ms)

Compare OK

[simpleTemplates] -> Test Results: 0 Failures

344

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf
https://www.nvidia.com/Download/index.aspx?lang=en-us
https://www.nvidia.com/Download/index.aspx?lang=en-us
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=SLES&target_version=15&target_type=rpmlocal
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=SLES&target_version=15&target_type=rpmlocal

B.4.2.2. Microsoft Windows guest

Important

0 Before you install the NVIDIA drivers, you need to hide the hypervisor from the
drivers by using the <hidden state='on'/> directive in the guest's libvirt
definition, for example:

<features>
<acpi/>
<apic/>
<kvm>
<hidden state='on'/>
</kvm>
</features>

1. Download and install the NVIDIA driver from https://www.nvidia.com/Download/index.aspx.

2. Download and install the CUDA toolkit from https://developer.nvidia.com/cuda-downloads?
target_os=Windowsé&target arch=x86_64.

3. Find several NVIDIA demo samples in the directory Program Files\Nvidia GPU
Computing Toolkit\CUDA\v10.2\extras\demo suite on the guest.

345

https://www.nvidia.com/Download/index.aspx
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

Appendix C. XM, XL toolstacks, and the Libvirt framework
C.1. Xen toolstacks

Since the early Xen 2.x releases, xend has been the de facto toolstack for managing Xen
installations. In Xen 4.1, a new toolstack called libxenlight (also known as libxl) was introduced with
technology preview status. libxl is a small, low-level library written in C. It has been designed to
provide a simple API for all client toolstacks (XAPI, Libvirt, xI). In Xen 4.2, libxl was promoted to
supported status and xend was marked deprecated. xend has been included in the Xen 4.3 and
4.4 series to give users enough time to convert their tooling to libxl. It has been removed from the
upstream Xen project and is no longer provided starting with the Xen 4.5 series and SUSE Linux
Enterprise Server 12 SP1.

Although SLES 11 SP3 contains Xen 4.2, SUSE retained the xend toolstack since making such an
invasive change in a service pack would be too disruptive for SUSE Linux Enterprise customers.
However, SLES 12 provides a suitable opportunity to move to the new libxl toolstack and remove
the deprecated, unmaintained xend stack. Starting with SUSE Linux Enterprise Server 12 SP1,
xend is no longer supported.

One of the major differences between xend and libxl is that the former is stateful, while the latter is
stateless. With xend, all client applications such as xm and libvirt see the same system state.
xend maintains the state for the entire Xen host. In libxl, client applications such as x1 or
libvirt must maintain state. Thus domains created with X1 are not visible or known to other libxl
applications such as libvirt. Generally, it is discouraged to mix and match libxl applications and
is preferred that a single libxl application be used to manage a Xen host. In SUSE Linux Enterprise
Server, we recommend using Libvirt to manage Xen hosts. This allows management of the Xen
system through libvirt applications such as virt-manager, virt-install, virt-viewer,
libguestfs, etc. If X1 is used to manage the Xen host, any virtual machines under its management
are not accessible to libvirt. Hence, they are not accessible to any of the libvirt
applications.

C.1.1. Upgrading from xend/xm to x1/libxl

The x1 application, along with its configuration format (see man x1l.cfg), was designed to be
backward-compatible with the xm application and its configuration format (see man xm.cfg).
Existing xm configuration should be usable with x1. Since libxl is stateless, and x1 does not
support the notion of managed domains, SUSE recommends using libvirt to manage Xen
hosts. SUSE has provided a tool called xen2libvirt, which provides a simple mechanism to
import domains previously managed by xend into Libvirt. See the section called “Import Xen
domain configuration into 1ibvirt ” for more information on xen2libvirt.

346

https://wiki.xen.org/wiki/XAPI

C.1.2. XL design

The basic structure of every x1 command is:
x1 subcommandOPTIONSDOMAIN

DOMAIN is the numeric domain ID, or the domain name (which is internally translated to the
domain ID), and OPTIONS are subcommand specific options.

Although xlI/libx] was designed to be backward-compatible with xm/xend, there are a few
differences that should be noted:

» Managed or persistent domains. Libvirt now provides this functionality.
« xl/libxl does not support Python code in the domain configuration files.

* xl/libxl does not support creating domains from SXP format configuration files (xmcreate -
F).

« xl/libxl does not support sharing storage across DomU's via w! in domain configuration files.

xl/libxl is new and under heavy development, hence a few features are still missing with regard to
the xm/xend toolstack:

» SCSI LUN/Host pass-through (PVSCSI)
« USB pass-through (PVUSB)

« Direct Kernel Boot for fully virtualized Linux guests for Xen

C.1.3. Checklist before upgrade
Before upgrading a SLES 11 SP4 Xen host to SLES 15:

* You must remove any Python code from your xm domain configuration files.

* It is recommended to capture the libvirt domain XML from all existing virtual machines using
virshdumpxmDOMAIN_NAMEDOMAIN_NAME.xml.

* It is recommended to do a backup of /etc/xen/xend-config.sxp and /boot/grub/
menu. Lst files to keep references of previous parameters used for Xen.

Note

@ Currently, live migrating virtual machines running on a SLES 11 SP4 Xen host to a
SLES 15 Xen host is not supported. The xend and libxl toolstacks are not runtime-
compatible. Virtual machine downtime is required to move the virtual machines.

347

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

C.2. Import Xen domain configuration into Libvirt

xen2libvirt is a command line tool to import legacy Xen domain configuration into the
libvirt virtualization library (see The Virtualization book for more information on libvirt).
xen2libvirt provides an easy way to import domains managed by the deprecated xm/xend tool stack
into the new Llibvirt/libxl tool stack. Several domains can be imported at once using its - -
recursive mode

xen2libvirt is included in the xen-tools package. If needed, install it with
>sudo zypper install xen-tools

xen2libvirt general syntax is

xen2libvirt <options> /path/to/domain/config

where options can be:
-h, --help

Prints short information about xen2libvirt usage.
-c, --convert-only

Converts the domain configuration to the 1ibvirt XML format, but does not do the import
to Libvirt.

-r, --recursive
Converts and/or imports all domains configuration recursively, starting at the specified path.
-f, --format

Specifies the format of the source domain configuration. Can be either xm, or sexpr (S-
expression format).

-v, --verbose
Prints more detailed information about the import process.
Example C.1. Converting Xen domain configuration to Libvirt

Suppose you have a Xen domain managed with xm with the following configuration saved in /
etc/xen/slel2. xm:

kernel = "/boot/vmlinuz-2.6-xenU"
memory = 128
name = "SLE12"
root = "/dev/hdal ro"

disk ["file:/var/xen/slel2.img,hdal,w"]

348

Convert it to Libvirt XML without importing it, and look at its content:

>sudo xen2libvirt -f xm -c /etc/xen/slel2.xm > /etc/libvirt/gemu/sles12.xml
cat /etc/libvirt/gemu/slesl2.xml
<domain type='xen'>
<name>SLE12</name>
<uuid>43e1863c-8116-469c-a253-83d8be®9%9aald</uuid>
<memory unit='KiB'>131072</memory>
<currentMemory unit='KiB'>131072</currentMemory>
<vcpu placement='static'>1</vcpu>
<0S>
<type arch='x86 64' machine='xenpv'>linux</type>
<kernel>/boot/vmlinuz-2.6-xenU</kernel>
</0s>
<clock offset='utc' adjustment='reset'/>
<on poweroff>destroy</on poweroff>
<on_reboot>restart</on reboot>
<on_crash>restart</on crash>
<devices>
<disk type='file' device='disk'>
<driver name='file'/>
<source file='/var/xen/slel2.img'/>
<target dev='hdal' bus='xen'/>
</disk>
<console type='pty'>
<target type='xen' port='0'/>
</console>
</devices>
</domain>

To import the domain into 1ibvirt, you can either run the same xen2libvirt command without
the - c option, or use the exported file /etc/libvirt/qemu/slesl2.xml and define a new Xen
domain using virsh:

>sudo virsh define /etc/libvirt/gemu/slesl2.xml

C.3. Differences between the xm and X1 applications

The purpose of this chapter is to list all differences between xm and x1 applications. Generally, x1
is designed to be compatible with xm. Replacing xm with x in custom scripts or tools is usually
sufficient.

You can also use the libvirt framework using the virsh command. In this documentation only
the first OPTION for virsh will be shown. To get more help on this option do a:

virshhelpOPTION
C.3.1. Notation conventions

To easily understand the difference between x1 and xm commands, the following notation is used
in this section:

349

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

Table C.1. Notation conventions

Notation Meaning
(-) minus Option exists in xm, but x1 does not include it.
(+) plus Option exists in x1, but xm does not include it.

C.3.2. New global options

Table C.2. New global options

Options Task
(+) -v Verbose, increase the verbosity of the output
(+) -N Dry run, do not actually execute the command

) -f

Force execution. x1 will refuse to run some
commands if it detects that xend is also
running, this option will force the execution of
those commands, even though it is unsafe

C.3.3. Unchanged options
List of common options of x1 and xm, and their Libvirt equivalents.

Table C.3. Common options

Options Task

libvirt equivalent

Immediately terminate

common commands).

destroy DOMAIN _ virshdestroy

the domain.
) Convert a domain name . .

domid DOMAIN_NAME virshdomid
to a DOMAIN_ID.
Convert a DOMAIN_ID to .

domname DOMAIN_ID virshdomname
a DOMAIN_NAME.
Display the short help

help message (that is, virshhelp

350

Options

Task

libvirt equivalent

pause DOMAIN_ID

Pause a domain. When
in a paused state, the
domain will still consume
allocated resources such
as memory, but will not
be eligible for scheduling
by the Xen hypervisor.

virshsuspend

unpause DOMAIN_ID

Move a domain out of the
paused state. This will
allow a previously
paused domain to be
eligible for scheduling by
the Xen hypervisor.

virshresume

rename
DOMAIN_IDNEW_DOMAIN_NAME

Change the domain
name of DOMAIN_ID to
NEW_DOMAIN_NAME.

1. >virsh dumpxml DOM
INNAME >
DOMXML

2. modify the domain's
name in DOMXML

3. >virsh undefine DC
AINNAME

4 >virsh define DOM/
" NNAME

sysrq DOMAIN <letter>

Send a Magic System
Request to the domain,
each type of request is
represented by a different
letter. It can be used to
send SysRq requests to
Linux guests, see https:/
www.kernel.org/doc/html/
latest/admin-guide/

sysrg.html for more
information. It requires

PV drivers to be installed
in your guest OS.

virshsend-keys can sen
Magic Sys Req only for KV

351

https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

Options

Task

libvirt equivalent

vncviewer OPTIONSDOMAIN

Attach to domain's VNC
server, forking a
vncviewer process.

virt-viewerDOMAIN_ID
virshVNCDISPLAY

vcpu-setDOMAIN_IDVCPUS

Set the number of virtual
CPUs for the domain in
guestion. Like mem-set,
this command can only
allocate up to the
maximum virtual CPU
count configured at boot
for the domain.

virshsetvcpus

vcpu-list DOMAIN_ID

List VCPU information for
a specific domain. If no
domain is specified,
VCPU information for all
domains will be provided.

virshvcpuinfo

vcpu-pin DOMAIN_ID <VCPU]|all> <CPUs|
all>

Pin the VCPU to only run
on the specific CPUs.
The keyword all can be
used to apply the CPU
list to all VCPUs in the
domain.

virshvcpupin

dmesg [-c]

Read the Xen message
buffer, similar to dmesg
on a Linux system. The
buffer contains
informational, warning,
and error messages
created during Xen's boot
process.

top

Execute the xentop
command, which
provides real time
monitoring of domains.
xentop is a curses
interface.

virshnodecpustats

virshnodememstats

352

Options

Task

libvirt equivalent

uptime [-s] DOMAIN

Print the current uptime
of the domains running.
With the x1 command,
the DOMAIN argument is
mandatory.

debug-keyskEYS

Send debug keys to Xen.
It is the same as pressing
the Xen conswitch (Ctrl-A
by default) three times

and then pressing "keys".

cpupool-migrateDOMAINCPU_POOL

Move a domain specified
by DOMAIN_ID or
DOMAIN into a
CPU_POOL.

cpupool-destroyCPU_POOL

Deactivate a cpu pool.
This is possible only if no
domain is active in the
cpu-pool.

block-detachDOMAIN_IDDevid

Detach a domain's virtual
block device. devid may
be the symbolic name or
the numeric device id
given to the device by
Dom0O. You will need to
run xLblock-1list to
determine that number.

virshdetach-disk

network-
attachDOMAIN_IDNETWORK _DEVICE

Create a new network
device in the domain

specified by DOMAIN_ID.

network-device describes
the device to attach,
using the same format as
the vif string in the
domain configuration file

virshattach-interface

virshattach-device

353

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

Options

Task

libvirt equivalent

pci-attachDOMAIN <BDF> [Virtual Slot]

Hotplug a new pass-
through PCI device to the
specified domain. BDF is
the PCI Bus/Device/
Function of the physical
device to be passed
through.

virshattach-device

pci-listDOMAIN_ID

List pass-through PCI
devices for a domain

getenforce

Determine if the FLASK
security module is loaded
and enforcing its policy.

setenforce<l|0|Enforcing|
Permissive>

Enable or disable
enforcing of the FLASK
access controls. The
default is permissive and
can be changed using
the flask_enforcing option
on the hypervisor's
command line.

C.3.4. Removed options

List of xmoptions which are no more available with the XL tool stack and a replacement solution

if available.

C.3.4.1. Domain management

The list of Domain management removed command and their replacement.

354

Table C.4. Domain management removed options

Domain Management Removed Options

Options Task Equivalent

This log file can be found in /

) lo Print the Xend log.
() Log ' g var/log/xend. log

Remove a domain from Xend
domain management. The .)
(-) delete , _ virshundefine
list option shows the

domain names

Adds a domain to Xend . .
(-) new _ virshdefine
domain management

Start a Xend managed
(-) start domain that was added using | virshstart
the xmnew command

Dry run - prints the resulting
(-) dryrun configuration in SXP but does | x1-N
not create the domain

(-) reset Reset a domain virshreset

(-) domstate Show domain state virshdomstate
Proxy Xend XMLRPC over

(-) serve .
stdio
Moves a domain out of the

(-) resumeDOMAINOPTIONS | suspended state and back virshresume

into memory

Suspend a domain to a state
file so that it can be later
resumed using the resume
(-) suspendDOMAIN subcommand. Similar to the
save subcommand although

virshmanagedsave

virshsuspend

the state file may not be

specified

355

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

C.3.4.2. USB devices

USB options are not available with xl/libxl tool stack. virsh has the attach-device and
detach-device options but it does not work yet with USB.

Table C.5. USB devices management removed options

USB Devices Management Removed Options

Options Task

(-) usb-add Add a new USB physical bus to a domain

(-) usb-del Delete a USB physical bus from a domain

(-) usb-attach Attach a new USB physical bus to domain's virtual port
(-) usb-detach Detach a USB physical bus from domain's virtual port
(-) usb-1list List domain's attachment state of all virtual port

(-) usb-list-assignable-) _ _
List all the assignable USB devices

devices
(-) usb-hc-create Create a domain's new virtual USB host controller
(-) usb-hc-destroy Destroy a domain's virtual USB host controller

C.3.4.3. CPU management

CPU management options has changed. New options are available, see: the section called “ x1
cpupool-*"”

Table C.6. CPU management removed options

CPU Management Removed Options

Options Task
(-) cpupool-new Adds a CPU pool to Xend CPU pool management
(-) cpupool-start Starts a Xend CPU pool

(-) cpupool-delete Removes a CPU pool from Xend management

356

C.3.4.4. Other options

Table C.7. Other options

Other Removed Options

Options Task

(-) shell Launch an interactive shell

(-) change-vnc-passwd | Change vnc password

(-) vtpm-list List virtual TPM devices

(-) block-configure Change block device configuration

C.3.5. Changed options

C.3.5.1. create

XLlcreateCONFIG_FILEOPTIONSVARS

libvirt equivalent:

@ virshcreate

Table C.8. x1 create Changed options

create Changed Options

Options Task

(*) -f=FILE, --defconfig=FILE | Use the given configuration file

Table C.9. xm create Removed options

create Removed Options

Options Task

() -s, --skipdtd Skip DTD checking - skips checks on XML before creating

357

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

create Removed Options

Options

Task

() -X, --xmldryrun

(-) -F=FILE, --
config=FILE

(-) --path

(-) --help _config

(-) -n, --dryrun

()¢ -~
console autoconnect
() -q, --quiet

(-) -p, --paused

XML dry run

Use the given SXP formatted configuration script

Search path for configuration scripts

Print the available configuration variables (vars) for the
configuration script

Dry run — prints the configuration in SXP but does not create
the domain

Connect to the console after the domain is created

Quiet mode

Leave the domain paused after it is created

Table C.10. X1 create Added options

create Added Options

Options

Task

(+) -V, --vncviewer

(+) -A, --vncviewer-
autopass

Attach to domain's VNC server, forking a vncviewer process

Pass VNC password to vncviewer via stdin

C.3.5.2. console

xlconsoleOPTIONSDOMAIN

S

virshconsole

libvirt equivalent

358

Table C.11. X1 console Added options

Option

console Added Option

Task

(+) -t [pv|serial]

Connect to a PV console or connect to an emulated serial console. PV
consoles are the only consoles available for PV domains while HVYM
domains can have both

C.3.5.3. info

xlinfo

Table C.12. xm info Removed options

Options

info Removed Options

Task

() -n, --numa

(-) -c, --config

Numa info

List Xend configuration parameters

C.3.5.4. dump-core

x1ldump - coreDOMAINFILENAME

libvirt equivalent

@ virshdump

Table C.13. xm dump - core Removed options

dump-core Removed Options

359

Options Task
() -L, --live Dump core without pausing the domain
(-) -C, --crash Crash domain after dumping core

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

dump-core Removed Options

Options Task
() -R, --reset Reset domain after dumping core
€.3.5.5. list

x1 listoptionsDOMAIN

libvirt equivalent

@ virshlist --all

Table C.14. xm List Removed options

Options

list Removed Options

Task

(-) -1, --long

(-) --state==STATE

The output for xmlist presents the data in SXP format

Output information for VMs in the specified state

Table C.15. x1 List Added options

list Added Options

Options

Task

(+) -Z, --context

(+) -v, --verbose

Also prints the security labels

security labels

Also prints the domain UUIDs, the shutdown reason and

360

C.3.5.6. mem-*

libvirt equivalent

@ virshsetmem

virshsetmaxmem

Table C.16. xL mem-* Changed options

mem-* Changed Options

Options Task

Appending t for terabytes, g for gigabytes, m for megabytes, k
mem-maxDOMAIN_IDMEM for kilobytes and b for bytes. Specify the maximum amount of
memory the domain can use.

mem-setDOMAIN_IDMEM Set the domain's used memory using the balloon driver

C.3.5.7. migrate

xlmigrateOPTIONSDOMAINHOST

libvirt equivalent

@ virsh migrate --live hvm-slesll-qcow2 xen+CONNECTOR:/I
USER@IP_ADDRESS/

Table C.17. xm migrate Removed options

migrate Removed Options

Options Task

Use live migration. This will migrate the domain between

() -1, --live _ . :

hosts without shutting down the domain
(-) -r, --resourceMbs Set maximum Mbs allowed for migrating the domain
(-) -c, --change_home_server Change home server for managed domains

361

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

migrate Removed Options

Options Task

(-) --max_iters=MAX_ITERS Number of iterations before final suspend (default:30)

Max amount of memory to transfer before final suspend

(-) --max_factor=MAX_FACTOR
- (default: 3*RAM).

() --

, o Number of dirty pages before final suspend (default:50)
min_remalning=MIN_REMAINING

(-) --abort_if busy Abort migration instead of doing final suspend
(-) --log_progress Log progress of migration to xend. log
(-) -s, --ssl Use ssl connection for migration

Table C.18. x1 migrate Added options

migrate Added Options

Options Task

(+) -sSSHCOMMAND Use <sshcommand> instead of ssh

) -e On the new host, do not wait in the background (on <host>) for
the death of the domain

(+) -CCONFIG Send <config> instead of the configuration file used when
creating the domain

C.3.5.8. Domain management

xLrebootOPTIONSDOMAIN

libvirt equivalent

@ virshreboot

362

Table C.19. xm reboot Removed options

reboot Removed Options

Options

Task

() -a, --all

() -w, --wait

Reboot all domains

Wait for reboot to complete before returning. This may take a
while, as all services in the domain need to be shut down

cleanly

Table C.20. x1 reboot Added options

reboot Added Options

Option Task
+) -F Fallback to ACPI reset event for HVM guests with no PV
drivers

x1LsaveOPTIONSDOMAINCHECK_POINT_FILECONFIG_FILE

libvirt equivalent

@ virshsave

Table C.21. X1 save Added options

save Added Options

Option Task

(+) -c Leave domain running after creating the snapshot

xlrestoreOPTIONSCONFIG_FILECHECK_POINT_FILE

libvirt equivalent

@ virshrestore

363

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

Table C.22. x1 restore Added options

restore Added Options

(+) -V, --vncviewer

(+) -A, --vncviewer-
autopass

Options Task
(+) -p Do not unpause domain after restoring it
*) Do not wait in the background for the death of the domain on
-e
the new host
(+) -d Enable debug messages

Attach to domain's VNC server, forking a vncviewer process

Pass VNC password to vncviewer via stdin

xLshutdownOPTIONSDOMAIN

libvirt equivalent

@ virshshutdown

Table C.23. xm shutdown Removed options

shutdown Removed Options

Options

Task

() -w, --wait

() -a

Wait for the domain to complete shutdown before returning

Shutdown all guest domains

364

Table C.24. x1 shutdown Added options

shutdown Added Options

Option Task

If the guest does not support PV shutdown control then

+) -F
™) fallback to sending an ACPI power event

Table C.25. x1 trigger Changed options

trigger Changed Options

Option Task

triggerDOMAIN <nmi|reset|

init|power|sleep|s3resume> Send a trigger to a domain. Only available for HYM domains
VCPU

C.3.5.9. xL sched-*

xLlsched-creditOPTIONS

libvirt equivalent

@ virshschedinfo

Table C.26. xm sched-credit Removed options

sched-credit Removed Options

Options Task

-dDOMAIN, - -

] Domain
domain=DOMAIN

A domain with a weight of 512 will get twice as much CPU as a
domain with a weight of 256 on a contended host. Legal
weights range from 1 to 65535 and the default is 256

-WWEIGHT, - -
weight=WEIGHT

365

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

Options

sched-credit Removed Options

Task

-CCAP, - -cap=CAP

The CAP optionally fixes the maximum amount of CPU a
domain can consume

Table C.27. x1 sched-credit Added options

sched-credit Added Options

Options

Task

(+) -pCPUPOOL, - -
cpupool=CPUPOOL

(+) -s, --schedparam

(+) -tTSLICE, - -
tslice ms=TSLICE

(+) - rRLIMIT, - -
ratelimit us=RLIMIT

Restrict output to domains in the specified cpupool

Specify to list or set pool-wide scheduler parameters

Timeslice tells the scheduler how long to allow VMs to run
before pre-empting

Ratelimit attempts to limit the number of schedules per second

xLlsched-credit20OPTIONS

libvirt status

@ virsh only supports credit scheduler, not credit2 scheduler

Table C.28. xm sched-credit2 Removed options

Options

sched-credit2 Removed Options

Task

-dDOMAIN, - -
domain=DOMAIN

-WWEIGHT, - -
weight=WEIGHT

Domain

Legal weights range from 1 to 65535 and the default is 256

366

Table C.29. x1 sched-credit2 Added options

Option

sched-credit2 Added Options

Task

(+) -pCPUPOOL, - -
cpupool=CPUPOOL

Restrict output to domains in the specified cpupool

xLlsched-sedfOPTIONS

Table C.30. xm sched-sedf removed options

Options

sched-sedf Removed Options

Task

-pPERIOD, - -
period=PERIOD

-SSLICE, --slice=SLICE

-LLATENCY, - -
latency=LATENCY

-eEXTRA, - -extra=EXTRA

-WWEIGHT, - -
weight=WEIGHT

The normal EDF scheduling usage in milliseconds

The normal EDF scheduling usage in milliseconds

Scaled period if domain is doing heavy I/O

Flag for allowing domain to run in extra time (0 or 1)

Another way of setting CPU slice

Table C.31. X1 sched-sedf added options

sched-sedf Added Options

Options

Task

(+) -cCPUPOOL, - -
cpupool=CPUPOOL

(+) -dDOMAIN, - -
domain=DOMAIN

Restrict output to domains in the specified cpupool

Domain

367

C.3.5.10. x1 cpupool-*

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

xlcpupool-cpu-removeCPU_POOL <CPU nr>|node:<node nr>

xLcpupool-1list [-c|--cpus] CPU_POOL

Table C.32. xm cpupool-1ist removed options

Option Task

cpupool-* Removed Options

(-) -1, --long Output all CPU pool details in SXP format

xLlcpupool-cpu-addCPU_POOL cpu-nrjnode:node-nr

xLlcpupool-createOPTIONSCONFIG_FILE [Variable=Value ...]

Table C.33. xm cpupool-create removed options

Options

cpupool-create Removed Options

Task

(-) - fFILE, --defconfig=FILE

(-) -n, --dryrun

(-) --help _config

(-) - -path=PATH

(-) - F=FILE, --config=FILE

Use the given Python configuration script. The configuration
script is loaded after arguments have been processed

Dry run - prints the resulting configuration in SXP but does not
create the CPU pool

Print the available configuration variables (vars) for the
configuration script

Search path for configuration scripts. The value of PATH is a
colon-separated directory list

CPU pool configuration to use (SXP)

C.3.5.11. PCI and block devices

xlpci-detach [-f] DOMAIN_ID <BDF>

368

libvirt equivalent

@ virshdetach-device

Table C.34. X1 pci-detach added options

pci-detach Added Options

Option Task
) -f If - f is specified, x1 is going to forcefully remove the device
even without guest's collaboration

Table C.35. xm block-1ist removed options

block-1ist Removed Options

Option Task

() -1, --long List virtual block devices for a domain

Table C.36. Other options

Option

libvirt equivalent

xlblock-attachDOMAIN
<disk-spec-component(s)>

virshattach-disk/attach-device

xlblock-1istDOMAIN_ID

virshdomblklist

C.3.5.12. Network

Table C.37. Network options

Option

libvirt equivalent

xlnetwork-1istDOMAIN(s)

virshdomiflist

xLlnetwork-
detachDOMAIN_ID devid|
mac

virshdetach-interface

369

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

Option libvirt equivalent

xLlnetwork-

virshattach-interface/attach-device
attachDOMAIN(s)

Table C.38. X1 network-attach removed options

Removed Options

Option Task

(-) -1, --long

C.3.6. New options

Table C.39. New options

Options Task

Update the saved configuration for a running
domain. This has no immediate effect but will
config- be applied when the guest is next restarted.
updateDOMAINCONFIG_FILEOPTIONSVARS | This command is useful to ensure that
runtime modifications made to the guest will
be preserved when the guest is restarted

migrate-receive

List count of shared pages.List specifically for

sharingDOMAIN))))
that domain. Otherwise, list for all domains
Prints information about guests. This list

. excludes information about service or

vm-list . .
auxiliary domains such as Dom0 and
stubdoms

cpupool - renameCPU_POOLNEWNAME Renames a cpu-pool to newname

, Splits up the machine into one cpu-pool per
cpupool-numa-split
numa node

Insert a CD-ROM into a guest domain's
cd-insert DOMAIN <VirtualDevice> <type:path> | existing virtual CD drive. The virtual drive
must already exist but can be current empty

370

Options

Task

cd-ejectDOMAIN <VirtualDevice>

Eject a CD-ROM from a guest's virtual CD
drive. Only works with HYM domains

pci-assignable-list

List all the assignable PCI devices. These are
devices in the system which are configured to
be available for pass-through and are bound
to a suitable PCI back-end driver in DomO
rather than a real driver

pci-assignable-add <BDF>

Make the device at PCI Bus/Device/Function
BDF assignable to guests.This will bind the
device to the pciback driver

pci-assignable-removeOPTIONS <BDF>

Make the device at PCI Bus/Device/Function
BDF assignable to guests. This will at least
unbind the device from pciback

loadpolicyPOLICY FILE

Load FLASK policy from the given policy file.
The initial policy is provided to the hypervisor
as a multiboot module; this command allows
runtime updates to the policy. Loading new
security policy will reset runtime changes to
device labels

C.4. External links

For more information on Xen tool stacks refer to the following online resources:

XL in Xen
XL in Xen 4.2
x1 command
L command line.

xl.cfg

xl.cfg domain configuration file syntax.

xl disk

xl disk configuration option.

371

https://wiki.xenproject.org/wiki/XL_in_Xen_4.2
https://xenbits.xen.org/docs/unstable/man/xl.1.html
https://xenbits.xen.org/docs/unstable/man/xl.cfg.5.html
https://xenbits.xen.org/docs/4.3-testing/misc/xl-disk-configuration.txt

APPENDIX C. XM, XL TOOLSTACKS, AND THE LIBVIRT FRAMEWORK

XL vs Xend
XL vs Xend feature comparison.
BDF doc
BDF documentation.
libvirt
virsh command.
C.5. Saving a Xen guest configuration in an Xm compatible format

Although x1 is now the current toolkit for managing Xen guests (apart from the preferred
libvirt), you may need to export the guest configuration to the previously used xm format. To do
this, follow these steps:

1. First export the guest configuration to a file:
>virsh dumpxml guest id > guest cfg.xml
2. Then convert the configuration to the xm format:

>virsh domxml-to-native xen-xm guest cfg.xml > guest xm cfg

372

https://wiki.xenproject.org/wiki/XL_vs_Xend_Feature_Comparison
https://wiki.xen.org/wiki/Bus:Device.Function_%28BDF%29_Notation
https://libvirt.org/sources/virshcmdref/html/

Appendix D. GNU licenses
This appendix contains the GNU Free Documentation License version 1.2.
D.1. GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or non-commercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the
conditions stated herein. The "Document”, below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall

373

APPENDIX D. GNU LICENSES

subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document does
not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A copy
that is not "Transparent” is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCIl without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements”, or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to this definition.

374

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference
in this License, but only as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of
the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after the
last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition
to the public.

375

APPENDIX D. GNU LICENSES

It is requested, but not required, that you contact the authors of the Document well before

redistributing any large number of copies, to give them a chance to provide you with an updated

version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections

2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification of

the Modified Version to whoever possesses a copy of it. In addition, you must do these things in
the Modified Version:

10.

. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,

and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

. List on the Title Page, as authors, one or more persons or entities responsible for authorship

of the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has fewer than five), unless they release you
from this requirement.

. State on the Title page the name of the publisher of the Modified Version, as the publisher.
. Preserve all the copyright notices of the Document.

. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.

. Include, immediately after the copyright notices, a license notice giving the public permission

to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document's license notice.

. Include an unaltered copy of this License.

. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled "History" in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four years

376

before the Document itself, or if the original publisher of the version it refers to gives

permission.

11. For any section Entitled "Acknowledgements” or "Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

13. Delete any section Entitled "Endorsements”. Such a section may not be included in the
Modified Version.

14. Do not retitle any existing section to be Entitled "Endorsements” or to conflict in title with any
Invariant Section.

15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties--for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one
passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

377

APPENDIX D. GNU LICENSES

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it,
in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements"”, and any sections Entitled "Dedications”. You must delete all sections Entitled
"Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation's
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special

378

permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled "Acknowledgements”, "Dedications”, or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU

Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”
line with this:

379

https://www.gnu.org/copyleft/

APPENDIX D. GNU LICENSES
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

380

	Contents
	Preface
	Available documentation
	Improving the documentation
	Documentation conventions
	Support
	Support statement for SUSE Linux Enterprise Server
	Technology previews

	Part I. Introduction
	Chapter 1. Virtualization technology
	1.1. Overview
	1.2. Virtualization benefits
	1.3. Virtualization modes
	1.4. I/O virtualization

	Chapter 2. Virtualization scenarios
	2.1. Server consolidation
	2.2. Isolation
	2.3. Disaster recovery
	2.4. Dynamic load balancing

	Chapter 3. Introduction to Xen virtualization
	3.1. Basic components
	3.2. Xen virtualization architecture

	Chapter 4. Introduction to KVM virtualization
	4.1. Basic components
	4.2. KVM virtualization architecture

	Chapter 5. Virtualization tools
	5.1. Virtualization console tools
	5.2. Virtualization GUI tools

	Chapter 6. Installation of virtualization components
	6.1. Introduction
	6.2. Installing virtualization components
	6.2.1. Specifying a system role
	6.2.2. Running the YaST Virtualization module
	6.2.3. Installing specific installation patterns

	6.3. Enable nested virtualization in KVM
	6.3.1. VMware ESX as a guest hypervisor

	Chapter 7. Virtualization limits and support
	7.1. Architecture support
	7.1.1. KVM hardware requirements
	7.1.2. Xen hardware requirements

	7.2. Hypervisor limits
	7.2.1. KVM limits
	7.2.2. Xen limits

	7.3. Supported host environments (hypervisors)
	7.4. Supported guest operating systems
	7.4.1. Availability of paravirtualized drivers

	7.5. Supported VM migration scenarios
	7.5.1. Offline migration scenarios
	7.5.2. Live migration scenarios

	7.6. Feature support
	7.6.1. Xen host (Dom0)
	7.6.2. Guest feature support

	Part II. Managing virtual machines with libvirt
	Chapter 8. libvirt daemons
	8.1. Starting and stopping the modular daemons
	8.2. Starting and stopping the monolithic daemon
	8.3. Switching to the monolithic daemon

	Chapter 9. Preparing the VM Host Server
	9.1. Configuring networks
	9.1.1. Network bridge
	9.1.1.1. Managing network bridges with YaST
	9.1.1.1.1. Adding a network bridge
	9.1.1.1.2. Deleting a network bridge

	9.1.1.2. Managing network bridges from the command line
	9.1.1.2.1. Adding a network bridge
	9.1.1.2.2. Deleting a network bridge

	9.1.1.3. Adding a network bridge with nmcli
	9.1.1.4. Using VLAN interfaces
	9.1.2. Virtual networks
	9.1.2.1. Managing virtual networks with Virtual Machine Manager
	9.1.2.1.1. Defining virtual networks
	9.1.2.1.2. Starting virtual networks
	9.1.2.1.3. Stopping virtual networks
	9.1.2.1.4. Deleting virtual networks
	9.1.2.1.5. Obtaining IP addresses with nsswitch for NAT networks (in KVM)

	9.1.2.2. Managing virtual networks with virsh
	9.1.2.2.1. Creating a network
	9.1.2.2.2. Listing networks
	9.1.2.2.3. Getting details about a network
	9.1.2.2.4. Starting a network
	9.1.2.2.5. Stopping a network
	9.1.2.2.6. Removing a network

	9.2. Configuring a storage pool
	9.2.1. Managing storage with virsh
	9.2.1.1. Listing pools and volumes
	9.2.1.2. Starting, stopping, and deleting pools
	9.2.1.3. Adding volumes to a storage pool
	9.2.1.3.1. Cloning existing volumes

	9.2.1.4. Deleting volumes from a storage pool
	9.2.1.5. Attaching volumes to a VM Guest
	9.2.1.5.1. Hotplug or persistent change

	9.2.1.6. Detaching volumes from a VM Guest
	9.2.2. Managing storage with Virtual Machine Manager
	9.2.2.1. Adding a storage pool
	9.2.2.2. Managing storage pools
	9.2.2.2.1. Starting, stopping, and deleting pools
	9.2.2.2.2. Adding volumes to a storage pool
	9.2.2.2.3. Deleting volumes from a storage pool

	Chapter 10. Guest installation
	10.1. GUI-based guest installation
	10.1.1. Configuring the virtual machine for PXE boot

	10.2. Installing from the command line with virt-install
	10.3. Advanced guest installation scenarios
	10.3.1. Advanced UEFI configuration
	10.3.2. Memory ballooning with Windows guests
	10.3.3. Including add-on products in the installation

	Chapter 11. Basic VM Guest management
	11.1. Listing VM Guests
	11.1.1. Listing VM Guests with Virtual Machine Manager
	11.1.2. Listing VM Guests with virsh

	11.2. Accessing the VM Guest via console
	11.2.1. Opening a graphical console
	11.2.1.1. Opening a graphical console with Virtual Machine Manager
	11.2.1.2. Opening a graphical console with virt-viewer
	11.2.2. Opening a serial console

	11.3. Changing a VM Guest's state: start, stop, pause
	11.3.1. Changing a VM Guest's state with Virtual Machine Manager
	11.3.1.1. Automatically starting a VM Guest
	11.3.2. Changing a VM Guest's state with virsh

	11.4. Saving and restoring the state of a VM Guest
	11.4.1. Saving/restoring with Virtual Machine Manager
	11.4.2. Saving and restoring with virsh

	11.5. Creating and managing snapshots
	11.5.1. Terminology
	11.5.2. Creating and managing snapshots with Virtual Machine Manager
	11.5.2.1. Creating a snapshot
	11.5.2.2. Deleting a snapshot
	11.5.2.3. Starting a snapshot
	11.5.3. Creating and managing snapshots with virsh
	11.5.3.1. Creating internal snapshots
	11.5.3.2. Creating external snapshots
	11.5.3.3. Deleting a snapshot
	11.5.3.4. Starting a snapshot

	11.6. Deleting a VM Guest
	11.6.1. Deleting a VM Guest with Virtual Machine Manager
	11.6.2. Deleting a VM Guest with virsh

	11.7. Monitoring
	11.7.1. Monitoring with Virtual Machine Manager
	11.7.2. Monitoring with virt-top
	11.7.3. Monitoring with kvm_stat

	Chapter 12. Connecting and authorizing
	12.1. Authentication
	12.1.1. libvirtd authentication
	12.1.1.1. Access control for Unix sockets with permissions and group ownership
	12.1.1.2. Local access control for Unix sockets with Polkit
	12.1.1.3. User name and password authentication with SASL
	12.1.2. VNC authentication
	12.1.2.1. User name and password authentication with SASL
	12.1.2.2. Single password authentication

	12.2. Connecting to a VM Host Server
	12.2.1. system access for non-privileged users
	12.2.2. Managing connections with Virtual Machine Manager

	12.3. Configuring remote connections
	12.3.1. Remote tunnel over SSH (qemu+ssh or xen+ssh)
	12.3.2. Remote TLS/SSL connection with x509 certificate (qemu+tls or xen+tls)
	12.3.2.1. Basic concept
	12.3.2.2. Configuring the VM Host Server
	12.3.2.3. Configuring the client and testing the setup
	12.3.2.4. Enabling VNC for TLS/SSL connections
	12.3.2.4.1. VNC over TLS/SSL: VM Host Server configuration
	12.3.2.4.2. VNC over TLS/SSL: client configuration

	12.3.2.5. Restricting access (security considerations)
	12.3.2.5.1. Restricting access from the server side

	12.3.2.6. Central user authentication with SASL for TLS sockets
	12.3.2.7. Troubleshooting
	12.3.2.7.1. Virtual Machine Manager/virsh cannot connect to server
	12.3.2.7.2. VNC connection fails

	Chapter 13. Advanced storage topics
	13.1. Locking disk files and block devices with virtlockd
	13.1.1. Enable locking
	13.1.2. Configure locking
	13.1.2.1. Enabling an indirect lockspace
	13.1.2.2. Enable locking on LVM or iSCSI volumes

	13.2. Online resizing of guest block devices
	13.3. Sharing directories between host and guests (file system pass-through)
	13.4. Using RADOS block devices with libvirt

	Chapter 14. Configuring virtual machines with Virtual Machine Manager
	14.1. Machine setup
	14.1.1. Overview
	14.1.2. Performance
	14.1.3. Processor
	14.1.4. Memory
	14.1.5. Boot options

	14.2. Storage
	14.3. Controllers
	14.4. Networking
	14.5. Input devices
	14.6. Video
	14.7. USB redirectors
	14.8. Miscellaneous
	14.9. Adding a CD/DVD-ROM device with Virtual Machine Manager
	14.10. Adding a floppy device with Virtual Machine Manager
	14.11. Ejecting and changing floppy or CD/DVD-ROM media with Virtual Machine Manager
	14.12. Assigning a host PCI device to a VM Guest
	14.12.1. Adding a PCI device with Virtual Machine Manager

	14.13. Assigning a host USB device to a VM Guest
	14.13.1. Adding a USB device with Virtual Machine Manager

	Chapter 15. Configuring virtual machines with virsh
	15.1. Editing the VM configuration
	15.2. Changing the machine type
	15.3. Configuring hypervisor features
	15.4. Configuring CPU
	15.4.1. Configuring the number of CPUs
	15.4.2. Configuring the CPU model

	15.5. Changing boot options
	15.5.1. Changing boot order
	15.5.2. Using direct kernel boot

	15.6. Configuring memory allocation
	15.7. Adding a PCI device
	15.7.1. PCI Pass-Through for IBM Z

	15.8. Adding a USB device
	15.9. Adding SR-IOV devices
	15.9.1. Requirements
	15.9.2. Loading and configuring the SR-IOV host drivers
	15.9.3. Adding a VF network device to a VM Guest
	15.9.4. Dynamic allocation of VFs from a pool
	15.9.4.1. Defining network with pool of VFs on VM Host Server
	15.9.4.2. Configuring VM Guests to use VF from the pool

	15.10. Listing attached devices
	15.11. Configuring storage devices
	15.12. Configuring controller devices
	15.13. Configuring video devices
	15.13.1. Changing the amount of allocated VRAM
	15.13.2. Changing the state of 2D/3D acceleration

	15.14. Configuring network devices
	15.14.1. Scaling network performance with multiqueue virtio-net

	15.15. Using macvtap to share VM Host Server network interfaces
	15.16. Disabling a memory balloon device
	15.17. Configuring multiple monitors (dual head)
	15.18. Crypto adapter pass-through to KVM guests on IBM Z
	15.18.1. Introduction
	15.18.2. What is covered
	15.18.3. Requirements
	15.18.4. Dedicate a crypto adapter to a KVM host
	15.18.5. Further reading

	Chapter 16. Enhancing virtual machine security with AMD SEV-SNP
	16.1. Supported hardware
	16.2. Enabling confidential compute module
	16.3. Installing packages and setting up the base system
	16.4. Verifying setup
	16.5. Launching an AMD SEV-SNP virtual machine
	16.6. Verifying the AMD SEV-SNP virtual machine

	Chapter 17. Migrating VM Guests
	17.1. Types of migration
	17.2. Migration requirements
	17.3. Live-migrating with Virtual Machine Manager
	17.4. Migrating with virsh
	17.5. Step-by-step example
	17.5.1. Exporting the storage
	17.5.2. Defining the pool on the target hosts
	17.5.3. Creating the volume
	17.5.4. Creating the VM Guest
	17.5.5. Migrate the VM Guest

	Chapter 18. Xen to KVM migration guide
	18.1. Migration to KVM using virt-v2v
	18.1.1. Introduction to virt-v2v
	18.1.2. Installing virt-v2v
	18.1.3. Converting virtual machines to run under KVM managed by libvirt
	18.1.3.1. Conversion based on the libvirt XML description file
	18.1.3.2. Conversion based on the libvirt domain name
	18.1.3.3. Converting a remote Xen virtual machine
	18.1.4. Running converted virtual machines

	18.2. Xen to KVM manual migration
	18.2.1. General outline
	18.2.2. Back up the Xen VM Guest
	18.2.3. Changes specific to paravirtualized guests
	18.2.3.1. Install the default kernel
	18.2.3.2. Update the guest for boot under KVM
	18.2.4. Update the Xen VM Guest configuration
	18.2.4.1. Export the Xen VM Guest configuration
	18.2.4.2. General changes to the guest configuration
	18.2.4.3. The target KVM guest configuration
	18.2.5. Migrate the VM Guest

	18.3. More information

	Part III. Hypervisor-independent features
	Chapter 19. Disk cache modes
	19.1. What is a disk cache?
	19.2. How does a disk cache work?
	19.3. Benefits of disk caching
	19.4. Virtual disk cache modes
	19.5. Cache modes and data integrity
	19.6. Cache modes and live migration

	Chapter 20. VM Guest clock settings
	20.1. KVM: using kvm_clock
	20.1.1. Other timekeeping methods

	20.2. Xen virtual machine clock settings

	Chapter 21. libguestfs
	21.1. VM Guest manipulation overview
	21.1.1. VM Guest manipulation risk
	21.1.2. libguestfs design

	21.2. Package installation
	21.3. Guestfs tools
	21.3.1. Modifying virtual machines
	21.3.2. Supported file systems and disk images
	21.3.3. virt-rescue
	21.3.4. virt-resize
	21.3.5. Other virt-* tools
	21.3.5.1. virt-filesystems
	21.3.5.2. virt-ls
	21.3.5.3. virt-cat
	21.3.5.4. virt-df
	21.3.5.5. virt-edit
	21.3.5.6. virt-tar-in/out
	21.3.5.7. virt-copy-in/out
	21.3.5.8. virt-log
	21.3.6. guestfish
	21.3.7. Converting a physical machine into a KVM guest

	21.4. Troubleshooting
	21.4.1. Btrfs-related problems
	21.4.2. Environment
	21.4.3. libguestfs-test-tool

	21.5. More information

	Chapter 22. QEMU guest agent
	22.1. Running QEMU GA commands
	22.2. virsh commands that require QEMU GA
	22.3. Enhancing libvirt commands
	22.4. More information

	Chapter 23. Software TPM emulator
	23.1. Introduction
	23.2. Prerequisites
	23.3. Installation
	23.4. Using swtpm with QEMU
	23.5. Using swtpm with libvirt
	23.6. TPM measurement with OVMF firmware
	23.7. Resources

	Chapter 24. Creating crash dumps of a VM Guest
	24.1. Introduction
	24.2. Creating crash dumps for fully virtualized machines
	24.3. Creating crash dumps for paravirtualized machines
	24.4. Additional information

	Part IV. Managing virtual machines with Xen
	Chapter 25. Setting up a virtual machine host
	25.1. Best practices and suggestions
	25.2. Managing Dom0 memory
	25.2.1. Setting Dom0 memory allocation

	25.3. Network card in fully virtualized guests
	25.4. Starting the virtual machine host
	25.5. PCI Pass-Through
	25.5.1. Configuring the hypervisor for PCI Pass-Through
	25.5.1.1. Dynamic assignment with xl
	25.5.2. Assigning PCI devices to VM Guest systems
	25.5.3. VGA Pass-Through
	25.5.4. Troubleshooting
	25.5.5. More information

	25.6. USB pass-through
	25.6.1. Identify the USB device
	25.6.2. Emulated USB device
	25.6.3. Paravirtualized PVUSB

	Chapter 26. Virtual networking
	26.1. Network devices for guest systems
	26.2. Host-based routing in Xen
	26.3. Creating a masqueraded network setup
	26.4. Special configurations
	26.4.1. Bandwidth throttling in virtual networks
	26.4.2. Monitoring the network traffic

	Chapter 27. Managing a virtualization environment
	27.1. XL—Xen management tool
	27.1.1. Guest domain configuration file

	27.2. Automatic start of guest domains
	27.3. Event actions
	27.4. Time Stamp Counter
	27.5. Saving virtual machines
	27.6. Restoring virtual machines
	27.7. Virtual machine states

	Chapter 28. Block devices in Xen
	28.1. Mapping physical storage to virtual disks
	28.2. Mapping network storage to virtual disk
	28.3. File-backed virtual disks and loopback devices
	28.4. Resizing block devices
	28.5. Scripts for managing advanced storage scenarios

	Chapter 29. Virtualization: configuration options and settings
	29.1. Virtual CD readers
	29.1.1. Virtual CD readers on paravirtual machines
	29.1.2. Virtual CD readers on fully virtual machines
	29.1.3. Adding virtual CD readers
	29.1.4. Removing virtual CD readers

	29.2. Remote access methods
	29.3. VNC viewer
	29.3.1. Assigning VNC viewer port numbers to virtual machines
	29.3.2. Using SDL instead of a VNC viewer

	29.4. Virtual keyboards
	29.5. Dedicating CPU resources
	29.5.1. Dom0
	29.5.2. VM Guests

	29.6. HVM features
	29.6.1. Specify boot device on boot
	29.6.2. Changing CPUIDs for guests
	29.6.3. Increasing the number of PCI-IRQs

	29.7. Virtual CPU scheduling

	Chapter 30. Administrative tasks
	30.1. The boot loader program
	30.2. Sparse image files and disk space
	30.3. Migrating Xen VM Guest systems
	30.3.1. Detecting CPU features
	30.3.1.1. More information
	30.3.2. Preparing block devices for migrations
	30.3.3. Migrating VM Guest systems

	30.4. Monitoring Xen
	30.4.1. Monitor Xen with xentop
	30.4.2. Additional tools

	30.5. Providing host information for VM Guest systems

	Chapter 31. XenStore: configuration database shared between domains
	31.1. Introduction
	31.2. File system interface
	31.2.1. XenStore commands
	31.2.2. /vm
	31.2.3. /local/domain/<domid>

	Chapter 32. Xen as a high-availability virtualization host
	32.1. Xen HA with remote storage
	32.2. Xen HA with local storage
	32.3. Xen HA and private bridges

	Chapter 33. Xen: converting a paravirtual (PV) guest into a fully virtual (FV/HVM) guest

	Part V. Managing virtual machines with QEMU
	Chapter 34. QEMU overview
	Chapter 35. Setting up a KVM VM Host Server
	35.1. CPU support for virtualization
	35.2. Required software
	35.3. KVM host-specific features
	35.3.1. Using the host storage with virtio-scsi
	35.3.1.1. virtio-scsi usage
	35.3.2. Accelerated networking with vhost-net
	35.3.3. Scaling network performance with multiqueue virtio-net
	35.3.4. VFIO: secure direct access to devices
	35.3.5. VirtFS: sharing directories between host and guests
	35.3.5.1. Implementation
	35.3.6. KSM: sharing memory pages between guests

	Chapter 36. Guest installation
	36.1. Basic installation with qemu-system-ARCH
	36.2. Managing disk images with qemu-img
	36.2.1. General information on qemu-img invocation
	36.2.2. Creating, converting, and checking disk images
	36.2.2.1. qemu-img create
	36.2.2.2. qemu-img convert
	36.2.2.3. qemu-img check
	36.2.2.4. Increasing the size of an existing disk image
	36.2.2.5. Advanced options for the qcow2 file format
	36.2.2.5.1. Choosing the right cache size
	36.2.2.5.2. Configuring the cache size
	36.2.2.5.3. Reducing the memory usage

	36.2.3. Managing snapshots of virtual machines with qemu-img
	36.2.3.1. Listing existing snapshots
	36.2.3.2. Creating snapshots of a powered-off virtual machine
	36.2.3.3. Deleting snapshots
	36.2.4. Manipulate disk images effectively
	36.2.4.1. Base and derived images
	36.2.4.2. Creating derived images
	36.2.4.3. Rebasing derived images
	36.2.4.4. Mounting an image on a VM Host Server

	Chapter 37. Running virtual machines with qemu-system-ARCH
	37.1. Basic qemu-system-ARCH invocation
	37.2. General qemu-system-ARCH options
	37.2.1. Basic virtual hardware
	37.2.1.1. Machine type
	37.2.1.2. CPU model
	37.2.1.3. Other basic options
	37.2.2. Storing and reading configuration of virtual devices
	37.2.3. Guest real-time clock

	37.3. Using devices in QEMU
	37.3.1. Block devices
	37.3.1.1. Freeing unused guest disk space
	37.3.1.2. IOThreads
	37.3.1.3. Bio-based I/O path for virtio-blk
	37.3.1.4. Accessing iSCSI resources directly
	37.3.1.5. Using RADOS block devices with QEMU
	37.3.2. Graphic devices and display options
	37.3.2.1. Defining video cards
	37.3.2.2. Display options
	37.3.3. USB devices
	37.3.3.1. Emulating USB devices in VM Guest
	37.3.4. Character devices

	37.4. Networking in QEMU
	37.4.1. Defining a network interface card
	37.4.2. User-mode networking
	37.4.2.1. Command line examples
	37.4.3. Bridged networking
	37.4.3.1. Connecting to a bridge manually
	37.4.3.2. Connecting to a bridge with qemu-bridge-helper

	37.5. Viewing a VM Guest with VNC
	37.5.1. Secure VNC connections

	Chapter 38. Virtual machine administration using QEMU monitor
	38.1. Accessing monitor console
	38.2. Getting information about the guest system
	38.3. Changing VNC password
	38.4. Managing devices
	38.5. Controlling keyboard and mouse
	38.6. Changing available memory
	38.7. Dumping virtual machine memory
	38.8. Managing virtual machine snapshots
	38.9. Suspending and resuming virtual machine execution
	38.10. Live migration
	38.11. QMP - QEMU machine protocol
	38.11.1. Access QMP via standard input/output
	38.11.2. Access QMP via telnet
	38.11.3. Access QMP via Unix socket
	38.11.4. Access QMP via libvirt's virsh command

	Part VI. Troubleshooting
	Chapter 39. Integrated help and package documentation
	Chapter 40. Gathering system information and logs
	40.1. libvirt log controls

	Glossary
	Appendix A. Virtual machine drivers
	Appendix B. Configuring GPU Pass-Through for NVIDIA cards
	B.1. Introduction
	B.2. Prerequisites
	B.3. Configuring the host
	B.3.1. Verify the host environment
	B.3.2. Enable IOMMU
	B.3.3. Blacklist the Nouveau driver
	B.3.4. Configure VFIO and isolate the GPU used for pass-through
	B.3.5. Load the VFIO driver
	B.3.5.1. Including the driver in the initrd file
	B.3.5.2. Adding the driver to the list of auto-loaded modules
	B.3.5.3. Loading the driver manually

	B.3.6. Disable MSR for Microsoft Windows guests
	B.3.7. Install UEFI firmware
	B.3.8. Reboot the host machine

	B.4. Configuring the guest
	B.4.1. Requirements for the guest configuration
	B.4.2. Install the graphic card driver
	B.4.2.1. Linux guest
	B.4.2.2. Microsoft Windows guest

	Appendix C. XM, XL toolstacks, and the libvirt framework
	C.1. Xen toolstacks
	C.1.1. Upgrading from xend/xm to xl/libxl
	C.1.2. XL design
	C.1.3. Checklist before upgrade

	C.2. Import Xen domain configuration into libvirt
	C.3. Differences between the xm and xl applications
	C.3.1. Notation conventions
	C.3.2. New global options
	C.3.3. Unchanged options
	C.3.4. Removed options
	C.3.4.1. Domain management
	C.3.4.2. USB devices
	C.3.4.3. CPU management
	C.3.4.4. Other options

	C.3.5. Changed options
	C.3.5.1. create
	C.3.5.2. console
	C.3.5.3. info
	C.3.5.4. dump-core
	C.3.5.5. list
	C.3.5.6. mem-*
	C.3.5.7. migrate
	C.3.5.8. Domain management
	C.3.5.9. xl sched-*
	C.3.5.10. xl cpupool-*
	C.3.5.11. PCI and block devices
	C.3.5.12. Network

	C.3.6. New options

	C.4. External links
	C.5. Saving a Xen guest configuration in an xm compatible format

	Appendix D. GNU licenses
	D.1. GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

