
Experimental version for
testing purpose only!

My private, inofficial Version of:

SUSE Linux Enterprise Server 15 SP7

Virtualization Guide

Virtualization Guide

SUSE Linux Enterprise Server 15 SP7

This guide describes virtualization technology in general. It introduces libvirt—the
unified interface to virtualization—and provides detailed information on specific hy‐
pervisors.

File generated at 2025-11-17 15:09

This is my own, experimental version of a Document from SUSE company. The only purpose of this

document is the test of an alternative publishing mechanism. Errors in the publishing mechanism

may lead to wrong content.You can find the original version of this document at documenta‐

tion.suse.com.

The books and articles exist as XML sources, conformant to the DocBook standard. SUSE publishes

them with the DocBook XSLT 1.0 Stylesheets, which generate XSL-FO, and Apache FOP, which in turn

generates PDF.

This version is based on the same DocBook sources, but published with the new xslTNG Stylesheets,

which produce XHTML+CSS, and an rendering engine like Antenna House or Weasyprint to generate

PDF. The only purpose of this version is a "real life test" of the new publishing mechanism, together with

an "DocBook TNG Framework" that i wrote. It helps me to use and customize the xslTNG Stylesheets.

— Frank Steimke, Bremen, Gemany

https://documentation.suse.com
https://documentation.suse.com
https://xsltng.docbook.org/

Contents

Glossary•

i

1 Preface 14

1 Available documentation 14

2 Improving the documentation 14

3 Documentation conventions 15

4 Support 17

Support statement for SUSE Linux Enterprise Server 17 • Technology previews 18

I Introduction 1

1 Virtualization technology 2

1 . 1 Overview 2

1 . 2 Virtualization benefits 2

1 . 3 Virtualization modes 3

1 . 4 I/O virtualization 3

2 Virtualization scenarios 6

2 . 1 Server consolidation 6

2 . 2 Isolation 6

2 . 3 Disaster recovery 7

2 . 4 Dynamic load balancing 7

3 Introduction to Xen virtualization 8

3 . 1 Basic components 8

3 . 2 Xen virtualization architecture 9

4 Introduction to KVM virtualization 11

4 . 1 Basic components 11

4 . 2 KVM virtualization architecture 11

5 Virtualization tools 13

5 . 1 Virtualization console tools 13

5 . 2 Virtualization GUI tools 14

6 Installation of virtualization components 16

ii

6 . 1 Introduction 16

6 . 2 Installing virtualization components 16

Specifying a system role 16 • Running the YaST Virtualization module 17 • Installing specific

installation patterns 18

6 . 3 Enable nested virtualization in KVM 18

VMware ESX as a guest hypervisor 20

7 Virtualization limits and support 21

7 . 1 Architecture support 21

KVM hardware requirements 21 • Xen hardware requirements 22

7 . 2 Hypervisor limits 22

KVM limits 22 • Xen limits 23

7 . 3 Supported host environments (hypervisors) 23

7 . 4 Supported guest operating systems 24

Availability of paravirtualized drivers 25

7 . 5 Supported VM migration scenarios 26

Offline migration scenarios 26 • Live migration scenarios 27

7 . 6 Feature support 29

Xen host (Dom0) 29 • Guest feature support 30

II Managing virtual machines with libvirt 32

8 libvirt daemons 33

8 . 1 Starting and stopping the modular daemons 33

8 . 2 Starting and stopping the monolithic daemon 35

8 . 3 Switching to the monolithic daemon 37

9 Preparing the VM Host Server 38

9 . 1 Configuring networks 38

Network bridge 38 • Virtual networks 42

9 . 2 Configuring a storage pool 50

Managing storage with virsh 53 • Managing storage with Virtual Machine Manager 57

10 Guest installation 63

iii

10 . 1 GUI-based guest installation 63

Configuring the virtual machine for PXE boot 65

10 . 2 Installing from the command line with virt-install 66

10 . 3 Advanced guest installation scenarios 69

Advanced UEFI configuration 69 • Memory ballooning with Windows guests 71 • Including

add-on products in the installation 71

11 Basic VM Guest management 73

11 . 1 Listing VM Guests 73

Listing VM Guests with Virtual Machine Manager 73 • Listing VM Guests with virsh 73

11 . 2 Accessing the VM Guest via console 74

Opening a graphical console 74 • Opening a serial console 75

11 . 3 Changing a VM Guest's state: start, stop, pause 76

Changing a VM Guest's state with Virtual Machine Manager 77 • Changing a VM Guest's state

with virsh 78

11 . 4 Saving and restoring the state of a VM Guest 78

Saving/restoring with Virtual Machine Manager 80 • Saving and restoring with virsh 80

11 . 5 Creating and managing snapshots 80

Terminology 81 • Creating and managing snapshots with Virtual Machine Manager

81 • Creating and managing snapshots with virsh 83

11 . 6 Deleting a VM Guest 85

Deleting a VM Guest with Virtual Machine Manager 85 • Deleting a VM Guest with virsh 85

11 . 7 Monitoring 85

Monitoring with Virtual Machine Manager 85 • Monitoring with virt-top 86 • Monitoring

with kvm_stat 87

12 Connecting and authorizing 89

12 . 1 Authentication 89

libvirtd authentication 89 • VNC authentication 93

12 . 2 Connecting to a VM Host Server 96

“system” access for non-privileged users 97 • Managing connections with Virtual Machine

Manager 98

iv

12 . 3 Configuring remote connections 99

Remote tunnel over SSH (qemu+ssh or xen+ssh) 99 • Remote TLS/SSL connection with

x509 certificate (qemu+tls or xen+tls) 100

13 Advanced storage topics 107

13 . 1 Locking disk files and block devices with virtlockd 107

Enable locking 107 • Configure locking 107

13 . 2 Online resizing of guest block devices 108

13 . 3 Sharing directories between host and guests (file system pass-through) 109

13 . 4 Using RADOS block devices with libvirt 110

14 Configuring virtual machines with Virtual Machine Manager
111

14 . 1 Machine setup 111

Overview 112 • Performance 112 • Processor 113 • Memory 115 • Boot options 116

14 . 2 Storage 117

14 . 3 Controllers 118

14 . 4 Networking 119

14 . 5 Input devices 120

14 . 6 Video 121

14 . 7 USB redirectors 122

14 . 8 Miscellaneous 123

14 . 9 Adding a CD/DVD-ROM device with Virtual Machine Manager 124

14 . 10 Adding a floppy device with Virtual Machine Manager 124

14 . 11 Ejecting and changing floppy or CD/DVD-ROM media with Virtual Machine Manager 125

14 . 12 Assigning a host PCI device to a VM Guest 126

Adding a PCI device with Virtual Machine Manager 126

14 . 13 Assigning a host USB device to a VM Guest 127

Adding a USB device with Virtual Machine Manager 127

15 Configuring virtual machines with virsh 129

15 . 1 Editing the VM configuration 129

v

15 . 2 Changing the machine type 129

15 . 3 Configuring hypervisor features 130

15 . 4 Configuring CPU 131

Configuring the number of CPUs 131 • Configuring the CPU model 132

15 . 5 Changing boot options 133

Changing boot order 134 • Using direct kernel boot 134

15 . 6 Configuring memory allocation 135

15 . 7 Adding a PCI device 136

PCI Pass-Through for IBM Z 138

15 . 8 Adding a USB device 139

15 . 9 Adding SR-IOV devices 140

Requirements 140 • Loading and configuring the SR-IOV host drivers 141 • Adding a VF network

device to a VM Guest 143 • Dynamic allocation of VFs from a pool 145

15 . 10 Listing attached devices 146

15 . 11 Configuring storage devices 147

15 . 12 Configuring controller devices 148

15 . 13 Configuring video devices 149

Changing the amount of allocated VRAM 149 • Changing the state of 2D/3D acceleration 150

15 . 14 Configuring network devices 150

Scaling network performance with multiqueue virtio-net 150

15 . 15 Using macvtap to share VM Host Server network interfaces 151

15 . 16 Disabling a memory balloon device 152

15 . 17 Configuring multiple monitors (dual head) 152

15 . 18 Crypto adapter pass-through to KVM guests on IBM Z 153

Introduction 153 • What is covered 153 • Requirements 154 • Dedicate a crypto adapter to a

KVM host 154 • Further reading 155

16 Enhancing virtual machine security with AMD SEV-SNP 156

16 . 1 Supported hardware 156

16 . 2 Enabling confidential compute module 156

16 . 3 Installing packages and setting up the base system 156

vi

16 . 4 Verifying setup 157

16 . 5 Launching an AMD SEV-SNP virtual machine 158

16 . 6 Verifying the AMD SEV-SNP virtual machine 160

17 Migrating VM Guests 161

17 . 1 Types of migration 161

17 . 2 Migration requirements 162

17 . 3 Live-migrating with Virtual Machine Manager 163

17 . 4 Migrating with virsh 164

17 . 5 Step-by-step example 166

Exporting the storage 166 • Defining the pool on the target hosts 166 • Creating the volume

168 • Creating the VM Guest 168 • Migrate the VM Guest 168

18 Xen to KVM migration guide 169

18 . 1 Migration to KVM using virt-v2v 169

Introduction to virt-v2v 169 • Installing virt-v2v 170 • Converting virtual machines to

run under KVM managed by libvirt 170 • Running converted virtual machines 174

18 . 2 Xen to KVM manual migration 175

General outline 175 • Back up the Xen VM Guest 175 • Changes specific to paravirtualized guests

176 • Update the Xen VM Guest configuration 178 • Migrate the VM Guest 182

18 . 3 More information 183

III Hypervisor-independent features 184

19 Disk cache modes 185

19 . 1 What is a disk cache? 185

19 . 2 How does a disk cache work? 185

19 . 3 Benefits of disk caching 185

19 . 4 Virtual disk cache modes 185

19 . 5 Cache modes and data integrity 186

19 . 6 Cache modes and live migration 187

20 VM Guest clock settings 188

vii

20 . 1 KVM: using kvm_clock 188

Other timekeeping methods 188

20 . 2 Xen virtual machine clock settings 188

21 libguestfs 189

21 . 1 VM Guest manipulation overview 189

VM Guest manipulation risk 189 • libguestfs design 189

21 . 2 Package installation 190

21 . 3 Guestfs tools 190

Modifying virtual machines 190 • Supported file systems and disk images 190 • virt-

rescue 191 • virt-resize 192 • Other virt-* tools 193 • guestfish 195 • Converting a

physical machine into a KVM guest 195

21 . 4 Troubleshooting 197

Btrfs-related problems 197 • Environment 198 • libguestfs-test-tool 198

21 . 5 More information 198

22 QEMU guest agent 199

22 . 1 Running QEMU GA commands 199

22 . 2 virsh commands that require QEMU GA 199

22 . 3 Enhancing libvirt commands 200

22 . 4 More information 200

23 Software TPM emulator 202

23 . 1 Introduction 202

23 . 2 Prerequisites 202

23 . 3 Installation 202

23 . 4 Using swtpm with QEMU 202

23 . 5 Using swtpm with libvirt 203

23 . 6 TPM measurement with OVMF firmware 203

23 . 7 Resources 204

24 Creating crash dumps of a VM Guest 205

24 . 1 Introduction 205

viii

24 . 2 Creating crash dumps for fully virtualized machines 205

24 . 3 Creating crash dumps for paravirtualized machines 205

24 . 4 Additional information 205

IV Managing virtual machines with Xen 206

25 Setting up a virtual machine host 207

25 . 1 Best practices and suggestions 207

25 . 2 Managing Dom0 memory 208

Setting Dom0 memory allocation 208

25 . 3 Network card in fully virtualized guests 209

25 . 4 Starting the virtual machine host 210

25 . 5 PCI Pass-Through 211

Configuring the hypervisor for PCI Pass-Through 212 • Assigning PCI devices to VM Guest

systems 213 • VGA Pass-Through 213 • Troubleshooting 214 • More information 214

25 . 6 USB pass-through 214

Identify the USB device 215 • Emulated USB device 215 • Paravirtualized PVUSB 215

26 Virtual networking 217

26 . 1 Network devices for guest systems 217

26 . 2 Host-based routing in Xen 218

26 . 3 Creating a masqueraded network setup 220

26 . 4 Special configurations 222

Bandwidth throttling in virtual networks 222 • Monitoring the network traffic 223

27 Managing a virtualization environment 224

27 . 1 XL—Xen management tool 224

Guest domain configuration file 225

27 . 2 Automatic start of guest domains 225

27 . 3 Event actions 226

27 . 4 Time Stamp Counter 227

27 . 5 Saving virtual machines 227

ix

27 . 6 Restoring virtual machines 228

27 . 7 Virtual machine states 228

28 Block devices in Xen 229

28 . 1 Mapping physical storage to virtual disks 229

28 . 2 Mapping network storage to virtual disk 230

28 . 3 File-backed virtual disks and loopback devices 230

28 . 4 Resizing block devices 231

28 . 5 Scripts for managing advanced storage scenarios 231

29 Virtualization: configuration options and settings 233

29 . 1 Virtual CD readers 233

Virtual CD readers on paravirtual machines 233 • Virtual CD readers on fully virtual machines

233 • Adding virtual CD readers 233 • Removing virtual CD readers 234

29 . 2 Remote access methods 235

29 . 3 VNC viewer 235

Assigning VNC viewer port numbers to virtual machines 236 • Using SDL instead of a VNC

viewer 236

29 . 4 Virtual keyboards 236

29 . 5 Dedicating CPU resources 237

Dom0 237 • VM Guests 238

29 . 6 HVM features 238

Specify boot device on boot 238 • Changing CPUIDs for guests 239 • Increasing the number of

PCI-IRQs 240

29 . 7 Virtual CPU scheduling 240

30 Administrative tasks 242

30 . 1 The boot loader program 242

30 . 2 Sparse image files and disk space 243

30 . 3 Migrating Xen VM Guest systems 244

Detecting CPU features 245 • Preparing block devices for migrations 246 • Migrating VM Guest

systems 246

x

30 . 4 Monitoring Xen 246

Monitor Xen with xentop 247 • Additional tools 247

30 . 5 Providing host information for VM Guest systems 248

31 XenStore: configuration database shared between domains 250

31 . 1 Introduction 250

31 . 2 File system interface 250

XenStore commands 250 • /vm 251 • /local/domain/<domid> 253

32 Xen as a high-availability virtualization host 255

32 . 1 Xen HA with remote storage 255

32 . 2 Xen HA with local storage 256

32 . 3 Xen HA and private bridges 256

33 Xen: converting a paravirtual (PV) guest into a fully virtual
(FV/HVM) guest 257

V Managing virtual machines with QEMU 261

34 QEMU overview 262

35 Setting up a KVM VM Host Server 263

35 . 1 CPU support for virtualization 263

35 . 2 Required software 263

35 . 3 KVM host-specific features 265

Using the host storage with virtio-scsi 265 • Accelerated networking with vhost-net

266 • Scaling network performance with multiqueue virtio-net 266 • VFIO: secure direct access

to devices 267 • VirtFS: sharing directories between host and guests 269 • KSM: sharing

memory pages between guests 270

36 Guest installation 272

36 . 1 Basic installation with qemu-system-ARCH 272

36 . 2 Managing disk images with qemu-img 273

General information on qemu-img invocation 273 • Creating, converting, and checking disk

images 275 • Managing snapshots of virtual machines with qemu-img 279 • Manipulate disk

images effectively 281

xi

37 Running virtual machines with qemu-system-ARCH 286

37 . 1 Basic qemu-system-ARCH invocation 286

37 . 2 General qemu-system-ARCH options 287

Basic virtual hardware 288 • Storing and reading configuration of virtual devices 290 • Guest

real-time clock 290

37 . 3 Using devices in QEMU 291

Block devices 291 • Graphic devices and display options 296 • USB devices 298 • Character

devices 299

37 . 4 Networking in QEMU 301

Defining a network interface card 302 • User-mode networking 302 • Bridged networking 304

37 . 5 Viewing a VM Guest with VNC 306

Secure VNC connections 309

38 Virtual machine administration using QEMU monitor 312

38 . 1 Accessing monitor console 312

38 . 2 Getting information about the guest system 312

38 . 3 Changing VNC password 316

38 . 4 Managing devices 316

38 . 5 Controlling keyboard and mouse 317

38 . 6 Changing available memory 317

38 . 7 Dumping virtual machine memory 318

38 . 8 Managing virtual machine snapshots 319

38 . 9 Suspending and resuming virtual machine execution 320

38 . 10 Live migration 320

38 . 11 QMP - QEMU machine protocol 321

Access QMP via standard input/output 321 • Access QMP via telnet 322 • Access QMP via Unix

socket 323 • Access QMP via libvirt's virsh command 323

VI Troubleshooting 325

39 Integrated help and package documentation 326

40 Gathering system information and logs 327

xii

40 . 1 libvirt log controls 327

A Virtual machine drivers 339

B Configuring GPU Pass-Through for NVIDIA cards 340

B . 1 Introduction 340

B . 2 Prerequisites 340

B . 3 Configuring the host 340

Verify the host environment 340 • Enable IOMMU 341 • Blacklist the Nouveau driver

341 • Configure VFIO and isolate the GPU used for pass-through 341 • Load the VFIO driver

341 • Disable MSR for Microsoft Windows guests 342 • Install UEFI firmware 342 • Reboot the

host machine 342

B . 4 Configuring the guest 343

Requirements for the guest configuration 343 • Install the graphic card driver 343

C XM, XL toolstacks, and the libvirt framework 346

C . 1 Xen toolstacks 346

Upgrading from xend/xm to xl/libxl 346 • XL design 347 • Checklist before upgrade 347

C . 2 Import Xen domain configuration into libvirt 348

C . 3 Differences between the xm and xl applications 349

Notation conventions 349 • New global options 350 • Unchanged options 350 • Removed

options 354 • Changed options 357 • New options 370

C . 4 External links 371

C . 5 Saving a Xen guest configuration in an xm compatible format 372

D GNU licenses 373

D . 1 GNU Free Documentation License 373

xiii

Preface

Available documentation

Online documentation

Our documentation is available online at https://documentation.suse.com. Browse or down‐

load the documentation in various formats.

Latest updates

The latest updates are usually available in the English-language version of this

documentation.

SUSE Knowledgebase

If you run into an issue, check out the Technical Information Documents (TIDs) that are avail‐

able online at https://www.suse.com/support/kb/. Search the SUSE Knowledgebase for

known solutions driven by customer need.

Release notes

For release notes, see https://www.suse.com/releasenotes/.

In your system

For offline use, the release notes are also available under /usr/share/doc/release-

notes on your system. The documentation for individual packages is available at /usr/

share/doc/packages.

Many commands are also described in their manual pages. To view them, run man, followed

by a specific command name. If the man command is not installed on your system, install it

with sudo zypper install man.

Improving the documentation

Your feedback and contributions to this documentation are welcome. The following channels for

giving feedback are available:

Service requests and support

For services and support options available for your product, see https://www.suse.com/sup‐

port/.

xiv

https://documentation.suse.com
https://www.suse.com/support/kb/
https://www.suse.com/releasenotes/
https://www.suse.com/support/
https://www.suse.com/support/

To open a service request, you need a SUSE subscription registered at SUSE Customer

Center. Go to https://scc.suse.com/support/requests, log in, and click Create New.

Bug reports

Report issues with the documentation at https://bugzilla.suse.com/.

To simplify this process, click the Report an issue icon next to a headline in the HTML ver‐

sion of this document. This preselects the right product and category in Bugzilla and adds a

link to the current section. You can start typing your bug report right away.

A Bugzilla account is required.

Contributions

To contribute to this documentation, click the Edit source document icon next to a headline in

the HTML version of this document. This will take you to the source code on GitHub, where

you can open a pull request.

A GitHub account is required.

Edit source document only available for English

The Edit source document icons are only available for the English version of

each document. For all other languages, use the Report an issue icons in‐

stead.

For more information about the documentation environment used for this documentation, see

the repository's README.

Mail

You can also report errors and send feedback concerning the documentation to doc-

team@suse.com. Include the document title, the product version, and the publication date

of the document. Additionally, include the relevant section number and title (or provide the

URL) and provide a concise description of the problem.

Documentation conventions

The following notices and typographic conventions are used in this document:

/etc/passwd: Directory names and file names

PLACEHOLDER: Replace PLACEHOLDER with the actual value

PATH: An environment variable

•

•

•

xv

https://scc.suse.com/support/requests
https://bugzilla.suse.com/

ls, --help: Commands, options, and parameters

user: The name of a user or group

package_name: The name of a software package

Alt, Alt—F1: A key to press or a key combination. Keys are shown in uppercase as on a

keyboard.

File, File > Save As: menu items, buttons

x86_64 ▶This paragraph is only relevant for the AMD64/Intel 64 architectures. The arrows

mark the beginning and the end of the text block.◀

zseries;power ▶This paragraph is only relevant for the architectures IBM Z and POWER. The

arrows mark the beginning and the end of the text block.◀

Chapter 1, “Example chapter”: A cross-reference to another chapter in this guide.

Commands that must be run with root privileges. You can also prefix these commands with

the sudo command to run them as a non-privileged user:

#command>sudocommand

Commands that can be run by non-privileged users:

>command

Commands can be split into two or multiple lines by a backslash character (\) at the end of a

line. The backslash informs the shell that the command invocation will continue after the end

of the line:

>echo a b \
c d

A code block that shows both the command (preceded by a prompt) and the respective out‐

put returned by the shell:

>command
output

Notices

Warning notice

Vital information you must be aware of before proceeding. Warns you about se‐

curity issues, potential loss of data, damage to hardware, or physical hazards.

Important notice

Important information you should be aware of before proceeding.

•

•

•

•

•

•

•

•

•

•

•

•

xvi

Note notice

Additional information, for example about differences in software versions.

Tip notice

Helpful information, like a guideline or a piece of practical advice.

Compact Notices

Note

Additional information, for example about differences in software versions.

Tip

Helpful information, like a guideline or a piece of practical advice.

Support

Find the support statement for SUSE Linux Enterprise Server and general information about tech‐

nology previews below. For details about the product lifecycle, see https://www.suse.com/lifecycle.

If you are entitled to support, find details on how to collect information for a support ticket at https://

documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html.

Support statement for SUSE Linux Enterprise Server

To receive support, you need an appropriate subscription with SUSE. To view the specific support

offers available to you, go to https://www.suse.com/support/ and select your product.

The support levels are defined as follows:

L1

Problem determination, which means technical support designed to provide compatibility in‐

formation, usage support, ongoing maintenance, information gathering and basic trou‐

bleshooting using available documentation.

L2

Problem isolation, which means technical support designed to analyze data, reproduce cus‐

tomer problems, isolate a problem area and provide a resolution for problems not resolved

by Level 1 or prepare for Level 3.

•

xvii

https://www.suse.com/lifecycle
https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html
https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html
https://www.suse.com/support/

L3

Problem resolution, which means technical support designed to resolve problems by engag‐

ing engineering to resolve product defects which have been identified by Level 2 Support.

For contracted customers and partners, SUSE Linux Enterprise Server is delivered with L3 support

for all packages, except for the following:

Technology previews.

Sound, graphics, fonts, and artwork.

Packages that require an additional customer contract.

Some packages shipped as part of the module Workstation Extension are L2-supported only.

Packages with names ending in -devel (containing header files and similar developer re‐

sources) will only be supported together with their main packages.

SUSE will only support the usage of original packages. That is, packages that are unchanged and

not recompiled.

Technology previews

Technology previews are packages, stacks, or features delivered by SUSE to provide glimpses into

upcoming innovations. Technology previews are included for your convenience to give you a

chance to test new technologies within your environment. We would appreciate your feedback. If

you test a technology preview, please contact your SUSE representative and let them know about

your experience and use cases. Your input is helpful for future development.

Technology previews have the following limitations:

Technology previews are still in development. Therefore, they may be functionally incom‐

plete, unstable, or otherwise not suitable for production use.

Technology previews are not supported.

Technology previews may only be available for specific hardware architectures.

Details and functionality of technology previews are subject to change. As a result, upgrad‐

ing to subsequent releases of a technology preview may be impossible and require a fresh

installation.

SUSE may discover that a preview does not meet customer or market needs, or does not

comply with enterprise standards. Technology previews can be removed from a product at

any time. SUSE does not commit to providing a supported version of such technologies in

the future.

For an overview of technology previews shipped with your product, see the release notes at https://

www.suse.com/releasenotes.

•

•

•

•

•

•

•

•

•

•

xviii

https://www.suse.com/releasenotes
https://www.suse.com/releasenotes

Part I. Introduction

1 Virtualization technology 2

2 Virtualization scenarios 6

3 Introduction to Xen virtualization 8

4 Introduction to KVM virtualization 11

5 Virtualization tools 13

6 Installation of virtualization components
16

7 Virtualization limits and support 21

1

Chapter 1. Virtualization technology

1.1. Overview

SUSE Linux Enterprise Server includes the latest open source virtualization technologies, Xen and

KVM. With these hypervisors, SUSE Linux Enterprise Server can be used to provision, de-

provision, install, monitor and manage multiple virtual machines (VM Guests) on a single physical

system (for more information see Hypervisor). SUSE Linux Enterprise Server can create virtual

machines running both modified, highly tuned, paravirtualized operating systems and fully

virtualized unmodified operating systems.

The primary component of the operating system that enables virtualization is a hypervisor (or

virtual machine manager), which is a layer of software that runs directly on server hardware. It

controls platform resources, sharing them among multiple VM Guests and their operating systems

by presenting virtualized hardware interfaces to each VM Guest.

SUSE Linux Enterprise is an enterprise-class Linux server operating system that offers two types

of hypervisors: Xen and KVM.

SUSE Linux Enterprise Server with Xen or KVM acts as a virtualization host server (VHS) that

supports VM Guests with its own guest operating systems. The SUSE VM Guest architecture

consists of a hypervisor and management components that constitute the VHS, which runs many

application-hosting VM Guests.

In Xen, the management components run in a privileged VM Guest often called Dom0. In KVM,

where the Linux kernel acts as the hypervisor, the management components run directly on the

VHS.

1.2. Virtualization benefits

Virtualization brings a lot of advantages while providing the same service as a hardware server.

First, it reduces the cost of your infrastructure. Servers are mainly used to provide a service to a

customer, and a virtualized operating system can provide the same service, with:

Less hardware: you can run several operating systems on a single host, therefore all

hardware maintenance is reduced.

Less power/cooling: less hardware means you do not need to invest more in electric power,

backup power, and cooling if you need more service.

Save space: your data center space is saved because you do not need more hardware

servers (less servers than service running).

Less management: using a VM Guest simplifies the administration of your infrastructure.

•

•

•

•

Chapter 1. Virtualization technology

2

Agility and productivity: Virtualization provides migration capabilities, live migration and

snapshots. These features reduce downtime, and bring an easy way to move your service

from one place to another without any service interruption.

1.3. Virtualization modes

Guest operating systems are hosted on virtual machines in either full virtualization (FV) mode or

paravirtual (PV) mode. Each virtualization mode has advantages and disadvantages.

Full virtualization mode lets virtual machines run unmodified operating systems, such as

Windows* Server 2003. It can use either Binary Translation or hardware-assisted

virtualization technology, such as AMD* Virtualization or Intel* Virtualization Technology.

Using hardware assistance allows for better performance on processors that support it.

Certain guest operating systems hosted in full virtualization mode can be configured to use

drivers from the SUSE Virtual Machine Drivers Pack (VMDP) instead of drivers originating

from the operating system. Running virtual machine drivers improves performance

dramatically on guest operating systems, such as Windows Server 2003. For more

information, see Appendix A, Virtual machine drivers.

To be able to run under paravirtual mode, guest operating systems normally need to be

modified for the virtualization environment. However, operating systems running in

paravirtual mode have better performance than those running under full virtualization.

Operating systems currently modified to run in paravirtual mode are called paravirtualized

operating systems and include SUSE Linux Enterprise Server.

1.4. I/O virtualization

VM Guests not only share CPU and memory resources of the host system, but also the I/O

subsystem. Because software I/O virtualization techniques deliver less performance than bare

metal, hardware solutions that deliver almost “native” performance have been developed recently.

SUSE Linux Enterprise Server supports the following I/O virtualization techniques:

Full virtualization

Fully Virtualized (FV) drivers emulate widely supported real devices, which can be used with

an existing driver in the VM Guest. The guest is also called Hardware Virtual Machine

(HVM). Since the physical device on the VM Host Server may differ from the emulated one,

the hypervisor needs to process all I/O operations before handing them over to the physical

device. Therefore all I/O operations need to traverse two software layers, a process that not

only significantly impacts I/O performance, but also consumes CPU time.

Paravirtualization

Paravirtualization (PV) allows direct communication between the hypervisor and the VM

Guest. With less overhead involved, performance is much better than with full virtualization.

•

•

•

3

However, paravirtualization requires either the guest operating system to be modified to

support the paravirtualization API or paravirtualized drivers. See the section called

“Availability of paravirtualized drivers” for a list of guest operating systems supporting

paravirtualization.

PVHVM

This type of virtualization enhances HVM (see Full virtualization) with paravirtualized (PV)

drivers, and PV interrupt and timer handling.

VFIO

VFIO stands for Virtual Function I/O and is a new user-level driver framework for Linux. It

replaces the traditional KVM PCI Pass-Through device assignment. The VFIO driver

exposes direct device access to user space in a secure memory (IOMMU) protected

environment. With VFIO, a VM Guest can directly access hardware devices on the VM Host

Server (pass-through), avoiding performance issues caused by emulation in performance

critical paths. This method does not allow to share devices—each device can only be

assigned to a single VM Guest. VFIO needs to be supported by the VM Host Server CPU,

chipset and the BIOS/EFI.

Compared to the legacy KVM PCI device assignment, VFIO has the following advantages:

Resource access is compatible with UEFI Secure Boot.

Device is isolated and its memory access protected.

Offers a user space device driver with more flexible device ownership model.

Is independent of KVM technology, and not bound to x86 architecture only.

In SUSE Linux Enterprise Server the USB and PCI pass-through methods of device

assignment are considered deprecated and are superseded by the VFIO model.

SR-IOV

The latest I/O virtualization technique, Single Root I/O Virtualization SR-IOV combines the

benefits of the aforementioned techniques—performance and the ability to share a device

with several VM Guests. SR-IOV requires special I/O devices, that are capable of replicating

resources so they appear as multiple separate devices. Each such “pseudo” device can be

directly used by a single guest. However, for network cards for example the number of

concurrent queues that can be used is limited, potentially reducing performance for the VM

Guest compared to paravirtualized drivers. On the VM Host Server, SR-IOV must be

supported by the I/O device, the CPU and chipset, the BIOS/EFI and the hypervisor—for

setup instructions see the section called “Assigning a host PCI device to a VM Guest”.

•

•

•

•

Chapter 1. Virtualization technology

4

Requirements for VFIO and SR-IOV

To be able to use the VFIO and SR-IOV features, the VM Host Server needs to fulfill

the following requirements:

IOMMU needs to be enabled in the BIOS/EFI.

For Intel CPUs, the kernel parameter intel_iommu=on needs to be provided

on the kernel command line. For more information, see https://github.com/

torvalds/linux/blob/master/Documentation/admin-guide/kernel-

parameters.txt#L1951.

The VFIO infrastructure needs to be available. This can be achieved by loading

the kernel module vfio_pci. For more information, see the section called

“Loading kernel modules” in “Administration Guide”.

•

•

•

5

https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt#L1951
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt#L1951
https://github.com/torvalds/linux/blob/master/Documentation/admin-guide/kernel-parameters.txt#L1951
https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

Chapter 2. Virtualization scenarios

Virtualization provides several useful capabilities to your organization, for example:

more efficient hardware usage

support for legacy software

operating system isolation

live migration

disaster recovery

load balancing

2.1. Server consolidation

Many servers can be replaced by one big physical server, so that hardware is consolidated, and

guest operating systems are converted to virtual machines. This also supports running legacy

software on new hardware.

Better usage of resources that were not running at 100%

Fewer server locations needed

More efficient use of computer resources: multiple workloads on the same server

Simplification of data center infrastructure

Simplifies moving workloads to other hosts, avoiding service downtime

Faster and agile virtual machine provisioning

Multiple guest operating systems can run on a single host

Important

Server consolidation requires special attention to the following points:

Maintenance windows should be carefully planned

Storage is key: it must be able to support migration and growing disk usage

You must verify that your servers can support the additional workloads

2.2. Isolation

Guest operating systems are fully isolated from the host running them. Therefore, if there are

problems inside virtual machines, the host is not harmed. Also, problems inside one VM do not

affect other VMs. No data is shared between VMs.

UEFI Secure Boot can be used for VMs.

KSM should be avoided. For more details on KSM, refer to KSM.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2. Virtualization scenarios

6

Individual CPU cores can be assigned to VMs.

Hyper-threading (HT) should be disabled to avoid potential security issues.

VM should not share network, storage, or network hardware.

Use of advanced hypervisor features such as PCI pass-through or NUMA adversely affects

VM migration capabilities.

Use of paravirtualization and virtio drivers improves VM performance and efficiency.

AMD provides specific features regarding the security of virtualization.

2.3. Disaster recovery

The hypervisor can make snapshots of VMs, enabling restoration to a known good state, or to any

desired earlier state. Since Virtualized OSes are less dependent on hardware configuration than

those running directly on bare metal, these snapshots can be restored onto different server

hardware so long as it is running the same hypervisor.

2.4. Dynamic load balancing

Live migration provides a simple way to load-balance your services across your infrastructure, by

moving VMs from busy hosts to those with spare capacity, on demand.

•

•

•

•

•

7

Chapter 3. Introduction to Xen virtualization

This chapter introduces and explains the components and technologies you need to understand to

set up and manage a Xen-based virtualization environment.

3.1. Basic components

The basic components of a Xen-based virtualization environment are the following:

Xen hypervisor

Dom0

any number of other VM Guests

tools, commands and configuration files to manage virtualization

Collectively, the physical computer running all these components is called a VM Host Server

because together these components form a platform for hosting virtual machines.

The Xen hypervisor

The Xen hypervisor, sometimes simply called a virtual machine monitor, is an open source

software program that coordinates the low-level interaction between virtual machines and

physical hardware.

The Dom0

The virtual machine host environment, also called Dom0 or controlling domain, is composed

of several components, such as:

SUSE Linux Enterprise Server provides a graphical and a command line environment

to manage the virtual machine host components and its virtual machines.

Note

The term “Dom0” refers to a special domain that provides the

management environment. This may be run either in graphical or in

command line mode.

The xl tool stack based on the xenlight library (libxl). Use it to manage Xen guest

domains.

QEMU—an open source software that emulates a full computer system, including a

processor and multiple peripherals. It provides the ability to host operating systems in

both full virtualization or paravirtualization mode.

•

•

•

•

•

•

•

Chapter 3. Introduction to Xen virtualization

8

Xen-based virtual machines

A Xen-based virtual machine, also called a VM Guest or DomU, consists of the following

components:

At least one virtual disk that contains a bootable operating system. The virtual disk can

be based on a file, partition, volume, or other type of block device.

A configuration file for each guest domain. It is a text file following the syntax

described in the man page man 5 xl.conf.

Several network devices, connected to the virtual network provided by the controlling

domain.

Management tools, commands, and configuration files

There is a combination of GUI tools, commands and configuration files to help you manage

and customize your virtualization environment.

3.2. Xen virtualization architecture

The following graphic depicts a virtual machine host with four virtual machines. The Xen hypervisor

is shown as running directly on the physical hardware platform. The controlling domain is also a

virtual machine, although it has several additional management tasks compared to all the other

virtual machines.

Figure 3.1. Xen virtualization architecture

•

•

•

9

On the left, the virtual machine host’s Dom0 is shown running the SUSE Linux Enterprise Server

operating system. The two virtual machines shown in the middle are running paravirtualized

operating systems. The virtual machine on the right shows a fully virtual machine running an

unmodified operating system, such as the latest version of Microsoft Windows/Server.

Chapter 3. Introduction to Xen virtualization

10

Chapter 4. Introduction to KVM virtualization

4.1. Basic components

KVM is a full virtualization solution for hardware architectures that support hardware virtualization

(refer to the section called “Architecture support” for more details on supported architectures).

VM Guests (virtual machines), virtual storage and virtual networks can be managed with QEMU

tools directly or with the libvirt-based stack. The QEMU tools include qemu-system-ARCH,

the QEMU monitor, qemu-img, and qemu-ndb. A libvirt-based stack includes libvirt itself,

along with libvirt-based applications such as virsh, virt-manager, virt-install, and

virt-viewer.

4.2. KVM virtualization architecture

This full virtualization solution consists of two main components:

A set of kernel modules (kvm.ko, kvm-intel.ko, and kvm-amd.ko) that provides the

core virtualization infrastructure and processor-specific drivers.

A user space program (qemu-system-ARCH) that provides emulation for virtual devices and

control mechanisms to manage VM Guests (virtual machines).

The term KVM more properly refers to the kernel level virtualization functionality, but is in practice

more commonly used to refer to the user space component.

•

•

11

Figure 4.1. KVM virtualization architecture

Chapter 4. Introduction to KVM virtualization

12

Chapter 5. Virtualization tools

5.1. Virtualization console tools

libvirt includes several command-line utilities to manage virtual machines. The most important

ones are:

virsh (Package: libvirt-client)

A command-line tool to manage VM Guests with similar functionality as the Virtual Machine

Manager. virsh allows you to change a VM Guest's status, set up new guests and devices,

or edit existing configurations. virsh is also useful to script VM Guest management

operations.

virsh takes the first argument as a command and further arguments as options to this

command:

virsh [-c URI] COMMANDDOMAIN-ID [OPTIONS]

Like zypper, virsh can also be called without a command. In this case, it starts a shell

waiting for your commands. This mode is useful when having to run subsequent commands:

~> virsh -c qemu+ssh://wilber@mercury.example.com/system
Enter passphrase for key '/home/wilber/.ssh/id_rsa':
Welcome to virsh, the virtualization interactive terminal.

Type: 'help' for help with commands
 'quit' to quit

virsh # hostname
mercury.example.com

virt-install (Package: virt-install)

A command-line tool for creating new VM Guests using the libvirt library. It supports

graphical installations via VNC or SPICE protocols. Given suitable command-line arguments,

virt-install can run unattended. This allows for easy automation of guest installs.

virt-install is the default installation tool used by the Virtual Machine Manager.

remote-viewer (Package: virt-viewer)

A simple viewer of a remote desktop. It supports SPICE and VNC protocols.

virt-clone (Package: virt-install)

A tool for cloning existing virtual machine images using the libvirt hypervisor

management library.

13

virt-host-validate (Package: libvirt-client)

A tool that validates whether the host is configured in a suitable way to run libvirt

hypervisor drivers.

5.2. Virtualization GUI tools

The following libvirt-based graphical tools are available on SUSE Linux Enterprise Server. All tools

are provided by packages carrying the tool's name.

Virtual Machine Manager (package: virt-manager)

The Virtual Machine Manager is a desktop tool for managing VM Guests. It provides the

ability to control the lifecycle of existing machines (start/shutdown, pause/resume, save/

restore) and create new VM Guests. It allows managing multiple types of storage and virtual

networks. It provides access to the graphical console of VM Guests with a built-in VNC

viewer and can be used to view performance statistics. virt-manager supports connecting

to a local libvirtd, managing a local VM Host Server, or a remote libvirtd managing a

remote VM Host Server.

To start the Virtual Machine Manager, enter virt-manager at the command prompt.

Chapter 5. Virtualization tools

14

Note

To disable automatic USB device redirection for VM Guest using spice, either

launch virt-manager with the --spice-disable-auto-usbredir

parameter or run the following command to persistently change the default

behavior:

>dconf write /org/virt-manager/virt-manager/console/auto-
redirect false

virt-viewer (Package: virt-viewer)

A viewer for the graphical console of a VM Guest. It uses SPICE (configured by default on

the VM Guest) or VNC protocols and supports TLS and x509 certificates. VM Guests can be

accessed by name, ID or UUID. If the guest is not already running, the viewer can be told to

wait until the guest starts, before attempting to connect to the console. virt-viewer is not

installed by default and is available after installing the package virt-viewer.

Note

To disable automatic USB device redirection for VM Guest using spice, add an

empty filter using the --spice-usbredir-auto-redirect-filter=''

parameter.

yast2 vm (Package: yast2-vm)

A YaST module that simplifies the installation of virtualization tools and can set up a network

bridge:

15

Chapter 6. Installation of virtualization components

6.1. Introduction

To run a virtualization server (VM Host Server) that can host one or more guest systems (VM

Guests), you need to install required virtualization components on the server. These components

vary depending on which virtualization technology you want to use.

6.2. Installing virtualization components

You can install the virtualization tools required to run a VM Host Server in one of the following

ways:

By selecting a specific system role during SUSE Linux Enterprise Server installation on the

VM Host Server

By running the YaST Virtualization module on an already installed and running SUSE Linux

Enterprise Server.

By installing specific installation patterns on an already installed and running SUSE Linux

Enterprise Server.

6.2.1. Specifying a system role

You can install all the tools required for virtualization during the installation of SUSE Linux

Enterprise Server on the VM Host Server. During the installation, you are presented with the

System Role screen.

Figure 6.1. System Role screen

•

•

•

Chapter 6. Installation of virtualization components

16

Here you can select either the KVM Virtualization Host or the Xen Virtualization Host roles. The

appropriate software selection and setup is automatically performed during SUSE Linux Enterprise

Server installation.

Tip

Both virtualization system roles create a dedicated /var/lib/libvirt partition,

and enable the firewalld and Kdump services.

6.2.2. Running the YaST Virtualization module

Depending on the scope of SUSE Linux Enterprise Server installation on the VM Host Server, none

of the virtualization tools may be installed on your system. They are automatically installed when

configuring the hypervisor with the YaST Virtualization module.

Tip

The YaST Virtualization module is included in the yast2-vm package. Verify it is

installed on the VM Host Server before installing virtualization components.

Procedure 6.1. Installing the KVM environment

To install the KVM virtualization environment and related tools, proceed as follows:

Start YaST and select Virtualization > Install Hypervisor and Tools.

Select KVM server for a minimal installation of QEMU and KVM environment. Select KVM

tools to use the libvirt-based management stack as well. Confirm with Accept.

YaST offers to automatically configure a network bridge on the VM Host Server. It ensures

proper networking capabilities of the VM Guest. Agree to do so by selecting Yes, otherwise

choose No.

After the setup has been finished, you can start creating and configuring VM Guests.

Rebooting the VM Host Server is not required.

Procedure 6.2. Installing the Xen environment

To install the Xen virtualization environment, proceed as follows:

Start YaST and selectVirtualization > Install Hypervisor and Tools.

Select Xen server for a minimal installation of Xen environment. Select Xen tools to use the

libvirt-based management stack as well. Confirm with Accept.

1.

2.

3.

4.

1.

2.

17

YaST offers to automatically configure a network bridge on the VM Host Server. It ensures

proper networking capabilities of the VM Guest. Agree to do so by selecting Yes, otherwise

choose No.

After the setup has been finished, you need to reboot the machine with the Xen kernel.

Default boot kernel

If everything works as expected, change the default boot kernel with YaST and

make the Xen-enabled kernel the default. For more information about changing

the default kernel, see the section called “Configuring the boot loader with

YaST” in “Administration Guide”.

6.2.3. Installing specific installation patterns

Related software packages from SUSE Linux Enterprise Server software repositories are

organized into installation patterns. You can use these patterns to install specific virtualization

components on an already running SUSE Linux Enterprise Server. Use zypper to install them:

zypper install -t pattern PATTERN_NAME

To install the KVM environment, consider the following patterns:

kvm_server

Installs basic VM Host Server with the KVM and QEMU environments.

kvm_tools

Installs libvirt tools for managing and monitoring VM Guests in KVM environment.

To install the Xen environment, consider the following patterns:

xen_server

Installs a basic Xen VM Host Server.

xen_tools

Installs libvirt tools for managing and monitoring VM Guests in Xen environment.

6.3. Enable nested virtualization in KVM

Technology preview

KVM's nested virtualization is still a technology preview. It is provided for testing

purposes and is not supported.

3.

4.

Chapter 6. Installation of virtualization components

18

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

Nested guests are KVM guests run in a KVM guest. When describing nested guests, we use the

following virtualization layers:

L0

A bare metal host running KVM.

L1

A virtual machine running on L0. Because it can run another KVM, it is called a guest

hypervisor.

L2

A virtual machine running on L1. It is called a nested guest.

Nested virtualization has many advantages. You can benefit from it in the following scenarios:

Manage your own virtual machines directly with your hypervisor of choice in cloud

environments.

Enable the live migration of hypervisors and their guest virtual machines as a single entity.

Note

Live migration of a nested VM Guest is not supported.

Use it for software development and testing.

To enable nesting temporarily, remove the module and reload it with the nested KVM module

parameter:

For Intel CPUs, run:

>sudo modprobe -r kvm_intel && modprobe kvm_intel nested=1

For AMD CPUs, run:

>sudo modprobe -r kvm_amd && modprobe kvm_amd nested=1

To enable nesting permanently, enable the nested KVM module parameter in the /etc/

modprobe.d/kvm_*.conf file, depending on your CPU:

For Intel CPUs, edit /etc/modprobe.d/kvm_intel.conf and add the following line:

options kvm_intel nested=1

For AMD CPUs, edit /etc/modprobe.d/kvm_amd.conf and add the following line:

options kvm_amd nested=1

•

•

•

•

•

•

•

19

When your L0 host is capable of nesting, you can start an L1 guest in one of the following ways:

Use the -cpu host QEMU command line option.

Add the vmx (for Intel CPUs) or the svm (for AMD CPUs) CPU feature to the -cpu QEMU

command line option, which enables virtualization for the virtual CPU.

6.3.1. VMware ESX as a guest hypervisor

If you use VMware ESX as a guest hypervisor on top of a KVM bare metal hypervisor, you may

experience unstable network communication. This problem occurs especially between nested KVM

guests and the KVM bare metal hypervisor or external network. The following default CPU

configuration of the nested KVM guest is causing the problem:

<cpu mode='host-model' check='partial'/>

To fix it, modify the CPU configuration as follow:

[...]
<cpu mode='host-passthrough' check='none'>
 <cache mode='passthrough'/>
</cpu>
[...]

•

•

Chapter 6. Installation of virtualization components

20

Chapter 7. Virtualization limits and support

Important

QEMU is only supported when used for virtualization together with the KVM or Xen

hypervisors. The TCG accelerator is not supported, even when it is distributed within

SUSE products. Users must not rely on QEMU TCG to provide guest isolation, or for

any security guarantees. See also https://qemu-project.gitlab.io/qemu/system/

security.html.

7.1. Architecture support

7.1.1. KVM hardware requirements

SUSE supports KVM full virtualization on AMD64/Intel 64, AArch64, IBM Z and IBM LinuxONE

hosts.

On the AMD64/Intel 64 architecture, KVM is designed around hardware virtualization

features included in AMD* (AMD-V) and Intel* (VT-x) CPUs. It supports virtualization features

of chipsets and PCI devices, such as an I/O Memory Mapping Unit (IOMMU) and Single

Root I/O Virtualization (SR-IOV). You can test whether your CPU supports hardware

virtualization with the following command:

>egrep '(vmx|svm)' /proc/cpuinfo

If this command returns no output, your processor either does not support hardware

virtualization, or this feature has been disabled in the BIOS or firmware.

The following Web sites identify AMD64/Intel 64 processors that support hardware

virtualization: https://ark.intel.com/Products/VirtualizationTechnology (for Intel CPUs), and

https://products.amd.com/ (for AMD CPUs).

On the Arm architecture, Armv8-A processors include support for virtualization.

On the Arm architecture, we only support running QEMU/KVM via the CPU model host (it is

named host-passthrough in Virtual Machine Manager or libvirt).

KVM kernel modules not loading

The KVM kernel modules only load if the CPU hardware virtualization features are

available.

The general minimum hardware requirements for the VM Host Server are the same as outlined in

the section called “Hardware requirements” in “Deployment Guide”. However, additional RAM for

each virtualized guest is needed. It should at least be the same amount that is needed for a

•

•

•

21

https://qemu-project.gitlab.io/qemu/system/security.html
https://qemu-project.gitlab.io/qemu/system/security.html
https://ark.intel.com/Products/VirtualizationTechnology
https://products.amd.com/
https://fsteimke.github.io/xsltng-docs/suse/book-deployment.pdf

physical installation. It is also strongly recommended to have at least one processor core or hyper-

thread for each running guest.

AArch64

AArch64 is a continuously evolving platform. It does not have a traditional standards

and compliance certification program to enable interoperability with operating

systems and hypervisors. Ask your vendor for the support statement on SUSE Linux

Enterprise Server.

POWER

Running KVM or Xen hypervisors on the POWER platform is not supported.

7.1.2. Xen hardware requirements

SUSE supports Xen on AMD64/Intel 64.

7.2. Hypervisor limits

New features and virtualization limits for Xen and KVM are outlined in the Release Notes for each

Service Pack (SP).

Only packages that are part of the official repositories for SUSE Linux Enterprise Server are

supported. Conversely, all optional subpackages and plug-ins (for QEMU, libvirt) provided at

packagehub are not supported.

For the maximum total virtual CPUs per host, see the section called “Assigning CPUs”. The total

number of virtual CPUs should be proportional to the number of available physical CPUs.

32-bit hypervisor

With SUSE Linux Enterprise Server 11 SP2, we removed virtualization host facilities

from 32-bit editions. 32-bit guests are not affected and are fully supported using the

provided 64-bit hypervisor.

7.2.1. KVM limits

Supported (and tested) virtualization limits of a SUSE Linux Enterprise Server15 SP7 host running

Linux guests on AMD64/Intel 64. For other operating systems, refer to the specific vendor.

Chapter 7. Virtualization limits and support

22

https://www.suse.com/releasenotes/
https://packagehub.suse.com/

Table 7.1. KVM VM limits

Maximum virtual CPUs per VM 768

Maximum memory per VM 4 TiB

Note

KVM host limits are identical to SUSE Linux Enterprise Server (see the

corresponding section of release notes), except for:

Maximum virtual CPUs per VM: see recommendations in the Virtualization Best

Practices Guide regarding over-commitment of physical CPUs at the section

called “Assigning CPUs”. The total virtual CPUs should be proportional to the

available physical CPUs.

7.2.2. Xen limits

Table 7.2. Xen VM limits

Maximum virtual CPUs per VM 64 (HVM Windows guest), 128 (trusted HVMs), or 512 (PV)

Maximum memory per VM 2 TiB (64-bit guest), 16 GiB (32-bit guest with PAE)

Table 7.3. Xen host limits

Maximum total

physical CPUs
1024

Maximum total

virtual CPUs per

host

See recommendations in the Virtualization Best Practices Guide regarding

over-commitment of physical CPUs in sec-vt-best-perf-cpu-assign. The total

virtual CPUs should be proportional to the available physical CPUs.

Maximum

physical memory
16 TiB

Suspend and

hibernate modes
Not supported.

7.3. Supported host environments (hypervisors)

This section describes the support status of SUSE Linux Enterprise Server15 SP7 running as a

guest operating system on top of different virtualization hosts (hypervisors).

•

23

file:///home/frank/oxygenxml/xsltng-framework/resources/xsl/sec-vt-best-perf-cpu-assign

Table 7.4. The following SUSE host environments are supported

SUSE Linux Enterprise Server Hypervisors

SUSE Linux Enterprise Server 12

SP5

Xen and KVM (SUSE Linux Enterprise Server 15 SP6

guest must use UEFI boot)

SUSE Linux Enterprise Server 15

SP3 to SP7
Xen and KVM

The following third-party host environments are supported

Citrix XenServer

Nutanix Acropolis Hypervisor with AOS

Oracle VM Server 3.4

Oracle Linux KVM 7, 8

VMware ESXi 6.7, 7.0

Windows Server 2016, 2019, 2022

You can also search in the SUSE YES certification database.

The level of support is as follows

Support for SUSE host operating systems is full L3 (both for the guest and host), according

to the respective product lifecycle.

SUSE provides full L3 support for SUSE Linux Enterprise Server guests within third-party

host environments.

Support for the host and cooperation with SUSE Linux Enterprise Server guests must be

provided by the host system's vendor.

7.4. Supported guest operating systems

This section lists the support status for guest operating systems virtualized on top of SUSE Linux

Enterprise Server15 SP7 for KVM and Xen hypervisors.

Important

Microsoft Windows guests can be rebooted by libvirt/virsh only if

paravirtualized drivers are installed in the guest. Refer to https://www.suse.com/

products/vmdriverpack/ for more details on downloading and installing PV drivers.

The following guest operating systems are fully supported (L3):

SUSE Linux Enterprise Server 12 SP5

•

•

•

•

•

•

•

•

•

•

Chapter 7. Virtualization limits and support

24

https://www.citrix.com/products/citrix-hypervisor/
https://portal.nutanix.com/page/documents/compatibility-matrix/guestos
https://www.oracle.com/fr/virtualization/virtualbox/
https://www.oracle.com/linux/
https://www.vmware.com/products/esxi-and-esx.html
https://www.suse.com/yessearch/Search.jsp
https://www.suse.com/lifecycle/
https://www.suse.com/products/vmdriverpack/
https://www.suse.com/products/vmdriverpack/

SUSE Linux Enterprise Server 15 SP2, 15 SP3, 15 SP4, 15 SP5, 15 SP6

SUSE Linux Enterprise Micro 5.1, 5.2, 5.3, 5.4, 5.5, 6.0

Windows Server 2016, 2019

Oracle Linux 6, 7, 8 (KVM hypervisor only)

The following guest operating systems are supported as a technology preview (L2, fixes if

reasonable):

SLED 15 SP3

Windows 10 / 11

Red Hat and CentOS guest operating systems are fully supported (L3) if the customer has

purchased SUSE Liberty Linux.

Refer to the SUSE Liberty Linux documentation at https://documentation.suse.com/liberty for

the list of available combinations and supported releases. In other cases, they are supported

on a limited basis (L2, fixes if reasonable).

RHEL PV drivers

Starting from RHEL 7.2, Red Hat removed Xen PV drivers.

All other guest operating systems

In other combinations, L2 support is provided but fixes are available only if feasible. SUSE

fully supports the host OS (hypervisor). The guest OS issues need to be supported by the

respective OS vendor. If an issue fix involves both the host and guest environments, the

customer needs to approach both SUSE and the guest VM OS vendor.

All guest operating systems are supported both fully virtualized and paravirtualized. The

exception is Windows systems, which are only supported fully virtualized (but they can use

PV drivers: https://www.suse.com/products/vmdriverpack/), and OES operating systems,

which are supported only paravirtualized.

All guest operating systems are supported both in 32-bit and 64-bit environments, unless

stated otherwise.

7.4.1. Availability of paravirtualized drivers

To improve the performance of the guest operating system, paravirtualized drivers are provided

when available. Although they are not required, it is strongly recommended to use them.

•

•

•

•

•

•

•

•

•

•

25

https://documentation.suse.com/liberty
https://www.suse.com/products/vmdriverpack/

Starting with SUSE Linux Enterprise Server 12 SP2, we switched to a PVops kernel. We are no

longer using a dedicated kernel-xen package:

The kernel-default+kernel-xen on dom0 was replaced by the kernel-default

package.

The kernel-xen package on PV domU was replaced by the kernel-default package.

The kernel-default+xen-kmp on HVM domU was replaced by kernel-default.

For SUSE Linux Enterprise Server 12 SP1 and older (down to 10 SP4), the paravirtualized drivers

are included in a dedicated kernel-xen package.

The paravirtualized drivers are available as follows:

SUSE Linux Enterprise Server 12 / 12 SP1 / 12 SP2

Included in kernel

SUSE Linux Enterprise Server 11 / 11 SP1 / 11 SP2 / 11 SP3 / 11 SP4

Included in kernel

SUSE Linux Enterprise Server 10 SP4

Included in kernel

Red Hat

Available since Red Hat Enterprise Linux 5.4. Starting from Red Hat Enterprise Linux 7.2,

Red Hat removed the PV drivers.

Windows

SUSE has developed virtio-based drivers for Windows, which are available in the Virtual

Machine Driver Pack (VMDP). For more information, see https://www.suse.com/products/

vmdriverpack/.

7.5. Supported VM migration scenarios

SUSE Linux Enterprise Server supports migrating a virtual machine from one physical host to

another.

7.5.1. Offline migration scenarios

SUSE supports offline migration, powering off a guest VM, then moving it to a host running a

different SLE product, from SLE 12 to SLE 15 SPX. The following host operating system

combinations are fully supported (L3) for migrating guests from one host to another:

•

•

•

Chapter 7. Virtualization limits and support

26

https://www.suse.com/products/vmdriverpack/
https://www.suse.com/products/vmdriverpack/

Table 7.5. Supported offline migration guests

Target SLES host 12

SP3

12

SP4

12

SP5

15

GA

15

SP1

15

SP2

15

SP3

15

SP4

15

SP5

15

SP6Source SLES host

12 SP3 ✓ ✓ ✓ ✓ ❌ ❌ ❌ ❌ ❌ ❌

12 SP4 ❌ ✓ ✓ ✓1 ✓ ❌ ❌ ❌ ❌ ❌

12 SP5 ❌ ❌ ✓ ❌ ✓ ✓ ❌ ❌ ❌ ❌

15 GA ❌ ❌ ❌ ❌ ✓ ✓ ✓ ❌ ❌ ❌

15 SP1 ❌ ❌ ❌ ❌ ✓ ✓ ✓ ❌ ❌ ❌

15 SP2 ❌ ❌ ❌ ❌ ❌ ✓ ✓ ✓ ❌ ❌

15 SP3 ❌ ❌ ❌ ❌ ❌ ❌ ✓ ✓ ✓ ✓

15 SP4 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✓ ✓ ✓

15 SP5 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✓ ✓

15 SP6 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✓

✓ Fully compatible and fully supported

✓1 Supported for KVM hypervisor only

❌ Not supported

7.5.2. Live migration scenarios

This section lists support status of live migration scenarios when running virtualized on top of

SLES. Also, refer to the supported the section called “Migration requirements”. The following host

operating system combinations are fully supported (L3 according to the respective product life

cycle).

Live migration

SUSE always supports live migration of virtual machines between hosts

running SLES with successive service pack numbers. For example, from SLES

15 SP4 to 15 SP5.

SUSE strives to support live migration of virtual machines from a host running

a service pack under LTSS to a host running a newer service pack, within the

same major version of SUSE Linux Enterprise Server. For example, virtual

machine migration from a SLES 12 SP2 host to a SLES 12 SP5 host. SUSE

only performs minimal testing of LTSS-to-newer migration scenarios and

recommends thorough on-site testing before attempting to migrate critical

virtual machines.

•

•

27

https://www.suse.com/lifecycle
https://www.suse.com/lifecycle

Xen live migration

Live migration between SLE 11 and SLE 12 is not supported because of the different

tool stack, see the Release notes for more details.

Confidential Computing

SLES 15 SP6 and newer include kernel patches and tooling to enable AMD and Intel

Confidential Computing technology in the product. As this technology is not yet fully

ready for a production environment, it is provided as a technology preview.

Table 7.6. Supported live migration guests

Target SLES host 12

SP4

12

SP5

15

GA

15

SP1

15

SP2

15

SP3

15

SP4

15

SP5

15

SP6

15

SP7Source SLES host

12 SP3 ✓ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌

12 SP4 ✓ ✓ ✓1
❌ ❌ ❌ ❌ ❌ ❌ ❌

12 SP5 ❌ ✓ ❌ ✓ ❌ ❌ ❌ ❌ ❌ ❌

15 GA ❌ ❌ ✓ ✓ ❌ ❌ ❌ ❌ ❌ ❌

15 SP1 ❌ ❌ ❌ ✓ ✓ ❌ ❌ ❌ ❌ ❌

15 SP2 ❌ ❌ ❌ ❌ ✓ ✓ ❌ ❌ ❌ ❌

15 SP3 ❌ ❌ ❌ ❌ ❌ ✓ ✓ ❌ ❌ ❌

15 SP4 ❌ ❌ ❌ ❌ ❌ ❌ ✓ ✓ ❌ ❌

15 SP5 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✓ ✓ ❌

15 SP6 ❌ ❌ ❌ ❌ ❌ ❌ ❌ ❌ ✓ ✓2

✓ Fully compatible and fully supported

✓1 Supported for KVM hypervisor only

✓2 When available

❌ Not supported

Chapter 7. Virtualization limits and support

28

https://www.suse.com/releasenotes/x86_64/SUSE-SLES/12/#fate-317306

7.6. Feature support

Nested virtualization: tech preview

Nested virtualization allows you to run a virtual machine inside another VM while still

using hardware acceleration from the host. It has low performance and adds more

complexity while debugging. Nested virtualization is normally used for testing

purposes. In SUSE Linux Enterprise Server, nested virtualization is a technology

preview. It is only provided for testing and is not supported. Bugs can be reported, but

they are treated with low priority. Any attempt to live migrate or to save or restore

VMs in the presence of nested virtualization is also explicitly unsupported.

Post-copy live migration: tech preview

Post-copy is a method to live migrate virtual machines that is intended to get VMs

running as soon as possible on the destination host, and have the VM RAM

transferred gradually in the background over time as needed. Under certain

conditions, this can be an optimization compared to the traditional pre-copy method.

However, this comes with a major drawback: An error occurring during the migration

(especially a network failure) can cause the whole VM RAM contents to be lost.

Therefore, we recommend using pre-copy only in production, while post-copy can be

used for testing and experimentation in case losing the VM state is not a major

concern.

7.6.1. Xen host (Dom0)

Table 7.7. Feature support—host (Dom0)

Features Xen

Network and block device hotplugging ✓

Physical CPU hotplugging ❌

Virtual CPU hotplugging ✓

Virtual CPU pinning ✓

Virtual CPU capping ✓

Intel* VT-x2: FlexPriority, FlexMigrate (migration constraints apply to dissimilar CPU

architectures)
✓

Intel* VT-d2 (DMA remapping with interrupt filtering and queued invalidation) ✓

AMD* IOMMU (I/O page table with guest-to-host physical address translation) ✓

29

Adding or removing physical CPUs at runtime is not supported

The addition or removal of physical CPUs at runtime is not supported. However,

virtual CPUs can be added or removed for each VM Guest while offline.

7.6.2. Guest feature support

Live migration of Xen PV guests

For live migration, both source and target system architectures need to match; that is,

the processors (AMD* or Intel*) must be the same. Unless CPU ID masking is used,

such as with Intel FlexMigration, the target should feature the same processor

revision or a more recent processor revision than the source. If VMs are moved

among different systems, the same rules apply for each move. To avoid failing

optimized code at runtime or application start-up, source and target CPUs need to

expose the same processor extensions. Xen exposes the physical CPU extensions to

the VMs transparently. To summarize, guests can be 32-bit or 64-bit, but the VHS

must be identical.

Windows guest

Hotplugging of virtual network and virtual block devices, and resizing, shrinking and

restoring dynamic virtual memory are supported in Xen and KVM only if PV drivers

are being used (VMDP).

Intel FlexMigration

For machines that support Intel FlexMigration, CPU-ID masking and faulting allow for

more flexibility in cross-CPU migration.

Tip

For KVM, a detailed description of supported limits, features, recommended settings

and scenarios, and other useful information is maintained in kvm-supported.txt.

This file is part of the KVM package and can be found in /usr/share/doc/

packages/qemu-kvm.

Chapter 7. Virtualization limits and support

30

https://www.suse.com/products/vmdriverpack/

Table 7.8. Guest feature support for Xen and KVM

Features
Xen PV guest

(DomU)
Xen FV guest KVM FV guest

Virtual network and virtual block

device hotplugging
✓ ✓ ✓

Virtual CPU hotplugging ✓ ❌ ❌

Virtual CPU over-commitment ✓ ✓ ✓

Dynamic virtual memory resize ✓ ✓ ✓

VM save and restore ✓ ✓ ✓

VM Live Migration ✓ [1] ✓ [1] ✓

VM snapshot ✓ ✓ ✓

Advanced debugging with GDBC ✓ ✓ ✓

Dom0 metrics visible to VM ✓ ✓ ✓

Memory ballooning ✓ ❌ ❌

PCI Pass-Through ✓ [2] ✓ ✓

AMD SEV ❌ ❌ ✓ [3]

✓ Fully compatible and fully supported

❌ Not supported

[1] See the section called “Migration requirements”.

[2] NetWare guests are excluded.

[3] See https://documentation.suse.com/sles/html/SLES-amd-sev/article-amd-sev.html

31

https://documentation.suse.com/sles/html/SLES-amd-sev/article-amd-sev.html

Part II. Managing virtual machines with
libvirt

8 libvirt daemons 33

9 Preparing the VM Host Server 38

10 Guest installation 63

11 Basic VM Guest management 73

12 Connecting and authorizing 89

13 Advanced storage topics 107

14 Configuring virtual machines with Virtual Machine Manager
111

15 Configuring virtual machines with virsh 129

16 Enhancing virtual machine security with AMD SEV-SNP 156

17 Migrating VM Guests 161

18 Xen to KVM migration guide 169

Part II. Managing virtual machines with libvirt

32

Chapter 8. libvirt daemons

A libvirt deployment for accessing KVM or Xen requires one or more daemons to be installed

and active on the host. libvirt provides two daemon deployment options: monolithic or modular

daemons. libvirt has always provided the single monolithic daemon libvirtd. It includes the

primary hypervisor drivers and all secondary drivers needed for managing storage, networking,

node devices, etc. The monolithic libvirtd also provides secure remote access for external

clients. Over time, libvirt added support for modular daemons, where each driver runs in its

own daemon, allowing users to customize their libvirt deployment. Modular daemons are

enabled by default, but a deployment can be switched to the traditional monolithic daemon by

disabling the individual daemons and enabling libvirtd.

The modular daemon deployment is useful in scenarios where minimal libvirt support is

needed. For example, if virtual machine storage and networking is not provided by libvirt, the

libvirt-daemon-driver-storage and libvirt-daemon-driver-network packages are

not required. Kubernetes is an example of an extreme case, where it handles all networking,

storage, cgroups and namespace integration, etc. Only the libvirt-daemon-driver-QEMU

package, providing virtqemud, needs to be installed. Modular daemons allow configuring a

custom libvirt deployment containing only the components required for the use case.

8.1. Starting and stopping the modular daemons

The modular daemons are named after the driver which they are running, with the pattern

“virtDRIVERd”. They are configured via the files /etc/libvirt/virtDRIVERd.conf. SUSE

supports the virtqemud and virtxend hypervisor daemons, along with all the secondary

daemons:

virtnetworkd - The virtual network management daemon which provides libvirt's virtual

network management APIs. For example, virtnetworkd can be used to create a NAT virtual

network on the host for use by virtual machines.

virtnodedevd - The host physical device management daemon which provides libvirt's

node device management APIs. For example, virtnodedevd can be used to detach a PCI

device from the host for use by a virtual machine.

virtnwfilterd - The host firewall management daemon which provides libvirt's firewall

management APIs. For example, virtnwfilterd can be used to configure network traffic

filtering rules for virtual machines.

virtsecretd - The host secret management daemon which provides libvirt's secret

management APIs. For example, virtsecretd can be used to store a key associated with a

LUKs volume.

•

•

•

•

33

virtstoraged - The host storage management daemon which provides libvirt's storage

management APIs. virtstoraged can be used to create storage pools and create volumes

from those pools.

virtinterfaced - The host NIC management daemon which provides libvirt's host network

interface management APIs. For example, virtinterfaced can be used to create a bonded

network device on the host. SUSE discourages the use of libvirt's interface management

APIs in favor of default networking tools like wicked or NetworkManager. It is recommended

to disable virtinterfaced.

virtproxyd - A daemon to proxy connections between the traditional libvirtd sockets and

the modular daemon sockets. With a modular libvirt deployment, virtproxyd allows

remote clients to access the libvirt APIs similar to the monolithic libvirtd. It can also

be used by local clients that connect to the monolithic libvirtd sockets.

virtlogd - A daemon to manage logs from virtual machine consoles. virtlogd is also used by

the monolithic libvirtd. The monolithic daemon and virtqemud systemd unit files require

virtlogd, so it is not necessary to explicitly start virtlogd.

virtlockd - A daemon to manage locks held against virtual machine resources such as disks.

virtlockd is also used by the monolithic libvirtd. The monolithic daemon, virtqemud, and

virtxend systemd unit files require virtlockd, so it is not necessary to explicitly start virtlockd.

virtlogd and virtlockd are also used by the monolithic libvirtd. These daemons have

always been separate from libvirtd for security reasons.

By default, the modular daemons listen for connections on the /var/run/libvirt/

virtDRIVERd-sock and /var/run/libvirt/virtDRIVERd-sock-ro Unix Domain Sockets.

The client library prefers these sockets over the traditional /var/run/libvirt/libvirtd-

sock. The virtproxyd daemon is available for remote clients or local clients expecting the traditional

libvirtd socket.

The virtqemud and virtxend services are enabled in the systemd presets. The sockets for

virtnetworkd, virtnodedevd, virtnwfilterd, virtstoraged and virtsecretd are

also enabled in the presets, ensuring the daemons are enabled and available when the

corresponding packages are installed. Although enabled in presets for convenience, the modular

daemons can also be managed with their systemd unit files:

virtDRIVERd.service - The main unit file for launching the virtDRIVERd daemon. We

recommend configuring the service to start on boot if VMs are also configured to start on

host boot.

virtDRIVERd.socket - The unit file corresponding to the main read-write UNIX socket /var/

run/libvirt/virtDRIVERd-sock. We recommend starting this socket on boot by

default.

•

•

•

•

•

•

•

Chapter 8. libvirt daemons

34

virtDRIVERd-ro.socket - The unit file corresponding to the main read-only UNIX socket /

var/run/libvirt/virtDRIVERd-sock-ro. We recommend starting this socket on boot

by default.

virtDRIVERd-admin.socket - The unit file corresponding to the administrative UNIX socket /

var/run/libvirt/virtDRIVERd-admin-sock. We recommend starting this socket on

boot by default.

When systemd socket activation is used, several configuration settings in virtDRIVERd.conf are

no longer honored. Instead, these settings must be controlled via the system unit files:

unix_sock_group - UNIX socket group owner, controlled via the SocketGroup parameter in

the virtDRIVERd.socket and virtDRIVERd-ro.socket unit files.

unix_sock_ro_perms - Read-only UNIX socket permissions, controlled via the SocketMode

parameter in the virtDRIVERd-ro.socket unit file.

unix_sock_rw_perms - Read-write UNIX socket permissions, controlled via the SocketMode

parameter in the virtDRIVERd.socket unit file.

unix_sock_admin_perms - Admin UNIX socket permissions, controlled via the SocketMode

parameter in the virtDRIVERd-admin.socket unit file.

unix_sock_dir - Directory in which all UNIX sockets are created, independently controlled via

the ListenStream parameter in any of the virtDRIVERd.socket, virtDRIVERd-

ro.socket and virtDRIVERd-admin.socket unit files.

8.2. Starting and stopping the monolithic daemon

The monolithic daemon is known as libvirtd and is configured via /etc/libvirt/

libvirtd.conf. libvirtd is managed with several systemd unit files:

libvirtd.service - The main systemd unit file for launching libvirtd. We recommend

configuring libvirtd.service to start on boot if VMs are also configured to start on host

boot.

libvirtd.socket - The unit file corresponding to the main read-write UNIX socket /var/run/

libvirt/libvirt-sock. We recommend enabling this unit on boot.

libvirtd-ro.socket - The unit file corresponding to the main read-only UNIX socket /var/

run/libvirt/libvirt-sock-ro. We recommend enabling this unit on boot.

libvirtd-admin.socket - The unit file corresponding to the administrative UNIX socket /var/

run/libvirt/libvirt-admin-sock. We recommend enabling this unit on boot.

libvirtd-tcp.socket - The unit file corresponding to the TCP 16509 port for non-TLS remote

access. This unit should not be configured to start on boot until the administrator has

configured a suitable authentication mechanism.

•

•

•

•

•

•

•

•

•

•

•

•

35

libvirtd-tls.socket - The unit file corresponding to the TCP 16509 port for TLS remote access.

This unit should not be configured to start on boot until the administrator has deployed x509

certificates and optionally configured a suitable authentication mechanism.

When systemd socket activation is used, certain configuration settings in libvirtd.conf are no

longer honored. Instead, these settings must be controlled via the system unit files:

listen_tcp - TCP socket usage is enabled by starting the libvirtd-tcp.socket unit file.

listen_tls - TLS socket usage is enabled by starting the libvirtd-tls.socket unit file.

tcp_port - Port for the non-TLS TCP socket, controlled via the ListenStream parameter in

the libvirtd-tcp.socket unit file.

tls_port - Port for the TLS TCP socket, controlled via the ListenStream parameter in the

libvirtd-tls.socket unit file.

listen_addr - IP address to listen on, independently controlled via the ListenStream

parameter in the libvirtd-tcp.socket or libvirtd-tls.socket unit files.

unix_sock_group - UNIX socket group owner, controlled via the SocketGroup parameter in

the libvirtd.socket and libvirtd-ro.socket unit files.

unix_sock_ro_perms - Read-only UNIX socket permissions, controlled via the SocketMode

parameter in the libvirtd-ro.socket unit file.

unix_sock_rw_perms - Read-write UNIX socket permissions, controlled via the SocketMode

parameter in the libvirtd.socket unit file.

unix_sock_admin_perms - Admin UNIX socket permissions, controlled via the SocketMode

parameter in the libvirtd-admin.socket unit file.

unix_sock_dir - Directory in which all UNIX sockets are created, independently controlled via

the ListenStream parameter in any of the libvirtd.socket, libvirtd-ro.socket

and libvirtd-admin.socket unit files.

•

•

•

•

•

•

•

•

•

•

•

Chapter 8. libvirt daemons

36

Conflicting services: libvirtd and xendomains

If libvirtd fails to start, check if the service xendomains is loaded:

>systemctl is-active xendomains active

If the command returns active, you need to stop xendomains before you can start

the libvirtd daemon. If you want libvirtd to also start after rebooting,

additionally prevent xendomains from starting automatically. Disable the service:

>sudo systemctl stop xendomains
>sudo systemctl disable xendomains
>sudo systemctl start libvirtd

xendomains and libvirtd provide the same service and when used in parallel,

may interfere with one another. As an example, xendomains may attempt to start a

domU already started by libvirtd.

8.3. Switching to the monolithic daemon

Several services need to be changed when switching from modular to the monolithic daemon. It is

recommended to stop or evict any running virtual machines before switching between the daemon

options.

Stop the modular daemons and their sockets. The following example disables the QEMU

daemon for KVM and several secondary daemons.

for drv in qemu network nodedev nwfilter secret storage
do
>sudo systemctl stop virt${drv}d.service
>sudo systemctl stop virt${drv}d{,-ro,-admin}.socket

done

Disable future start of the modular daemons

for drv in qemu network nodedev nwfilter secret storage
do
>sudo systemctl disable virt${drv}d.service
>sudo systemctl disable virt${drv}d{,-ro,-admin}.socket

done

Enable the monolithic libvirtd service and sockets

>sudo systemctl enable libvirtd.service
>sudo systemctl enable libvirtd{,-ro,-admin}.socket

Start the monolithic libvirtd sockets

>sudo systemctl start libvirtd{,-ro,-admin}.socket

1.

2.

3.

4.

37

Chapter 9. Preparing the VM Host Server

Before you can install guest virtual machines, you need to prepare the VM Host Server to provide

the guests with the resources that they need for their operation. Specifically, you need to configure:

Networking so that guests can make use of the network connection provided the host.

A storage pool reachable from the host so that the guests can store their disk images.

9.1. Configuring networks

There are two common network configurations to provide a VM Guest with a network connection:

A network bridge. This is the default and recommended way of providing the guests with

network connection.

A virtual network with forwarding enabled.

9.1.1. Network bridge

The network bridge configuration provides a Layer 2 switch for VM Guests, switching Layer 2

Ethernet packets between ports on the bridge based on MAC addresses associated with the ports.

This gives the VM Guest Layer 2 access to the VM Host Server's network. This configuration is

analogous to connecting the VM Guest's virtual Ethernet cable into a hub that is shared with the

host and other VM Guests running on the host. The configuration is often referred to as shared

physical device.

The network bridge configuration is the default configuration of SUSE Linux Enterprise Server

when configured as a KVM or Xen hypervisor. It is the preferred configuration when you simply

want to connect VM Guests to the VM Host Server's LAN.

Which tool to use to create the network bridge depends on the service you use to manage the

network connection on the VM Host Server:

If a network connection is managed by wicked, use either YaST or the command line to

create the network bridge. wicked is the default on server hosts.

If a network connection is managed by NetworkManager, use the NetworkManager

command line tool nmcli to create the network bridge. NetworkManager is the default on

desktop and laptops.

9.1.1.1. Managing network bridges with YaST

This section includes procedures to add or remove network bridges with YaST.

•

•

•

•

•

•

Chapter 9. Preparing the VM Host Server

38

9.1.1.1.1. Adding a network bridge

To add a network bridge on VM Host Server, follow these steps:

Start YaST > System > Network Settings.

Activate the Overview tab and click Add.

Select Bridge from the Device Type list and enter the bridge device interface name in the

Configuration Name entry. Click the Next button to proceed.

In the Address tab, specify networking details such as DHCP/static IP address, subnet mask

or host name.

Using Dynamic Address is only useful when also assigning a device to a bridge that is

connected to a DHCP server.

If you intend to create a virtual bridge that has no connection to a real network device, use

Statically assigned IP Address. In this case, it is a good idea to use addresses from the

private IP address ranges, for example, 192.168.0.0/16, 172.16.0.0/12, or

10.0.0.0/8.

To create a bridge that should only serve as a connection between the different guests

without connection to the host system, set the IP address to 0.0.0.0 and the subnet mask

to 255.255.255.255. The network scripts handle this special address as an unset IP

address.

Activate the Bridged Devices tab and activate the network devices you want to include in the

network bridge.

Click Next to return to the Overview tab and confirm with OK. The new network bridge

should now be active on VM Host Server.

9.1.1.1.2. Deleting a network bridge

To delete an existing network bridge, follow these steps:

Start YaST > System > Network Settings.

Select the bridge device you want to delete from the list in the Overview tab.

Delete the bridge with Delete and confirm with OK.

9.1.1.2. Managing network bridges from the command line

This section includes procedures to add or remove network bridges using the command line.

1.

2.

3.

4.

5.

6.

1.

2.

3.

39

9.1.1.2.1. Adding a network bridge

To add a new network bridge device on VM Host Server, follow these steps:

Log in as root on the VM Host Server where you want to create a new network bridge.

Choose a name for the new bridge—virbr_test in our example—and run

#ip link add name VIRBR_TEST type bridge

Check if the bridge was created on VM Host Server:

#bridge vlan
[...]
virbr_test 1 PVID Egress Untagged

virbr_test is present, but is not associated with any physical network interface.

Bring the network bridge up and add a network interface to the bridge:

#ip link set virbr_test up
#ip link set eth1 master virbr_test

Network interface must be unused

You can only assign a network interface that is not yet used by another network

bridge.

Optionally, enable STP (see Spanning Tree Protocol):

#bridge link set dev virbr_test cost 4

9.1.1.2.2. Deleting a network bridge

To delete an existing network bridge device on VM Host Server from the command line, follow

these steps:

Log in as root on the VM Host Server where you want to delete an existing network bridge.

List existing network bridges to identify the name of the bridge to remove:

#bridge vlan
[...]
virbr_test 1 PVID Egress Untagged

Delete the bridge:

#ip link delete dev virbr_test

1.

2.

3.

4.

5.

1.

2.

3.

Chapter 9. Preparing the VM Host Server

40

https://en.wikipedia.org/wiki/Spanning_Tree_Protocol

9.1.1.3. Adding a network bridge with nmcli

This section includes procedures to add a network bridge with NetworkManager's command line

tool nmcli.

List active network connections:

>sudo nmcli connection show --active
NAME UUID TYPE
DEVICE
Ethernet connection 1 84ba4c22-0cfe-46b6-87bb-909be6cb1214 ethernet eth0

Add a new bridge device named br0 and verify its creation:

>sudo nmcli connection add type bridge ifname br0
Connection 'bridge-br0' (36e11b95-8d5d-4a8f-9ca3-ff4180eb89f7) \
successfully added.
>sudo nmcli connection show --active
NAME UUID TYPE
DEVICE
bridge-br0 36e11b95-8d5d-4a8f-9ca3-ff4180eb89f7 bridge br0
Ethernet connection 1 84ba4c22-0cfe-46b6-87bb-909be6cb1214 ethernet eth0

Optionally, you can view the bridge settings:

>sudo nmcli -f bridge connection show bridge-br0
bridge.mac-address: --
bridge.stp: yes
bridge.priority: 32768
bridge.forward-delay: 15
bridge.hello-time: 2
bridge.max-age: 20
bridge.ageing-time: 300
bridge.group-forward-mask: 0
bridge.multicast-snooping: yes
bridge.vlan-filtering: no
bridge.vlan-default-pvid: 1
bridge.vlans: --

Link the bridge device to the physical Ethernet device eth0:

>sudo nmcli connection add type bridge-slave ifname eth0 master br0

Disable the eth0 interface and enable the new bridge:

>sudo nmcli connection down "Ethernet connection 1"
>sudo nmcli connection up bridge-br0
Connection successfully activated (master waiting for slaves) \
(D-Bus active path: /org/freedesktop/NetworkManager/ActiveConnection/9)

9.1.1.4. Using VLAN interfaces

Sometimes it is necessary to create a private connection either between two VM Host Servers or

between VM Guest systems. For example, to migrate a VM Guest to hosts in a different network

segment. Or to create a private bridge that only VM Guest systems may connect to (even when

running on different VM Host Server systems). An easy way to build such connections is to set up

VLAN networks.

1.

2.

3.

4.

5.

41

VLAN interfaces are commonly set up on the VM Host Server. They either interconnect the

different VM Host Server systems, or they may be set up as a physical interface to an otherwise

virtual-only bridge. It is even possible to create a bridge with a VLAN as a physical interface that

has no IP address in the VM Host Server. That way, the guest systems have no possibility to

access the host over this network.

Run the YaST module System > Network Settings. Follow this procedure to set up the VLAN

device:

Procedure 9.1. Setting up VLAN interfaces with YaST

Click Add to create a new network interface.

In the Hardware Dialog, select Device TypeVLAN.

Change the value of Configuration Name to the ID of your VLAN. Be aware VLAN ID 1 is

commonly used for management purposes.

Click Next.

Select the interface that the VLAN device should connect to below Real Interface for VLAN.

If the desired interface does not appear in the list, first set up this interface without an IP

address.

Select the desired method for assigning an IP address to the VLAN device.

Click Next to finish the configuration.

It is also possible to use the VLAN interface as a physical interface of a bridge. This makes it

possible to connect several VM Host Server-only networks and allows live migration of VM Guest

systems that are connected to such a network.

YaST does not always allow setting no IP address. However, this may be a desired feature,

especially if VM Host Server-only networks should be connected. In this case, use the special

address 0.0.0.0 with netmask 255.255.255.255. The system scripts handle this address as

no IP address set.

9.1.2. Virtual networks

libvirt-managed virtual networks are similar to bridged networks, but typically have no Layer 2

connection to the VM Host Server. Connectivity to the VM Host Server's physical network is

accomplished with Layer 3 forwarding, which introduces additional packet processing on the VM

Host Server as compared to a Layer 2 bridged network. Virtual networks also provide DHCP and

DNS services for VM Guests. For more information on libvirt virtual networks, see the Network

XML format documentation at https://libvirt.org/formatnetwork.html.

A standard libvirt installation on SUSE Linux Enterprise Server already comes with a

predefined virtual network named default. It provides DHCP and DNS services for the network,

1.

2.

3.

4.

5.

6.

7.

Chapter 9. Preparing the VM Host Server

42

https://libvirt.org/formatnetwork.html

along with connectivity to the VM Host Server's physical network using the network address

translation (NAT) forwarding mode. Although it is predefined, the default virtual network needs to

be explicitly enabled by the administrator. For more information on the forwarding modes

supported by libvirt, see the Connectivity section of the Network XML format documentation at

https://libvirt.org/formatnetwork.html#elementsConnect.

libvirt-managed virtual networks can be used to satisfy a wide range of use cases, but are

commonly used on VM Host Servers that have a wireless connection or dynamic/sporadic network

connectivity, such as laptops. Virtual networks are also useful when the VM Host Server's network

has limited IP addresses, allowing forwarding of packets between the virtual network and the VM

Host Server's network. However, most server use cases are better suited for the network bridge

configuration, where VM Guests are connected to the VM Host Server's LAN.

Enabling forwarding mode

Enabling forwarding mode in a libvirt virtual network enables forwarding in the

VM Host Server by setting /proc/sys/net/ipv4/ip_forward and /proc/sys/

net/ipv6/conf/all/forwarding to 1, which turns the VM Host Server into a

router. Restarting the VM Host Server's network may reset the values and disable

forwarding. To avoid this behavior, explicitly enable forwarding in the VM Host Server

by editing the /etc/sysctl.conf file and adding:

net.ipv4.ip_forward = 1

net.ipv6.conf.all.forwarding = 1

9.1.2.1. Managing virtual networks with Virtual Machine Manager

You can define, configure and operate virtual networks with Virtual Machine Manager.

9.1.2.1.1. Defining virtual networks

Start Virtual Machine Manager. In the list of available connections, right-click the name of the

connection for which you need to configure the virtual network, and then select Details.

In the Connection Details window, click the Virtual Networks tab. You can see the list of all

virtual networks available for the current connection. On the right, there are details of the

selected virtual network.

1.

2.

43

https://libvirt.org/formatnetwork.html#elementsConnect

Figure 9.1. Connection details

To add a new virtual network, click Add.

Specify a name for the new virtual network.

Figure 9.2. Create virtual network

Specify the networking mode. For the NAT and Routed types, you can specify to which

device to forward network communications. While NAT (network address translation) remaps

the virtual network address space and allows sharing a single IP address, Routed forwards

packets from the virtual network to the VM Host Server's physical network with no

translation.

If you need IPv4 networking, activate Enable IPv4 and specify the IPv4 network address. If

you need a DHCP server, activate Enable DHCPv4 and specify the assignable IP address

range.

3.

4.

5.

6.

Chapter 9. Preparing the VM Host Server

44

If you need IPv6 networking, activate Enable IPv6 and specify the IPv6 network address. If

you need a DHCP server, activate Enable DHCPv6 and specify the assignable IP address

range.

To specify a different domain name than the name of the virtual network, select Custom

under DNS domain name and enter it here.

Click Finish to create the new virtual network. On the VM Host Server, a new virtual network

bridge virbrX is available, which corresponds to the newly created virtual network. You can

check with bridge link. libvirt automatically adds iptables rules to allow traffic to/from

guests attached to the new virbrX device.

9.1.2.1.2. Starting virtual networks

To start a virtual network that is temporarily stopped, follow these steps:

Start Virtual Machine Manager. In the list of available connections, right-click the name of the

connection for which you need to configure the virtual network, and then select Details.

In the Connection Details window, click the Virtual Networks tab. You can see the list of all

virtual networks available for the current connection.

To start the virtual network, click Start.

9.1.2.1.3. Stopping virtual networks

To stop an active virtual network, follow these steps:

Start Virtual Machine Manager. In the list of available connections, right-click the name of the

connection for which you need to configure the virtual network, and then select Details.

In the Connection Details window, click the Virtual Networks tab. You can see the list of all

virtual networks available for the current connection.

Select the virtual network to be stopped, then click Stop.

9.1.2.1.4. Deleting virtual networks

To delete a virtual network from VM Host Server, follow these steps:

Start Virtual Machine Manager. In the list of available connections, right-click the name of the

connection for which you need to configure the virtual network, and then select Details.

In the Connection Details window, click the Virtual Networks tab. You can see the list of all

virtual networks available for the current connection.

Select the virtual network to be deleted, then click Delete.

7.

8.

9.

1.

2.

3.

1.

2.

3.

1.

2.

3.

45

9.1.2.1.5. Obtaining IP addresses with nsswitch for NAT networks (in KVM)

On VM Host Server, install libvirt-nss, which provides NSS support for libvirt:

>sudo zypper in libvirt-nss

Add libvirt to /etc/nsswitch.conf:

...
hosts: files libvirt mdns_minimal [NOTFOUND=return] dns
...

If NSCD is running, restart it:

>sudo systemctl restart nscd

Now you can reach the guest system by name from the host.

The NSS module has limited functionality. It reads /var/lib/libvirt/dnsmasq/*.status

files to find the host name and corresponding IP addresses in a JSON record describing each

lease provided by dnsmasq. Host name translation can only be done on those VM Host Servers

using a libvirt-managed bridged network backed by dnsmasq.

9.1.2.2. Managing virtual networks with virsh

You can manage libvirt-provided virtual networks with the virsh command line tool. To view

all network related virsh commands, run

>sudo virsh help network
Networking (help keyword 'network'):
 net-autostart autostart a network
 net-create create a network from an XML file
 net-define define (but don't start) a network from
an XML file
 net-destroy destroy (stop) a network
 net-dumpxml network information in XML
 net-edit edit XML configuration for a network
 net-event Network Events
 net-info network information
 net-list list networks
 net-name convert a network UUID to network name
 net-start start a (previously defined) inactive
network
 net-undefine undefine an inactive network
 net-update update parts of an existing network's
configuration
 net-uuid convert a network name to network UUID

To view brief help information for a specific virsh command, run virsh help VIRSH_COMMAND:

•

•

•

Chapter 9. Preparing the VM Host Server

46

❶

❷

>sudo virsh help net-create
 NAME
 net-create - create a network from an XML file

 SYNOPSIS
 net-create <file>

 DESCRIPTION
 Create a network.

 OPTIONS
 [--file] <string> file containing an XML network description

9.1.2.2.1. Creating a network

To create a new running virtual network, run

>sudo virsh net-create VNET_DEFINITION.xml

The VNET_DEFINITION.xml XML file includes the definition of the virtual network that libvirt

accepts.

To define a new virtual network without activating it, run

>sudo virsh net-define VNET_DEFINITION.xml

The following examples illustrate definitions of different types of virtual networks.

Example 9.1. NAT-based network

The following configuration allows VM Guests outgoing connectivity if it is available on the VM Host

Server. Without VM Host Server networking, it allows guests to talk directly to each other.

<network>
<name>vnet_nated</name>❶
<bridge name="virbr1"/>❷
 <forward mode="nat"/>❸
 <ip address="192.168.122.1" netmask="255.255.255.0">❹
 <dhcp>
 <range start="192.168.122.2" end="192.168.122.254"/>❺
 <host mac="52:54:00:c7:92:da" name="host1.testing.com" \
 ip="192.168.1.101"/>❻
 <host mac="52:54:00:c7:92:db" name="host2.testing.com" \
 ip="192.168.1.102"/>
 <host mac="52:54:00:c7:92:dc" name="host3.testing.com" \
 ip="192.168.1.103"/>
 </dhcp>
 </ip>
</network>

The name of the new virtual network.

The name of the bridge device used to construct the virtual network. When defining a new

network with a <forward> mode of "nat" or "route" (or an isolated network with no

47

❸

❹

❺

❻

❶

<forward> element), libvirt automatically generates a unique name for the bridge device if

none is given.

Inclusion of the <forward> element indicates that the virtual network is connected to the physical

LAN. The mode attribute specifies the forwarding method. The most common modes are "nat"

(Network Address Translation, the default), "route" (direct forwarding to the physical network,

no address translation), and "bridge" (network bridge configured outside of libvirt). If the

<forward> element is not specified, the virtual network is isolated from other networks. For a

complete list of forwarding modes, see https://libvirt.org/formatnetwork.html#elementsConnect.

The IP address and netmask for the network bridge.

Enable DHCP server for the virtual network, offering IP addresses ranging from the specified

start and end attributes.

The optional <host> elements specify hosts that are given names and predefined IP addresses

by the built-in DHCP server. Any IPv4 host element must specify the following: the MAC address

of the host to be assigned a given name, the IP to be assigned to that host, and the name to be

given to that host by the DHCP server. An IPv6 host element differs slightly from that for IPv4:

there is no mac attribute since a MAC address has no defined meaning in IPv6. Instead, the

name attribute is used to identify the host to be assigned the IPv6 address. For DHCPv6, the

name is the plain name of the client host sent by the client to the server. This method of

assigning a specific IP address can also be used instead of the mac attribute for IPv4.

Example 9.2. Routed network

The following configuration routes traffic from the virtual network to the LAN without applying any

NAT. The IP address range must be preconfigured in the routing tables of the router on the VM

Host Server network.

<network>
 <name>vnet_routed</name>
 <bridge name="virbr1"/>
 <forward mode="route" dev="eth1"/>❶
 <ip address="192.168.122.1" netmask="255.255.255.0">
 <dhcp>
 <range start="192.168.122.2" end="192.168.122.254"/>
 </dhcp>
 </ip>
</network>

The guest traffic may only go out via the eth1 network device on the VM Host Server.

Example 9.3. Isolated network

This configuration provides an isolated private network. The guests can talk to each other, and to

VM Host Server, but cannot reach any other machines on the LAN, as the <forward> element is

missing in the XML description.

Chapter 9. Preparing the VM Host Server

48

https://libvirt.org/formatnetwork.html#elementsConnect

<network>
 <name>vnet_isolated</name>
 <bridge name="virbr3"/>
 <ip address="192.168.152.1" netmask="255.255.255.0">
 <dhcp>
 <range start="192.168.152.2" end="192.168.152.254"/>
 </dhcp>
 </ip>
 </network>

Example 9.4. Using an existing bridge on VM Host Server

This configuration shows how to use an existing VM Host Server's network bridge br0. VM Guests

are directly connected to the physical network. Their IP addresses are all on the subnet of the

physical network, and there are no restrictions on incoming or outgoing connections.

<network>
 <name>host-bridge</name>
 <forward mode="bridge"/>
 <bridge name="br0"/>
</network>

9.1.2.2.2. Listing networks

To list all virtual networks available to libvirt, run:

>sudo virsh net-list --all

 Name State Autostart Persistent
--
 crowbar active yes yes
 vnet_nated active yes yes
 vnet_routed active yes yes
 vnet_isolated inactive yes yes

To list available domains, run:

>sudo virsh list
 Id Name State
--
 1 nated_sles12sp3 running
 ...

To get a list of interfaces of a running domain, run domifaddr DOMAIN, or optionally specify the

interface to limit the output to this interface. By default, it additionally outputs their IP and MAC

addresses:

>sudo virsh domifaddr nated_sles12sp3 --interface vnet0 --source lease
 Name MAC address Protocol Address

 vnet0 52:54:00:9e:0d:2b ipv6 fd00:dead:beef:55::140/64
 - - ipv4 192.168.100.168/24

To print brief information of all virtual interfaces associated with the specified domain, run:

>sudo virsh domiflist nated_sles12sp3
Interface Type Source Model MAC

vnet0 network vnet_nated virtio 52:54:00:9e:0d:2b

49

9.1.2.2.3. Getting details about a network

To get detailed information about a network, run:

>sudo virsh net-info vnet_routed
Name: vnet_routed
UUID: 756b48ff-d0c6-4c0a-804c-86c4c832a498
Active: yes
Persistent: yes
Autostart: yes
Bridge: virbr5

9.1.2.2.4. Starting a network

To start an inactive network that was already defined, find its name (or unique identifier, UUID)

with:

>sudo virsh net-list --inactive
 Name State Autostart Persistent
--
 vnet_isolated inactive yes yes

Then run:

>sudo virsh net-start vnet_isolated
Network vnet_isolated started

9.1.2.2.5. Stopping a network

To stop an active network, find its name (or unique identifier, UUID) with:

>sudo virsh net-list --inactive
 Name State Autostart Persistent
--
 vnet_isolated active yes yes

Then run:

>sudo virsh net-destroy vnet_isolated
Network vnet_isolated destroyed

9.1.2.2.6. Removing a network

To remove the definition of an inactive network from VM Host Server permanently, run:

>sudo virsh net-undefine vnet_isolated
Network vnet_isolated has been undefined

9.2. Configuring a storage pool

When managing a VM Guest on the VM Host Server itself, you can access the complete file

system of the VM Host Server to attach or create virtual hard disks or to attach existing images to

the VM Guest. However, this is not possible when managing VM Guests from a remote host. For

Chapter 9. Preparing the VM Host Server

50

this reason, libvirt supports so called “Storage Pools”, which can be accessed from remote

machines.

CD/DVD ISO images

To be able to access CD/DVD ISO images on the VM Host Server from remote

clients, they also need to be placed in a storage pool.

libvirt knows two different types of storage: volumes and pools.

Storage volume

A storage volume is a storage device that can be assigned to a guest—a virtual disk or a CD/

DVD/floppy image. Physically, it can be a block device, for example, a partition or a logical

volume, or a file on the VM Host Server.

Storage pool

A storage pool is a storage resource on the VM Host Server that can be used for storing

volumes, similar to network storage for a desktop machine. Physically it can be one of the

following types:

File system directory (dir)

A directory for hosting image files. The files can be either one of the supported disk

formats (raw or qcow2), or ISO images.

Physical disk device (disk)

Use a complete physical disk as storage. A partition is created for each volume that is

added to the pool.

Pre-formatted block device (fs)

Specify a partition to be used in the same way as a file system directory pool (a

directory for hosting image files). The only difference to using a file system directory is

that libvirt takes care of mounting the device.

iSCSI target (iscsi)

Set up a pool on an iSCSI target. You need to have been logged in to the volume once

before to use it with libvirt. Use the YaST iSCSI Initiator to detect and log in to a

volume, see Storage Administration Guide in “Storage Administration Guide” for

details. Volume creation on iSCSI pools is not supported; instead, each existing

Logical Unit Number (LUN) represents a volume. Each volume/LUN also needs a valid

51

https://fsteimke.github.io/xsltng-docs/suse/book-storage.pdf

(empty) partition table or disk label before you can use it. If missing, use fdisk to add

it:

>sudo fdisk -cu /dev/disk/by-path/ip-192.168.2.100:3260-iscsi-iqn.
2010-10.com.example:[...]-lun-2
Device contains neither a valid DOS partition table, nor Sun, SGI
or OSF disklabel
Building a new DOS disklabel with disk identifier 0xc15cdc4e.
Changes will remain in memory only, until you decide to write them.
After that, of course, the previous content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected by
w(rite)

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

LVM volume group (logical)

Use an LVM volume group as a pool. You can either use a predefined volume group,

or create a group by specifying the devices to use. Storage volumes are created as

partitions on the volume.

Deleting the LVM-based pool

When the LVM-based pool is deleted in the Storage Manager, the

volume group is deleted as well. This results in a non-recoverable loss of

all data stored on the pool.

Multipath devices (mpath)

At the moment, multipathing support is limited to assigning existing devices to the

guests. Volume creation or configuring multipathing from within libvirt is not

supported.

Network exported directory (netfs)

Specify a network directory to be used in the same way as a file system directory pool

(a directory for hosting image files). The only difference to using a file system directory

is that libvirt takes care of mounting the directory. The supported protocol is NFS.

SCSI host adapter (scsi)

Use an SCSI host adapter in almost the same way as an iSCSI target. We recommend

to use a device name from /dev/disk/by-* rather than /dev/sdX. The latter can

change, for example, when adding or removing hard disks. Volume creation on iSCSI

Chapter 9. Preparing the VM Host Server

52

pools is not supported. Instead, each existing LUN (Logical Unit Number) represents a

volume.

Security considerations

To avoid data loss or data corruption, do not attempt to use resources such as LVM

volume groups, iSCSI targets, etc., that are also used to build storage pools on the

VM Host Server. There is no need to connect to these resources from the VM Host

Server or to mount them on the VM Host Server—libvirt takes care of this.

Do not mount partitions on the VM Host Server by label. Under certain circumstances

it is possible that a partition is labeled from within a VM Guest with a name existing

on the VM Host Server.

9.2.1. Managing storage with virsh

Managing storage from the command line is also possible by using virsh. However, creating

storage pools is currently not supported by SUSE. Therefore, this section is restricted to

documenting functions such as starting, stopping and deleting pools, and volume management.

A list of all virsh subcommands for managing pools and volumes is available by running virsh

help pool and virsh help volume, respectively.

9.2.1.1. Listing pools and volumes

List all pools currently active by executing the following command. To also list inactive pools, add

the option --all:

>virsh pool-list --details

Details about a specific pool can be obtained with the pool-info subcommand:

>virsh pool-info POOL

By default, volumes can only be listed per pool. To list all volumes from a pool, enter the following

command.

>virsh vol-list --details POOL

At the moment virsh offers no tools to show whether a volume is used by a guest or not. The

following procedure describes a way to list volumes from all pools that are currently used by a VM

Guest.

Procedure 9.2. Listing all storage volumes currently used on a VM Host Server

Create an XSLT stylesheet by saving the following content to a file, for example, ~/libvirt/

guest_storage_list.xsl:

1.

53

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text"/>
 <xsl:template match="text()"/>
 <xsl:strip-space elements="*"/>
 <xsl:template match="disk">
 <xsl:text> </xsl:text>
 <xsl:value-of select="(source/@file|source/@dev|source/@dir)[1]"/>
 <xsl:text>
</xsl:text>
 </xsl:template>
</xsl:stylesheet>

Run the following commands in a shell. It is assumed that the guest's XML definitions are all

stored in the default location (/etc/libvirt/qemu). xsltproc is provided by the

package libxslt.

SSHEET="$HOME/libvirt/guest_storage_list.xsl"
cd /etc/libvirt/qemu
for FILE in *.xml; do
 basename $FILE .xml
 xsltproc $SSHEET $FILE
done

9.2.1.2. Starting, stopping, and deleting pools

Use the virsh pool subcommands to start, stop or delete a pool. Replace POOL with the pool's

name or its UUID in the following examples:

Stopping a pool

>virsh pool-destroy POOL

A pool's state does not affect attached volumes

Volumes from a pool attached to VM Guests are always available, regardless

of the pool's state (Active (stopped) or Inactive (started)). The state of the pool

solely affects the ability to attach volumes to a VM Guest via remote

management.

Deleting a pool

>virsh pool-delete POOL

Deleting storage pools

See Deleting storage pools

Starting a pool

>virsh pool-start POOL

2.

Chapter 9. Preparing the VM Host Server

54

❶

❷

❸

❹

❺

❶

Enable autostarting a pool

>virsh pool-autostart POOL

Only pools that are marked to autostart are automatically started if the VM Host Server

reboots.

Disable autostarting a pool

>virsh pool-autostart POOL --disable

9.2.1.3. Adding volumes to a storage pool

virsh offers two ways to add volumes to storage pools: either from an XML definition with vol-

create and vol-create-from or via command line arguments with vol-create-as. The first

two methods are currently not supported by SUSE, therefore this section focuses on the

subcommand vol-create-as.

To add a volume to an existing pool, enter the following command:

>virsh vol-create-as POOL❶NAME❷ 12G --format❸raw|qcow2❹ --allocation 4G❺

Name of the pool to which the volume should be added

Name of the volume

Size of the image, in this example 12 gigabytes. Use the suffixes k, M, G, T for kilobyte,

megabyte, gigabyte, and terabyte, respectively.

Format of the volume. SUSE currently supports raw and qcow2.

Optional parameter. By default, virsh creates a sparse image file that grows on demand.

Specify the amount of space that should be allocated with this parameter (4 gigabytes in this

example). Use the suffixes k, M, G, T for kilobyte, megabyte, gigabyte, and terabyte,

respectively.

When not specifying this parameter, a sparse image file with no allocation is generated. To

create a non-sparse volume, specify the whole image size with this parameter (would be 12G in

this example).

9.2.1.3.1. Cloning existing volumes

Another way to add volumes to a pool is to clone an existing volume. The new instance is always

created in the same pool as the original.

>virsh vol-clone NAME_EXISTING_VOLUME❶NAME_NEW_VOLUME❷ --pool POOL❸

Name of the existing volume that should be cloned

55

❷

❸

Name of the new volume

Optional parameter. libvirt tries to locate the existing volume automatically. If that fails,

specify this parameter.

9.2.1.4. Deleting volumes from a storage pool

To permanently delete a volume from a pool, use the subcommand vol-delete:

>virsh vol-delete NAME --pool POOL

--pool is optional. libvirt tries to locate the volume automatically. If that fails, specify this

parameter.

No checks upon volume deletion

A volume is deleted in any case, regardless of whether it is currently used in an

active or inactive VM Guest. There is no way to recover a deleted volume.

Whether a volume is used by a VM Guest can only be detected by using by the

method described in Procedure 9.2, “Listing all storage volumes currently used on a

VM Host Server”.

9.2.1.5. Attaching volumes to a VM Guest

After you create a volume as described in the section called “Adding volumes to a storage pool”,

you can attach it to a virtual machine and use it as a hard disk:

>virsh attach-disk DOMAINSOURCE_IMAGE_FILETARGET_DISK_DEVICE

For example:

>virsh attach-disk sles12sp3 /virt/images/example_disk.qcow2 sda2

To check if the new disk is attached, inspect the result of the virsh dumpxml command:

#virsh dumpxml sles12sp3
[...]
<disk type='file' device='disk'>
 <driver name='qemu' type='raw'/>
 <source file='/virt/images/example_disk.qcow2'/>
 <backingStore/>
 <target dev='sda2' bus='scsi'/>
 <alias name='scsi0-0-0'/>
 <address type='drive' controller='0' bus='0' target='0' unit='0'/>
</disk>
[...]

Chapter 9. Preparing the VM Host Server

56

9.2.1.5.1. Hotplug or persistent change

You can attach disks to both active and inactive domains. The attachment is controlled by the --

live and --config options:

--live

Hotplugs the disk to an active domain. The attachment is not saved in the domain

configuration. Using --live on an inactive domain is an error.

--config

Changes the domain configuration persistently. The attached disk is then available after the

next domain start.

--live --config

Hotplugs the disk and adds it to the persistent domain configuration.

virsh attach-device

virsh attach-device is the more generic form of virsh attach-disk. You

can use it to attach other types of devices to a domain.

9.2.1.6. Detaching volumes from a VM Guest

To detach a disk from a domain, use virsh detach-disk:

#virsh detach-disk DOMAINTARGET_DISK_DEVICE

For example:

#virsh detach-disk sles12sp3 sda2

You can control the attachment with the --live and --config options as described in the

section called “Attaching volumes to a VM Guest”.

9.2.2. Managing storage with Virtual Machine Manager

The Virtual Machine Manager provides a graphical interface—the Storage Manager—to manage

storage volumes and pools. To access it, either right-click a connection and choose Details, or

highlight a connection and choose Edit > Connection Details. Select the Storage tab.

57

9.2.2.1. Adding a storage pool

To add a storage pool, proceed as follows:

Click Add in the bottom left corner. The dialog Add a New Storage Pool appears.

Provide a Name for the pool (consisting of only alphanumeric characters and _, - or .) and

select a Type.

Specify the required details below. They depend on the type of pool you are creating.

Important

ZFS pools are not supported.

Type dir

Target Path: specify an existing directory.

1.

2.

3.

◦

Chapter 9. Preparing the VM Host Server

58

Type disk

Format: format of the device's partition table. Using auto should normally work. If

not, get the required format by running the command parted-l on the VM Host

Server.

Source Path: path to the device. It is recommended to use a device name from

/dev/disk/by-* rather than the simple /dev/sdX, since the latter can

change, for example, when adding or removing hard disks. You need to specify

the path that resembles the whole disk, not a partition on the disk (if existing).

Type fs

Target Path: mount point on the VM Host Server file system.

Format: file system format of the device. The default value auto should work.

Source Path: path to the device file. It is recommended to use a device name

from /dev/disk/by-* rather than /dev/sdX, because the latter can change,

for example, when adding or removing hard disks.

Type iscsi

Get the necessary data by running the following command on the VM Host Server:

>sudo iscsiadm --mode node

It returns a list of iSCSI volumes with the following format. The elements in bold text

are required:

IP_ADDRESS:PORT,TPGT TARGET_NAME_(IQN)

Target Path: the directory containing the device file. Use /dev/disk/by-path

(default) or /dev/disk/by-id.

Host Name: host name or IP address of the iSCSI server.

Source IQN: the iSCSI target name (iSCSI Qualified Name).

Initiator IQN: the iSCSI initiator name.

Type logical

Volgroup Name: specify the device path of an existing volume group.

Type mpath

Target Path: support for multipathing is currently limited to making all multipath

devices available. Therefore, specify an arbitrary string here. The path is

required, otherwise the XML parser fails.

Type netfs

Target Path: mount point on the VM Host Server file system.

Host Name: IP address or host name of the server exporting the network file

system.

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

59

Source Path: directory on the server that is being exported.

Type rbd

Host Name: host name of the server with an exported RADOS block device.

Source Name: name of the RADOS block device on the server.

Type scsi

Target Path: directory containing the device file. Use /dev/disk/by-path

(default) or /dev/disk/by-id.

Source Path: name of the SCSI adapter.

File browsing

Using the file browser by clicking Browse is not possible when operating

remotely.

Click Finish to add the storage pool.

9.2.2.2. Managing storage pools

Virtual Machine Manager's Storage Manager lets you create or delete volumes in a pool. You may

also temporarily deactivate or permanently delete existing storage pools. Changing the basic

configuration of a pool is currently not supported by SUSE.

9.2.2.2.1. Starting, stopping, and deleting pools

The purpose of storage pools is to provide block devices located on the VM Host Server that can

be added to a VM Guest when managing it from remote. To make a pool temporarily inaccessible

from remote, click Stop in the bottom left corner of the Storage Manager. Stopped pools are

marked with State: Inactive and are grayed out in the list pane. By default, a newly created pool is

automatically started On Boot of the VM Host Server.

To start an inactive pool and make it available from remote again, click Start in the bottom left

corner of the Storage Manager.

A pool's state does not affect attached volumes

Volumes from a pool attached to VM Guests are always available, regardless of the

pool's state (Active (stopped) or Inactive (started)). The state of the pool solely affects

the ability to attach volumes to a VM Guest via remote management.

To permanently make a pool inaccessible, click Delete in the bottom left corner of the Storage

Manager. You can only delete inactive pools. Deleting a pool does not physically erase its contents

◦

◦

◦

◦

◦

4.

Chapter 9. Preparing the VM Host Server

60

on VM Host Server—it only deletes the pool configuration. However, you need to be extra careful

when deleting pools, especially when deleting LVM volume group-based tools:

Deleting storage pools

Deleting storage pools based on local file system directories, local partitions or disks

has no effect on the availability of volumes from these pools currently attached to VM

Guests.

Volumes located in pools of type iSCSI, SCSI, LVM group or Network Exported

Directory become inaccessible from the VM Guest if the pool is deleted. Although the

volumes themselves are not deleted, the VM Host Server can no longer access the

resources.

Volumes on iSCSI/SCSI targets or Network Exported Directory become accessible

again when creating an adequate new pool or when mounting/accessing these

resources directly from the host system.

When deleting an LVM group-based storage pool, the LVM group definition is erased

and the LVM group no longer exists on the host system. The configuration is not

recoverable and all volumes from this pool are lost.

9.2.2.2.2. Adding volumes to a storage pool

Virtual Machine Manager lets you create volumes in all storage pools, except in pools of types

Multipath, iSCSI or SCSI. A volume in these pools is equivalent to a LUN and cannot be changed

from within libvirt.

A new volume can either be created using the Storage Manager or while adding a new

storage device to a VM Guest. In either case, select a storage pool from the left panel, then

click Create new volume.

Specify a Name for the image and choose an image format.

SUSE currently only supports raw or qcow2 images. The latter option is not available on

LVM group-based pools.

Next to Max Capacity, specify the maximum size that the disk image is allowed to reach.

Unless you are working with a qcow2 image, you can also set an amount for Allocation that

should be allocated initially. If the two values differ, a sparse image file is created, which

grows on demand.

For qcow2 images, you can use a Backing Store (also called “backing file”), which

constitutes a base image. The newly created qcow2 image then only records the changes

that are made to the base image.

1.

2.

61

Start the volume creation by clicking Finish.

9.2.2.2.3. Deleting volumes from a storage pool

Deleting a volume can only be done from the Storage Manager, by selecting a volume and clicking

Delete Volume. Confirm with Yes.

Volumes can be deleted even while in use

Volumes can be deleted even if they are currently used in an active or inactive VM

Guest. There is no way to recover a deleted volume.

Whether a volume is used by a VM Guest is indicated in the Used By column in the

Storage Manager.

3.

Chapter 9. Preparing the VM Host Server

62

Chapter 10. Guest installation

A VM Guest consists of an image containing an operating system and data files and a

configuration file describing the VM Guest's virtual hardware resources. VM Guests are hosted on

and controlled by the VM Host Server. This section provides generalized instructions for installing a

VM Guest. For a list of supported VM Guests refer to Chapter 7, Virtualization limits and support.

Virtual machines have few if any requirements above those required to run the operating system. If

the operating system has not been optimized for the virtual machine host environment, it can only

run on hardware-assisted virtualization computer hardware, in full virtualization mode, and requires

specific device drivers to be loaded. The hardware that is presented to the VM Guest depends on

the configuration of the host.

You should be aware of any licensing issues related to running a single licensed copy of an

operating system on multiple virtual machines. Consult the operating system license agreement for

more information.

10.1. GUI-based guest installation

Changing default options for new virtual machines

You can change default values that are applied when creating new virtual machines.

For example, to set UEFI as the default firmware type for new virtual machines,

select Edit > Preferences from Virtual Machine Manager's main menu, click New VM

and set UEFI as the firmware default.

Figure 10.1. Specifying default options for new VMs

The New VM wizard helps you through the steps required to create a virtual machine and install its

operating system. To start it, open the Virtual Machine Manager and select File > New Virtual

Machine. Alternatively, start YaST and select Virtualization > Create Virtual Machines.

Start the New VM wizard either from YaST or Virtual Machine Manager.1.

63

Choose an installation source—either a locally available media or a network installation

source. To set up your VM Guest from an existing image, choose import existing disk image.

On a VM Host Server running the Xen hypervisor, you can choose whether to install a

paravirtualized or a fully virtualized guest. The respective option is available under

Architecture Options. Depending on this choice, not all installation options may be available.

Depending on your choice in the previous step, you need to provide the following data:

Local install media (ISO image or CDROM)

Specify the path on the VM Host Server to an ISO image containing the installation

data. If it is available as a volume in a libvirt storage pool, you can also select it using

Browse. For more information, see Chapter 13, Advanced storage topics.

Alternatively, choose a physical CD-ROM or DVD inserted in the optical drive of the

VM Host Server.

Network install (HTTP, HTTPS or FTP)

Provide the URL pointing to the installation source. Valid URL prefixes are, for

example, ftp://, http:// and https://.

Under URL Options, provide a path to an auto-installation file (AutoYaST or Kickstart,

for example) and kernel parameters. Having provided a URL, the operating system

should be automatically detected correctly. If this is not the case, deselect

Automatically Detect Operating System Based on Install-Media and manually select

the OS Type and Version.

Import existing disk image

To set up the VM Guest from an existing image, you need to specify the path on the

VM Host Server to the image. If it is available as a volume in a libvirt storage pool, you

can also select it using Browse. For more information, see Chapter 13, Advanced

storage topics.

Manual install

This installation method is suitable to create a virtual machine, manually configure its

components and install its OS later. To adjust the VM to a specific product version,

start typing its name, for example, sles—and select the desired version when a

match appears.

Choose the memory size and number of CPUs for the new virtual machine.

This step is omitted when Import an Existing Image is chosen in the first step.

Set up a virtual hard disk for the VM Guest. Either create a new disk image or choose an

existing one from a storage pool (for more information, see Chapter 13, Advanced storage

topics). If you choose to create a disk, a qcow2 image is created and stored under /var/

lib/libvirt/images by default.

Setting up a disk is optional. If you are running a live system directly from CD or DVD, for

example, you can omit this step by deactivating Enable Storage for this Virtual Machine.

2.

3.

4.

5.

Chapter 10. Guest installation

64

On the last screen of the wizard, specify the name for the virtual machine. To be offered the

possibility to review and make changes to the virtualized hardware selection, activate

Customize configuration before install. Specify the network device under Network Selection.

When using Bridge device, the first bridge found on the host is pre-filled. To use a different

bridge, manually update the text box with its name.

Click Finish.

If you kept the defaults in the previous step, the installation starts. If you selected Customize

configuration before install, a VM Guest configuration dialog opens. For more information

about configuring VM Guests, see Chapter 14, Configuring virtual machines with Virtual

Machine Manager.

When you are done configuring, click Begin Installation.

Passing key combinations to virtual machines

The installation starts in a Virtual Machine Manager console window. Certain key

combinations, such as Ctrl—Alt—F1, are recognized by the VM Host Server but are

not passed to the virtual machine. To bypass the VM Host Server, Virtual Machine

Manager provides the “sticky key” functionality. Pressing Ctrl, Alt, or Shift three

times makes the key sticky, then you can press the remaining keys to pass the

combination to the virtual machine.

For example, to pass Ctrl—Alt—F2 to a Linux virtual machine, press Ctrl three

times, then press Alt—F2. You can also press Alt three times, then press Ctrl—F2.

The sticky key functionality is available in the Virtual Machine Manager during and

after installing a VM Guest.

10.1.1. Configuring the virtual machine for PXE boot

PXE boot enables your virtual machine to boot from the installation media via the network, instead

of from a physical medium or an installation disk image. Refer to Chapter 19, Preparing network

boot environment in “Deployment Guide” for more details about setting up a PXE boot

environment.

To let your VM boot from a PXE server, follow these steps:

Start the installation wizard as described in the section called “GUI-based guest installation”.

Select the Manual Install method.

Proceed to the last step of the wizard and activate Customize configuration before install.

Confirm with Finish.

On the Customize screen, select Boot Options.

6.

7.

1.

2.

3.

4.

65

https://fsteimke.github.io/xsltng-docs/suse/book-deployment.pdf

Inspect Boot device order and select Enable boot menu.

To retain VirtIO Disk as the default boot option, confirm with Apply.

To force the virtual machine to use PXE as the default boot option:

Select the NIC device in the boot menu configuration.

Move it to the top using the arrow signs on the right.

Confirm with Apply.

Start the installation by clicking Begin Installation. Now press Esc for boot menu and choose

1. iPXE. If a PXE server is properly configured, the PXE menu screen appears.

10.2. Installing from the command line with virt-install

virt-install is a command-line tool that helps you create new virtual machines using the

libvirt library. It is useful if you cannot use the graphical user interface, or need to automatize

the process of creating virtual machines.

virt-install is a complex script with a lot of command line switches. The following are

required. For more information, see the man page of virt-install (1).

General options

--name VM_GUEST_NAME: Specify the name of the new virtual machine. The name

must be unique across all guests known to the hypervisor on the same connection. It

is used to create and name the guest’s configuration file and you can access the guest

with this name from virsh. Alphanumeric and _-.:+ characters are allowed.

--memory REQUIRED_MEMORY: Specify the amount of memory to allocate for the

new virtual machine in megabytes.

--vcpus NUMBER_OF_CPUS: Specify the number of virtual CPUs. For best

performance, the number of virtual processors should be less than or equal to the

number of physical processors.

Virtualization type

--paravirt: set up a paravirtualized guest. This is the default if the VM Host Server

supports paravirtualization and full virtualization.

--hvm: set up a fully virtualized guest.

--virt-type HYPERVISOR: Specify the hypervisor. Supported values are kvm or

xen.

Guest storage

Specify one of --disk, --filesystem or --nodisks the type of the storage for the new

virtual machine. For example, --disk size=10 creates 10 GB disk in the default image

location for the hypervisor and uses it for the VM Guest. --filesystem /export/path/

5.

◦

◦

1.

2.

3.

6.

•

•

•

•

•

•

Chapter 10. Guest installation

66

on/vmhost specifies the directory on the VM Host Server to be exported to the guest. And

--nodisks sets up a VM Guest without a local storage (good for Live CDs).

Installation method

Specify the installation method using one of --location, --cdrom, --pxe, --import, or

--boot.

Accessing the installation

Use the --graphics VALUE option to specify how to access the installation. SUSE Linux

Enterprise Server supports the values vnc or none.

If using VNC, virt-install tries to launch virt-viewer. If it is not installed or cannot

be run, connect to the VM Guest manually with your preferred viewer. To explicitly prevent

virt-install from launching the viewer, use --noautoconsole. To define a password

for accessing the VNC session, use the following syntax: --graphics

vnc,password=PASSWORD.

In case you are using --graphics none, you can access the VM Guest through operating

system supported services, such as SSH or VNC. Refer to the operating system installation

manual on how to set up these services in the installation system.

Passing kernel and initrd files

It is possible to directly specify the Kernel and Initrd of the installer, for example, from a

network source. To set up a network source, see the section called “Setting up an HTTP

repository manually” in “Deployment Guide”.

To pass additional boot parameters, use the --extra-args option. This can be used to

specify a network configuration. For details, see Chapter 9, Boot parameters in “Deployment

Guide”.

Example 10.1. Loading kernel and initrd from HTTP server

#virt-install --location "http://example.tld/REPOSITORY/DVD1/" \
--extra-args="textmode=1" --name "SLES15" --memory 2048 --virt-type kvm\
--connect qemu:///system --disk size=10 --graphics vnc \
--network network=vnet_nated

Enabling the console

By default, the console is not enabled for new virtual machines installed using virt-

install. To enable it, use --extra-args="console=ttyS0 textmode=1" as in the

following example:

>virt-install --virt-type kvm --name sles12 --memory 1024 \
 --disk /var/lib/libvirt/images/disk1.qcow2 --os-variant sles12
 --extra-args="console=ttyS0 textmode=1" --graphics none

67

https://fsteimke.github.io/xsltng-docs/suse/book-deployment.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-deployment.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-deployment.pdf

After the installation finishes, the /etc/default/grub file in the VM image is updated with

the console=ttyS0 option on the GRUB_CMDLINE_LINUX_DEFAULT line.

Using UEFI Secure Boot

Note

SUSE supports UEFI Secure Boot on AMD64/Intel 64 KVM guests only. Xen

HVM guests support booting with UEFI firmware, but they do not support UEFI

Secure Boot.

By default, new virtual machines installed using virt-install are configured with a

legacy BIOS. They can be configured to use UEFI with --boot firmware=efi. A

firmware that supports UEFI Secure Boot and has Microsoft keys enrolled will be selected. If

secure boot is undesirable, the option --boot

firmware=efi,firmware.feature0.name=secure-

boot,firmware.feature0.enabled=no can be used to select a UEFI firmware without

secure boot support.

It is also possible to explicitly specify a UEFI firmware image. See the section called

“Advanced UEFI configuration” for advanced information and examples on using UEFI with

virtual machines.

Example 10.2. Example of a virt-install command line

The following command line example creates a new SUSE Linux Enterprise 15 SP2 virtual

machine with a virtio accelerated disk and network card. It creates a new 10 GB qcow2 disk image

as a storage, the source installation media being the host CD-ROM drive. It uses VNC graphics,

and it automatically launches the graphical client.

KVM

>virt-install --connect qemu:///system --virt-type kvm \
--name sle15sp2 --memory 1024 --disk size=10 --cdrom /dev/cdrom --graphics
vnc \
--os-variant sle15sp2

Xen

>virt-install --connect xen:// --virt-type xen --hvm \
--name sle15sp2 --memory 1024 --disk size=10 --cdrom /dev/cdrom --graphics
vnc \
--os-variant sle15sp2

Chapter 10. Guest installation

68

10.3. Advanced guest installation scenarios

This section provides instructions for operations exceeding the scope of a normal installation, such

as manually configuring UEFI firmware, memory ballooning and installing add-on products.

10.3.1. Advanced UEFI configuration

The UEFI firmware used by virtual machines is provided by OVMF (Open Virtual Machine

Firmware). The qemu-ovmf-x86_64 package contains firmwares for AMD64/Intel 64 VM Guests.

Firmwares for AArch64 VM Guests are provided by the qemu-uefi-aarch64 package. Both

packages contain several firmwares, each supporting a different set of features and capabilities.

The packages also include JSON firmware descriptor files, which describe the features and

capabilities of individual firmwares.

libvirt supports two methods of selecting virtual machine UEFI firmware: automatic and

manual. With automatic selection, libvirt will select a firmware based on an optional set of

features specified by the user. If no explicit features are specified, libvirt will select a firmware

with secure boot enabled and Microsoft keys enrolled. When using manual selection, the full path

of the firmware and any optional settings must be explicitly specified. Users can reference the

JSON descriptor files to find a firmware that satisfies their requirements.

Tip

The directory /usr/share/qemu/firmware contains all the JSON files used by

libvirt. This file gives you detailed information about the firmwares, including the

capabilities of the features.

When using virt-install, automatic firmware selection is enabled by specifying the

firmware=efi parameter to the boot option, for example, --boot firmware=efi. The selection

process can be influenced by requesting the presence or absence of firmware features. The

following example illustrates automatic firmware selection with UEFI Secure Boot disabled.

>virt-install --connect qemu:///system --virt-type kvm \
--name sle15sp5 --memory 1024 --disk size=10 --cdrom /dev/cdrom --graphics vnc \
--boot firmware=efi,firmware.feature0.name=secure-
boot,firmware.feature0.enabled=no \
--os-variant sle15sp5

69

Note

To ensure persistent VM Guests use the same firmware and variable store

throughout their lifetime, libvirt will record automatically selected firmware in the

VM Guest XML configuration. Automatic firmware selection is a one-time activity.

Once firmware has been selected, it will only change if the VM Guest administrator

explicitly does so using the manual firmware selection method.

The loader and nvram parameters are used for manual firmware selection. loader is required, and

nvram defines an optional UEFI variable store. The following example illustrates manual firmware

selection with secure boot enabled.

>virt-install --connect qemu:///system --virt-type kvm \
--name sle15sp5 --memory 1024 --disk size=10 --cdrom /dev/cdrom --graphics vnc \
--boot loader=/usr/share/qemu/ovmf-x86_64-smm-
code.bin,loader.readonly=yes,loader.type=pflash,loader.secure=yes,nvram.template
=/usr/share/qemu/ovmf-x86_64-smm-vars.bin \
--os-variant sle15sp5

Note

libvirt cannot modify any characteristics of the UEFI firmwares. For example, it

cannot disable UEFI Secure Boot in a firmware that has UEFI Secure Boot enabled,

even when specifying loader.secure=no. libvirt will ensure the specified firmware

can satisfy any specified features. For example, it will reject configuration that

disables secure boot with loader.secure=no, but specifies a firmware that has UEFI

Secure Boot enabled.

The qemu-ovmf-x86_64 package contains several UEFI firmware images. For example, the

following subset supports SMM, UEFI Secure Boot, and has either Microsoft, openSUSE or SUSE

UEFI CA keys enrolled:

#rpm -ql qemu-ovmf-x86_64
[...]
/usr/share/qemu/ovmf-x86_64-smm-ms-code.bin
/usr/share/qemu/ovmf-x86_64-smm-ms-vars.bin
/usr/share/qemu/ovmf-x86_64-smm-opensuse-code.bin
/usr/share/qemu/ovmf-x86_64-smm-opensuse-vars.bin
/usr/share/qemu/ovmf-x86_64-smm-suse-code.bin
/usr/share/qemu/ovmf-x86_64-smm-suse-vars.bin
[...]

For the AArch64 architecture, the package is named qemu-uefi-aarch32:

Chapter 10. Guest installation

70

#rpm -ql qemu-uefi-aarch32
[...]
/usr/share/qemu/aavmf-aarch32-code.bin
/usr/share/qemu/aavmf-aarch32-vars.bin
/usr/share/qemu/firmware
/usr/share/qemu/firmware/60-aavmf-aarch32.json
/usr/share/qemu/qemu-uefi-aarch32.bin

The *-code.bin files are the UEFI firmware files. The *-vars.bin files are corresponding

variable store images that can be used as a template for a per-VM non-volatile store. libvirt

copies the specified vars template to a per-VM path under /var/lib/libvirt/qemu/nvram/

when first creating the VM. Files without code or vars in the name can be used as a single UEFI

image. They are not as useful, since no UEFI variables persist across power cycles of the VM.

The *-ms*.bin files contain UEFI CA keys as found on real hardware. Therefore, they are

configured as the default in libvirt. Likewise, the *-suse*.bin files contain preinstalled SUSE

keys. There is also a set of files with no preinstalled keys.

For more details on OVMF, see http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-

c770f8c.txt.

10.3.2. Memory ballooning with Windows guests

Memory ballooning is a method to change the amount of memory used by VM Guest at runtime.

Both the KVM and Xen hypervisors provide this method, but it needs to be supported by the guest

as well.

While openSUSE and SLE-based guests support memory ballooning, Windows guests need the

Virtual Machine Driver Pack (VMDP) to provide ballooning. To set the maximum memory greater

than the initial memory configured for Windows guests, follow these steps:

Install the Windows guest with the maximum memory equal or less than the initial value.

Install the Virtual Machine Driver Pack in the Windows guest to provide required drivers.

Shut down the Windows guest.

Reset the maximum memory of the Windows guest to the required value.

Start the Windows guest again.

10.3.3. Including add-on products in the installation

Certain operating systems, such as SUSE Linux Enterprise Server, offer to include add-on

products in the installation process. If the add-on product installation source is provided via SUSE

Customer Center, no special VM Guest configuration is needed. If it is provided via CD/DVD or ISO

image, it is necessary to provide the VM Guest installation system with both the standard

installation medium image and the image of the add-on product.

1.

2.

3.

4.

5.

71

http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt
http://www.linux-kvm.org/downloads/lersek/ovmf-whitepaper-c770f8c.txt
https://www.suse.com/products/vmdriverpack/

If you are using the GUI-based installation, select Customize Configuration Before Install in the last

step of the wizard and add the add-on product ISO image via Add Hardware > Storage. Specify the

path to the image and set the Device Type to CD-ROM.

If you are installing from the command line, you need to set up the virtual CD/DVD drives with the

--disk parameter rather than with --cdrom. The device that is specified first is used for booting.

The following example installs SUSE Linux Enterprise Server 15 together with SUSE Enterprise

Storage extension:

>virt-install \
 --name sles15+storage \
 --memory 2048 --disk size=10 \
 --disk /path/to/SLE-15-SP7-Full-ARCH-GM-media1.iso-x86_64-GM-
DVD1.iso,device=cdrom \
 --disk /path/to/SUSE-Enterprise-Storage-VERSION-DVD-ARCH-
Media1.iso,device=cdrom \
 --graphics vnc --os-variant sle15

Chapter 10. Guest installation

72

Chapter 11. Basic VM Guest management

Most management tasks, such as starting or stopping a VM Guest, can either be done using the

graphical application Virtual Machine Manager or on the command line using virsh. Connecting

to the graphical console via VNC is only possible from a graphical user interface.

Managing VM Guests on a remote VM Host Server

If started on a VM Host Server, the libvirt tools Virtual Machine Manager, virsh,

and virt-viewer can be used to manage VM Guests on the host. However, it is

also possible to manage VM Guests on a remote VM Host Server. This requires

configuring remote access for libvirt on the host. For instructions, see

Chapter 12, Connecting and authorizing.

To connect to such a remote host with Virtual Machine Manager, you need to set up a

connection as explained in the section called “Managing connections with Virtual

Machine Manager”. If connecting to a remote host using virsh or virt-viewer,

you need to specify a connection URI with the parameter -c, for example, virsh -c

qemu+tls://saturn.example.com/system or virsh -c xen+ssh://. The

form of connection URI depends on the connection type and the hypervisor—see the

section called “Connecting to a VM Host Server” for details.

Examples in this chapter are all listed without a connection URI.

11.1. Listing VM Guests

The VM Guest listing shows all VM Guests managed by libvirt on a VM Host Server.

11.1.1. Listing VM Guests with Virtual Machine Manager

The main window of the Virtual Machine Manager lists all VM Guests for each VM Host Server it is

connected to. Each VM Guest entry contains the machine's name, its status (Running, Paused, or

Shutoff) displayed as an icon and literally, and a CPU usage bar.

11.1.2. Listing VM Guests with virsh

Use the command virshlist to get a list of VM Guests:

List all running guests

>virsh list

List all running and inactive guests

>virsh list --all

73

For more information and further options, see virsh help list or man 1 virsh.

11.2. Accessing the VM Guest via console

VM Guests can be accessed via a VNC connection (graphical console) or, if supported by the

guest operating system, via a serial console.

11.2.1. Opening a graphical console

Opening a graphical console to a VM Guest lets you interact with the machine like a physical host

via a VNC connection. If accessing the VNC server requires authentication, you are prompted to

enter a user name (if applicable) and a password.

When you click into the VNC console, the cursor is “grabbed” and cannot be used outside the

console anymore. To release it, press Alt—Ctrl.

Seamless (absolute) cursor movement

To prevent the console from grabbing the cursor and to enable seamless cursor

movement, add a tablet input device to the VM Guest. See the section called “Input

devices” for more information.

Certain key combinations such as Ctrl—Alt—Delete are interpreted by the host system and are

not passed to the VM Guest. To pass such key combinations to a VM Guest, open the Send Key

menu from the VNC window and choose the desired key combination entry. The Send Key menu is

only available when using Virtual Machine Manager and virt-viewer. With Virtual Machine

Manager, you can alternatively use the “sticky key” feature as explained in Passing key

combinations to virtual machines.

Supported VNC viewers

Principally all VNC viewers can connect to the console of a VM Guest. However, if

you are using SASL authentication and/or TLS/SSL connection to access the guest,

the options are limited. Common VNC viewers such as tightvnc or tigervnc

support neither SASL authentication nor TLS/SSL. The only supported alternative to

Virtual Machine Manager and virt-viewer is Remmina (refer to the section called

“Remmina: the remote desktop client” in “Administration Guide”).

11.2.1.1. Opening a graphical console with Virtual Machine Manager

In the Virtual Machine Manager, right-click a VM Guest entry.

Choose Open from the pop-up menu.

1.

2.

Chapter 11. Basic VM Guest management

74

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

11.2.1.2. Opening a graphical console with virt-viewer

virt-viewer is a simple VNC viewer with added functionality for displaying VM Guest consoles.

For example, it can be started in “wait” mode, where it waits for a VM Guest to start before it

connects. It also supports automatically reconnecting to a VM Guest that is rebooted.

virt-viewer addresses VM Guests by name, by ID or by UUID. Use virshlist --all to get

this data.

To connect to a guest that is running or paused, use either the ID, UUID or name. VM Guests that

are shut off do not have an ID—you can only connect to them by UUID or name.

Connect to guest with the ID 8

>virt-viewer 8

Connect to the inactive guest named sles12; the connection window opens once the guest

starts

>virt-viewer --wait sles12

With the --wait option, the connection is upheld even if the VM Guest is not running at the

moment. When the guest starts, the viewer is launched.

For more information, see virt-viewer--help or man 1 virt-viewer.

Password input on remote connections with SSH

When using virt-viewer to open a connection to a remote host via SSH, the SSH

password needs to be entered twice. The first time for authenticating with libvirt,

the second time for authenticating with the VNC server. The second password needs

to be provided on the command line where virt-viewer was started.

11.2.2. Opening a serial console

Accessing the graphical console of a virtual machine requires a graphical environment on the client

accessing the VM Guest. As an alternative, virtual machines managed with libvirt can also be

accessed from the shell via the serial console and virsh. To open a serial console to a VM Guest

named “sles12”, run the following command:

>virsh console sles12

virsh console takes two optional flags: --safe ensures exclusive access to the console, --

force disconnects any existing sessions before connecting. Both features need to be supported

by the guest operating system.

75

Being able to connect to a VM Guest via serial console requires that the guest operating system

supports serial console access and is properly supported. Refer to the guest operating system

manual for more information.

Enabling serial console access for SUSE Linux Enterprise and openSUSE

guests

Serial console access in SUSE Linux Enterprise and openSUSE is disabled by

default. To enable it, proceed as follows:

SLES 12, 15 and openSUSE

Launch the YaST Boot Loader module and switch to the Kernel Parameters

tab. Add console=ttyS0 to the field Optional Kernel Command Line

Parameter.

SLES 11

Launch the YaST Boot Loader module and select the boot entry for which to

activate serial console access. Choose Edit and add console=ttyS0 to the

field Optional Kernel Command Line Parameter. Additionally, edit /etc/

inittab and uncomment the line with the following content:

#S0:12345:respawn:/sbin/agetty -L 9600 ttyS0 vt102

11.3. Changing a VM Guest's state: start, stop, pause

Starting, stopping or pausing a VM Guest can be done with either Virtual Machine Manager or

virsh. You can also configure a VM Guest to be automatically started when booting the VM Host

Server.

When shutting down a VM Guest, you may either shut it down gracefully, or force the shutdown.

The latter is equivalent to pulling the power plug on a physical host and is only recommended if

there are no alternatives. Forcing a shutdown may cause file system corruption and loss of data on

the VM Guest.

Chapter 11. Basic VM Guest management

76

Graceful shutdown

To be able to perform a graceful shutdown, the VM Guest must be configured to

support ACPI. If you have created the guest with the Virtual Machine Manager, ACPI

should be available in the VM Guest.

Depending on the guest operating system, availability of ACPI may not be sufficient

to perform a graceful shutdown. It is strongly recommended to test shutting down and

rebooting a guest before using it in production. openSUSE or SUSE Linux Enterprise

Desktop, for example, can require Polkit authorization for shutdown and reboot. Make

sure this policy is turned off on all VM Guests.

If ACPI was enabled during a Windows XP/Windows Server 2003 guest installation,

turning it on in the VM Guest configuration only is not sufficient. For more information,

see:

https://support.microsoft.com/en-us/kb/314088

https://support.microsoft.com/en-us/kb/309283

Regardless of the VM Guest's configuration, a graceful shutdown is always possible

from within the guest operating system.

11.3.1. Changing a VM Guest's state with Virtual Machine Manager

Changing a VM Guest's state can be done either from Virtual Machine Manager's main window, or

from a VNC window.

Procedure 11.1. State change from the Virtual Machine Manager window

Right-click a VM Guest entry.

Choose Run, Pause, or one of the Shutdown options from the pop-up menu.

Procedure 11.2. State change from the VNC window

Open a VNC Window as described in the section called “Opening a graphical console with

Virtual Machine Manager”.

Choose Run, Pause, or one of the Shut Down options either from the toolbar or from the

Virtual Machine menu.

•

•

1.

2.

1.

2.

77

https://support.microsoft.com/en-us/kb/314088
https://support.microsoft.com/en-us/kb/309283

11.3.1.1. Automatically starting a VM Guest

You can automatically start a guest when the VM Host Server boots. This feature is not enabled by

default and needs to be enabled for each VM Guest individually. There is no way to activate it

globally.

Double-click the VM Guest entry in Virtual Machine Manager to open its console.

Choose View > Details to open the VM Guest configuration window.

Choose Boot Options and check Start virtual machine on host boot up.

Save the new configuration with Apply.

11.3.2. Changing a VM Guest's state with virsh

In the following examples, the state of a VM Guest named “sles12” is changed.

Start

>virsh start sles12

Pause

>virsh suspend sles12

Resume (a suspended VM Guest)

>virsh resume sles12

Reboot

>virsh reboot sles12

Graceful shutdown

>virsh shutdown sles12

Force shutdown

>virsh destroy sles12

Turn on automatic start

>virsh autostart sles12

Turn off automatic start

>virsh autostart --disable sles12

11.4. Saving and restoring the state of a VM Guest

Saving a VM Guest preserves the exact state of the guest’s memory. The operation is similar to

hibernating a computer. A saved VM Guest can be quickly restored to its previously saved running

condition.

1.

2.

3.

4.

Chapter 11. Basic VM Guest management

78

When saved, the VM Guest is paused, its current memory state is saved to disk, and then the

guest is stopped. The operation does not make a copy of any portion of the VM Guest’s virtual

disk. The amount of time taken to save the virtual machine depends on the amount of memory

allocated. When saved, a VM Guest’s memory is returned to the pool of memory available on the

VM Host Server.

The restore operation loads a VM Guest’s previously saved memory state file and starts it. The

guest is not booted but instead resumed at the point where it was previously saved. The operation

is similar to coming out of hibernation.

The VM Guest is saved to a state file. Make sure there is enough space on the partition you are

going to save to. For an estimation of the file size in megabytes to be expected, issue the following

command on the guest:

>free -mh | awk '/^Mem:/ {print $3}'

Always restore saved guests

After using the save operation, do not boot or start the saved VM Guest. Doing so

would cause the machine's virtual disk and the saved memory state to get out of

synchronization. This can result in critical errors when restoring the guest.

To be able to work with a saved VM Guest again, use the restore operation. If you

used virsh to save a VM Guest, you cannot restore it using Virtual Machine

Manager. In this case, make sure to restore using virsh.

Synchronize VM Guest's time after restoring it

If you restore the VM Guest after a long pause (hours) since it was saved, its time

synchronization service, for example, chronyd, may refuse to synchronize its time.

In this case, manually synchronize VM Guest's time. For example, for KVM hosts,

you can use the QEMU guest agent and instruct the guest with the guest-set-

time. Refer to Chapter 22, QEMU guest agent for more details.

Only for VM Guests with disk types raw, qcow2

Saving and restoring VM Guests is only possible if the VM Guest is using a virtual

disk of the type raw (.img), or qcow2.

79

11.4.1. Saving/restoring with Virtual Machine Manager

Procedure 11.3. Saving a VM Guest

Open a VNC connection window to a VM Guest. Make sure the guest is running.

Choose Virtual Machine > Shutdown > Save.

Procedure 11.4. Restoring a VM Guest

Open a VNC connection window to a VM Guest. Make sure the guest is not running.

Choose Virtual Machine > Restore.

If the VM Guest was previously saved using Virtual Machine Manager, you are not offered an

option to Run the guest. However, note the caveats on machines saved with virsh outlined

in Always restore saved guests.

11.4.2. Saving and restoring with virsh

Save a running VM Guest with the command virshsave and specify the file which it is saved to.

Save the guest named opensuse13

>virsh save opensuse13 /virtual/saves/opensuse13.vmsav

Save the guest with the ID 37

>virsh save 37 /virtual/saves/opensuse13.vmsave

To restore a VM Guest, use virshrestore:

>virsh restore /virtual/saves/opensuse13.vmsave

11.5. Creating and managing snapshots

VM Guest snapshots are snapshots of the complete virtual machine including the state of CPU,

RAM, devices and the content of all writable disks. To use virtual machine snapshots, all the

attached hard disks need to use the qcow2 disk image format, and at least one of them needs to

be writable.

Snapshots let you restore the state of the machine at a particular point in time. This is useful when

undoing a faulty configuration or the installation of a lot of packages. After starting a snapshot that

was created while the VM Guest was shut off, you need to boot it. Any changes written to the disk

afterward are lost when starting the snapshot.

Note

Snapshots are supported on KVM VM Host Servers only.

1.

2.

1.

2.

Chapter 11. Basic VM Guest management

80

11.5.1. Terminology

There are several specific terms used to describe the types of snapshots:

Internal snapshots

Snapshots that are saved into the qcow2 file of the original VM Guest. The file holds both the

saved state of the snapshot and the changes made since the snapshot was taken. The main

advantage of internal snapshots is that they are all stored in one file and therefore it is easy

to copy or move them across multiple machines.

External snapshots

When creating an external snapshot, the original qcow2 file is saved and made read-only,

while a new qcow2 file is created to hold the changes. The original file is sometimes called a

backing or base file, while the new file with all the changes is called an overlay or derived

file. External snapshots are useful when performing backups of VM Guests. However,

external snapshots are not supported by Virtual Machine Manager, and cannot be deleted by

virsh directly. For more information on external snapshots in QEMU, refer to the section

called “Manipulate disk images effectively”.

Live snapshots

Snapshots created when the original VM Guest is running. Internal live snapshots support

saving the devices, and memory and disk states, while external live snapshots with virsh

support saving either the memory state, or the disk state, or both.

Offline snapshots

Snapshots created from a VM Guest that is shut off. This ensures data integrity as all the

guest's processes are stopped and no memory is in use.

11.5.2. Creating and managing snapshots with Virtual Machine Manager

Internal snapshots only

Virtual Machine Manager supports only internal snapshots, either live or offline.

To open the snapshot management view in Virtual Machine Manager, open the VNC window as

described in the section called “Opening a graphical console with Virtual Machine Manager”. Now

either choose View > Snapshots or click Manage VM Snapshots in the toolbar.

81

The list of existing snapshots for the chosen VM Guest is displayed in the left-hand part of the

window. The snapshot that was last started is marked with a green tick. The right-hand part of the

window shows details of the snapshot currently marked in the list. These details include the

snapshot's title and time stamp, the state of the VM Guest at the time the snapshot was taken and

a description. Snapshots of running guests also include a screenshot. The Description can be

changed directly from this view. Other snapshot data cannot be changed.

11.5.2.1. Creating a snapshot

To take a new snapshot of a VM Guest, proceed as follows:

Optionally, shut down the VM Guest to create an offline snapshot.

Click Add in the bottom left corner of the VNC window.

The window Create Snapshot opens.

Provide a Name and, optionally, a description. The name cannot be changed after the

snapshot has been taken. To be able to identify the snapshot later easily, use a “speaking

name”.

Confirm with Finish.

11.5.2.2. Deleting a snapshot

To delete a snapshot of a VM Guest, proceed as follows:

Click Delete in the bottom left corner of the VNC window.

Confirm the deletion with Yes.

1.

2.

3.

4.

1.

2.

Chapter 11. Basic VM Guest management

82

❶

❷

11.5.2.3. Starting a snapshot

To start a snapshot, proceed as follows:

Click Run in the bottom left corner of the VNC window.

Confirm the start with Yes.

11.5.3. Creating and managing snapshots with virsh

To list all existing snapshots for a domain (admin_server in the following), run the snapshot-

list command:

>virsh snapshot-list --domain sle-ha-node1
 Name Creation Time State
--
 sleha_12_sp2_b2_two_node_cluster 2016-06-06 15:04:31 +0200 shutoff
 sleha_12_sp2_b3_two_node_cluster 2016-07-04 14:01:41 +0200 shutoff
 sleha_12_sp2_b4_two_node_cluster 2016-07-14 10:44:51 +0200 shutoff
 sleha_12_sp2_rc3_two_node_cluster 2016-10-10 09:40:12 +0200 shutoff
 sleha_12_sp2_gmc_two_node_cluster 2016-10-24 17:00:14 +0200 shutoff
 sleha_12_sp3_gm_two_node_cluster 2017-08-02 12:19:37 +0200 shutoff
 sleha_12_sp3_rc1_two_node_cluster 2017-06-13 13:34:19 +0200 shutoff
 sleha_12_sp3_rc2_two_node_cluster 2017-06-30 11:51:24 +0200 shutoff
 sleha_15_b6_two_node_cluster 2018-02-07 15:08:09 +0100 shutoff
 sleha_15_rc1_one-node 2018-03-09 16:32:38 +0100 shutoff

The snapshot that was last started is shown with the snapshot-current command:

>virsh snapshot-current --domain admin_server
Basic installation incl. SMT for CLOUD4

Details about a particular snapshot can be obtained by running the snapshot-info command:

>virsh snapshot-info --domain admin_server \
 -name "Basic installation incl. SMT for CLOUD4"
Name: Basic installation incl. SMT for CLOUD4
Domain: admin_server
Current: yes
State: shutoff
Location: internal
Parent: Basic installation incl. SMT for CLOUD3-HA
Children: 0
Descendants: 0
Metadata: yes

11.5.3.1. Creating internal snapshots

To take an internal snapshot of a VM Guest, either a live or offline, use the snapshot-create-

as command as follows:

>virsh snapshot-create-as --domain admin_server❶ --name "Snapshot 1"❷ \
--description "First snapshot"❸

Domain name. Mandatory.

1.

2.

83

❸

Name of the snapshot. It is recommended to use a “speaking name”, since that makes it easier

to identify the snapshot. Mandatory.

Description for the snapshot. Optional.

11.5.3.2. Creating external snapshots

With virsh, you can take external snapshots of the guest's memory state, disk state, or both.

To take both live and offline external snapshots of the guest's disk, specify the --disk-only

option:

>virsh snapshot-create-as --domain admin_server --name \
 "Offline external snapshot" --disk-only

You can specify the --diskspec option to control how the external files are created:

>virsh snapshot-create-as --domain admin_server --name \
 "Offline external snapshot" \
 --disk-only --diskspec vda,snapshot=external,file=/path/to/snapshot_file

To take a live external snapshot of the guest's memory, specify the --live and --memspec

options:

>virsh snapshot-create-as --domain admin_server --name \
 "Offline external snapshot" --live \
 --memspec snapshot=external,file=/path/to/snapshot_file

To take a live external snapshot of both the guest's disk and memory states, combine the --live,

--diskspec, and --memspec options:

>virsh snapshot-create-as --domain admin_server --name \
 "Offline external snapshot" --live \
 --memspec snapshot=external,file=/path/to/snapshot_file
 --diskspec vda,snapshot=external,file=/path/to/snapshot_file

Refer to the SNAPSHOT COMMANDS section in man 1 virsh for more details.

11.5.3.3. Deleting a snapshot

External snapshots cannot be deleted with virsh. To delete an internal snapshot of a VM Guest

and restore the disk space it occupies, use the snapshot-delete command:

>virsh snapshot-delete --domain admin_server --snapshotname "Snapshot 2"

11.5.3.4. Starting a snapshot

To start a snapshot, use the snapshot-revert command:

>virsh snapshot-revert --domain admin_server --snapshotname "Snapshot 1"

To start the current snapshot (the one the VM Guest was started off), it is sufficient to use --

current rather than specifying the snapshot name:

Chapter 11. Basic VM Guest management

84

>virsh snapshot-revert --domain admin_server --current

11.6. Deleting a VM Guest

By default, deleting a VM Guest using virsh removes only its XML configuration. Since attached

storage is not deleted by default, you can reuse it with another VM Guest. With Virtual Machine

Manager, you can also delete a guest's storage files as well.

11.6.1. Deleting a VM Guest with Virtual Machine Manager

In the Virtual Machine Manager, right-click a VM Guest entry.

From the context menu, choose Delete.

A confirmation window opens. Clicking Delete permanently erases the VM Guest. The

deletion is not recoverable.

You can also permanently delete the guest's virtual disk by activating Delete Associated

Storage Files. The deletion is not recoverable either.

11.6.2. Deleting a VM Guest with virsh

To delete a VM Guest, it needs to be shut down first. It is not possible to delete a running guest.

For information on shutting down, see the section called “Changing a VM Guest's state: start, stop,

pause”.

To delete a VM Guest with virsh, run virshundefineVM_NAME.

>virsh undefine sles12

There is no option to automatically delete the attached storage files. If they are managed by libvirt,

delete them as described in the section called “Deleting volumes from a storage pool”.

11.7. Monitoring

11.7.1. Monitoring with Virtual Machine Manager

After starting Virtual Machine Manager and connecting to the VM Host Server, a CPU usage graph

of all the running guests is displayed.

It is also possible to get information about disk and network usage with this tool, however, you

must first activate this in Preferences:

Run virt-manager.

Select Edit > Preferences.

Change the tab from General to Polling.

Activate the check boxes for the kind of activity you want to see: Poll Disk I/O, Poll Network I/

O, and Poll Memory stats.

1.

2.

3.

1.

2.

3.

4.

85

If desired, also change the update interval using Update status every n seconds.

Close the Preferences dialog.

Activate the graphs that should be displayed under View > Graph.

Afterward, the disk and network statistics are also displayed in the main window of the Virtual

Machine Manager.

More precise data is available from the VNC window. Open a VNC window as described in the

section called “Opening a graphical console”. Choose Details from the toolbar or the View menu.

The statistics are displayed from the Performance entry of the left-hand tree menu.

11.7.2. Monitoring with virt-top

virt-top is a command-line tool similar to the well-known process monitoring tool top. virt-

top uses libvirt and therefore is capable of showing statistics for VM Guests running on different

hypervisors. It is recommended to use virt-top instead of hypervisor-specific tools like xentop.

By default virt-top shows statistics for all running VM Guests. Among the data that is displayed

is the percentage of memory used (%MEM) and CPU (%CPU) and the uptime of the guest (TIME).

The data is updated regularly (every three seconds by default). The following shows the output on

a VM Host Server with seven VM Guests, four of them inactive:

virt-top 13:40:19 - x86_64 8/8CPU 1283MHz 16067MB 7.6% 0.5%
7 domains, 3 active, 3 running, 0 sleeping, 0 paused, 4 inactive D:0 O:0 X:0
CPU: 6.1% Mem: 3072 MB (3072 MB by guests)

 ID S RDRQ WRRQ RXBY TXBY %CPU %MEM TIME NAME
 7 R 123 1 18K 196 5.8 6.0 0:24.35 sled12_sp1
 6 R 1 0 18K 0 0.2 6.0 0:42.51 sles12_sp1
 5 R 0 0 18K 0 0.1 6.0 85:45.67 opensuse_leap
 - (Ubuntu_1410)
 - (debian_780)
 - (fedora_21)
 - (sles11sp3)

By default the output is sorted by ID. Use the following key combinations to change the sort field:

Shift— P : CPU usage

Shift— M : Total memory allocated by the guest

Shift— T : time

Shift— I : ID

To use any other field for sorting, press Shift—F and select a field from the list. To toggle the sort

order, use Shift—R.

virt-top also supports different views on the VM Guests data, which can be changed on-the-fly

by pressing the following keys:

0: default view

5.

6.

7.

Chapter 11. Basic VM Guest management

86

1: show physical CPUs

2: show network interfaces

3: show virtual disks

virt-top supports more hot keys to change the view of the data and many command line

switches that affect the behavior of the program. For more information, see man 1 virt-top.

11.7.3. Monitoring with kvm_stat

kvm_stat can be used to trace KVM performance events. It monitors /sys/kernel/debug/

kvm, so it needs the debugfs to be mounted. On SUSE Linux Enterprise Server it should be

mounted by default. In case it is not mounted, use the following command:

>sudo mount -t debugfs none /sys/kernel/debug

kvm_stat can be used in three different modes:

kvm_stat # update in 1 second intervals
kvm_stat -1 # 1 second snapshot
kvm_stat -l > kvmstats.log # update in 1 second intervals in log format
 # can be imported to a spreadsheet

Example 11.1. Typical output of kvm_stat

kvm statistics

 efer_reload 0 0
 exits 11378946 218130
 fpu_reload 62144 152
 halt_exits 414866 100
 halt_wakeup 260358 50
 host_state_reload 539650 249
 hypercalls 0 0
 insn_emulation 6227331 173067
 insn_emulation_fail 0 0
 invlpg 227281 47
 io_exits 113148 18
 irq_exits 168474 127
 irq_injections 482804 123
 irq_window 51270 18
 largepages 0 0
 mmio_exits 6925 0
 mmu_cache_miss 71820 19
 mmu_flooded 35420 9
 mmu_pde_zapped 64763 20
 mmu_pte_updated 0 0
 mmu_pte_write 213782 29
 mmu_recycled 0 0
 mmu_shadow_zapped 128690 17
 mmu_unsync 46 -1
 nmi_injections 0 0
 nmi_window 0 0
 pf_fixed 1553821 857
 pf_guest 1018832 562
 remote_tlb_flush 174007 37
 request_irq 0 0
 signal_exits 0 0
 tlb_flush 394182 148

87

See https://clalance.blogspot.com/2009/01/kvm-performance-tools.html for further information on

how to interpret these values.

Chapter 11. Basic VM Guest management

88

https://clalance.blogspot.com/2009/01/kvm-performance-tools.html

Chapter 12. Connecting and authorizing

Managing several VM Host Servers, each hosting multiple VM Guests, quickly becomes difficult.

One benefit of libvirt is the ability to connect to several VM Host Servers at once, providing a

single interface to manage all VM Guests and to connect to their graphical console.

To ensure only authorized users can connect, libvirt offers several connection types (via TLS,

SSH, Unix sockets, and TCP) that can be combined with different authorization mechanisms

(socket, Polkit, SASL and Kerberos).

12.1. Authentication

The power to manage VM Guests and to access their graphical console is something that should

be restricted to a well-defined circle of persons. To achieve this goal, you can use the following

authentication techniques on the VM Host Server:

Access control for Unix sockets with permissions and group ownership. This method is

available for libvirtd connections only.

Access control for Unix sockets with Polkit. This method is available for local libvirtd

connections only.

User name and password authentication with SASL (Simple Authentication and Security

Layer). This method is available for both libvirtd and VNC connections. Using SASL

does not require real user accounts on the server, since it uses its own database to store

user names and passwords. Connections authenticated with SASL are encrypted.

Kerberos authentication. This method, available for libvirtd connections only, is not

covered in this manual. Refer to https://libvirt.org/auth.html#ACL_server_kerberos for details.

Single password authentication. This method is available for VNC connections only.

Authentication for libvirtd and VNC needs to be configured separately

Access to the VM Guest's management functions (via libvirtd) and to its graphical

console always needs to be configured separately. When restricting access to the

management tools, these restrictions do not automatically apply to VNC connections.

When accessing VM Guests from remote via TLS/SSL connections, access can be indirectly

controlled on each client by restricting read permissions to the certificate's key file to a certain

group. See the section called “Restricting access (security considerations)” for details.

12.1.1. libvirtd authentication

libvirtd authentication is configured in /etc/libvirt/libvirtd.conf. The configuration

made here applies to all libvirt tools such as the Virtual Machine Manager or virsh.

•

•

•

•

•

89

https://libvirt.org/auth.html#ACL_server_kerberos

libvirt offers two sockets: a read-only socket for monitoring purposes and a read-write socket to

be used for management operations. Access to both sockets can be configured independently. By

default, both sockets are owned by root.root. Default access permissions on the read-write

socket are restricted to the user root (0700) and fully open on the read-only socket (0777).

The following instructions describe how to configure access permissions for the read-write socket.

The same instructions also apply to the read-only socket. All configuration steps need to be carried

out on the VM Host Server.

Default authentication settings on SUSE Linux Enterprise Server

The default authentication method on SUSE Linux Enterprise Server is access

control for Unix sockets. Only the user root may authenticate. When accessing the

libvirt tools as a non-root user directly on the VM Host Server, you need to

provide the root password through Polkit once. You are then granted access for the

current and for future sessions.

Alternatively, you can configure libvirt to allow “system” access to non-privileged

users. See the section called “ “system” access for non-privileged users” for details.

Recommended authorization methods

Local connections

the section called “Local access control for Unix sockets with Polkit”

the section called “Access control for Unix sockets with permissions and group ownership”

Remote tunnel over SSH

the section called “Access control for Unix sockets with permissions and group ownership”

Remote TLS/SSL connection

the section called “User name and password authentication with SASL”

none (access controlled on the client side by restricting access to the certificates)

12.1.1.1. Access control for Unix sockets with permissions and group ownership

To grant access for non-root accounts, configure the sockets to be owned and accessible by a

certain group (libvirt in the following example). This authentication method can be used for

local and remote SSH connections.

In case it does not exist, create the group that should own the socket:

>sudo groupadd libvirt

1.

Chapter 12. Connecting and authorizing

90

❶

❷

❸

Group needs to exist

The group must exist before restarting libvirtd. If not, the restart fails.

Add the desired users to the group:

>sudo usermod --append --groups libvirt tux

Change the configuration in /etc/libvirt/libvirtd.conf as follows:

unix_sock_group = "libvirt"❶
unix_sock_rw_perms = "0770"❷
auth_unix_rw = "none"❸

Group ownership is set to the group libvirt.

Sets the access permissions for the socket (srwxrwx---).

Disables other authentication methods (Polkit or SASL). Access is solely controlled by the

socket permissions.

Restart libvirtd:

>sudo systemctl start libvirtd

12.1.1.2. Local access control for Unix sockets with Polkit

Access control for Unix sockets with Polkit is the default authentication method on SUSE Linux

Enterprise Server for non-remote connections. Therefore, no libvirt configuration changes are

needed. With Polkit authorization enabled, permissions on both sockets default to 0777 and each

application trying to access a socket needs to authenticate via Polkit.

Polkit authentication for local connections only

Authentication with Polkit can only be used for local connections on the VM Host

Server itself, since Polkit does not handle remote authentication.

Two policies for accessing libvirt's sockets exist:

org.libvirt.unix.monitor: accessing the read-only socket

org.libvirt.unix.manage: accessing the read-write socket

By default, the policy for accessing the read-write socket is to authenticate with the root password

once and grant the privilege for the current and for future sessions.

To grant users access to a socket without having to provide the root password, you need to

create a rule in /etc/polkit-1/rules.d. Create the file /etc/polkit-1/rules.d/10-

2.

3.

4.

•

•

91

grant-libvirt with the following content to grant access to the read-write socket to all

members of the group libvirt:

polkit.addRule(function(action, subject) {
 if (action.id == "org.libvirt.unix.manage" && subject.isInGroup("libvirt")) {
 return polkit.Result.YES;
 }
});

12.1.1.3. User name and password authentication with SASL

SASL provides user name and password authentication and data encryption (digest-md5, by

default). Since SASL maintains its own user database, the users do not need to exist on the VM

Host Server. SASL is required by TCP connections and on top of TLS/SSL connections.

Plain TCP and SASL with digest-md5 encryption

Using digest-md5 encryption on an otherwise not encrypted TCP connection does

not provide enough security for production environments. It is recommended to only

use it in testing environments.

SASL authentication on top of TLS/SSL

Access from remote TLS/SSL connections can be indirectly controlled on the client

side by restricting access to the certificate's key file. However, this may prove error-

prone when dealing with many clients. Using SASL with TLS adds security by

additionally controlling access on the server side.

To configure SASL authentication, proceed as follows:

Change the configuration in /etc/libvirt/libvirtd.conf as follows:

To enable SASL for TCP connections:

auth_tcp = "sasl"

To enable SASL for TLS/SSL connections:

auth_tls = "sasl"

Restart libvirtd:

>sudo systemctl restart libvirtd

The libvirt SASL configuration file is located at /etc/sasl2/libvirtd.conf. Normally,

there is no need to change the defaults. However, if using SASL on top of TLS, you may turn

off session encryption to avoid additional overhead (TLS connections are already encrypted)

1.

1.

2.

2.

3.

Chapter 12. Connecting and authorizing

92

by commenting the line setting the mech_list parameter. Only do this for TLS/SASL. For

TCP connections, this parameter must be set to digest-md5.

#mech_list: digest-md5

By default, no SASL users are configured, so no logins are possible. Use the following

commands to manage users:

Add the user tux

saslpasswd2 -a libvirt tux

Delete the user tux

saslpasswd2 -a libvirt -d tux

List existing users

sasldblistusers2 -f /etc/libvirt/passwd.db

virsh and SASL authentication

When using SASL authentication, you are prompted for a user name and password

every time you issue a virsh command. Avoid this by using virsh in shell mode.

12.1.2. VNC authentication

Since access to the graphical console of a VM Guest is not controlled by libvirt, but by the

specific hypervisor, it is always necessary to additionally configure VNC authentication. The main

configuration file is /etc/libvirt/<hypervisor>.conf. This section describes the QEMU/

KVM hypervisor, so the target configuration file is /etc/libvirt/qemu.conf.

VNC authentication for Xen

In contrast with KVM, Xen does not yet offer VNC authentication more sophisticated

than setting a password on a per-VM basis. See the <graphics

type='vnc'...libvirt configuration option below.

Two authentication types are available: SASL and single-password authentication. If you are using

SASL for libvirt authentication, it is strongly recommended to use it for VNC authentication as

well—it is possible to share the same database.

A third method to restrict access to the VM Guest is to enable the use of TLS encryption on the

VNC server. This requires the VNC clients to have access to x509 client certificates. By restricting

access to these certificates, access can indirectly be controlled on the client side. Refer to the

section called “VNC over TLS/SSL: client configuration” for details.

4.

93

12.1.2.1. User name and password authentication with SASL

SASL provides user name and password authentication and data encryption. Since SASL

maintains its own user database, the users do not need to exist on the VM Host Server. As with

SASL authentication for libvirt, you may use SASL on top of TLS/SSL connections. Refer to the

section called “VNC over TLS/SSL: client configuration” for details on configuring these

connections.

To configure SASL authentication for VNC, proceed as follows:

Create a SASL configuration file. It is recommended to use the existing libvirt file. If you

have already configured SASL for libvirt and are planning to use the same settings,

including the same user name and password database, a simple link is suitable:

>sudo ln -s /etc/sasl2/libvirt.conf /etc/sasl2/qemu.conf

If are setting up SASL for VNC only or you are planning to use a different configuration than

for libvirt, copy the existing file to use as a template:

>sudo cp /etc/sasl2/libvirt.conf /etc/sasl2/qemu.conf

Then edit it according to your needs.

Change the configuration in /etc/libvirt/qemu.conf as follows:

vnc_listen = "0.0.0.0"
vnc_sasl = 1
sasldb_path: /etc/libvirt/qemu_passwd.db

The first parameter enables VNC to listen on all public interfaces (rather than to the local

host only), and the second parameter enables SASL authentication.

By default, no SASL users are configured, so no logins are possible. Use the following

commands to manage users:

Add the user tux

>saslpasswd2 -f /etc/libvirt/qemu_passwd.db -a qemu tux

Delete the user tux

>saslpasswd2 -f /etc/libvirt/qemu_passwd.db -a qemu -d tux

List existing users

>sasldblistusers2 -f /etc/libvirt/qemu_passwd.db

Restart libvirtd:

>sudo systemctl restart libvirtd

Restart all VM Guests that have been running before changing the configuration. VM Guests

that have not been restarted cannot use SASL authentication for VNC connects.

1.

2.

3.

4.

5.

Chapter 12. Connecting and authorizing

94

Supported VNC viewers

SASL authentication is currently supported by Virtual Machine Manager and virt-

viewer. Both viewers also support TLS/SSL connections.

12.1.2.2. Single password authentication

Access to the VNC server may also be controlled by setting a VNC password. You can either set a

global password for all VM Guests or set individual passwords for each guest. The latter requires

editing the VM Guest's configuration files.

Always set a global password

If you are using single password authentication, it is good practice to set a global

password even if setting passwords for each VM Guest. This protects your virtual

machines with a “fallback” password if you forget to set a per-machine password. The

global password is only used if no other password is set for the machine.

Procedure 12.1. Setting a global VNC password

Change the configuration in /etc/libvirt/qemu.conf as follows:

vnc_listen = "0.0.0.0"
vnc_password = "PASSWORD"

The first parameter enables VNC to listen on all public interfaces (rather than to the local

host only), and the second parameter sets the password. The maximum length of the

password is eight characters.

Restart libvirtd:

>sudo systemctl restart libvirtd

Restart all VM Guests that have been running before changing the configuration. VM Guests

that have not been restarted cannot use password authentication for VNC connects.

Procedure 12.2. Setting a VM Guest specific VNC password

Change the configuration in /etc/libvirt/qemu.conf as follows to enable VNC to listen

on all public interfaces (rather than to the local host only).

vnc_listen = "0.0.0.0"

Open the VM Guest's XML configuration file in an editor. Replace VM_NAME in the following

example with the name of the VM Guest. The editor that is used defaults to $EDITOR. If that

variable is not set, vi is used.

>virsh edit VM_NAME

1.

2.

3.

1.

2.

95

❶

❷

❸

Search for the element <graphics> with the attribute type='vnc', for example:

<graphics type='vnc' port='-1' autoport='yes'/>

Add the passwd=PASSWORD attribute, save the file and exit the editor. The maximum length

of the password is eight characters.

<graphics type='vnc' port='-1' autoport='yes' passwd='PASSWORD'/>

Restart libvirtd:

>sudo systemctl restart libvirtd

Restart all VM Guests that have been running before changing the configuration. VM Guests

that have not been restarted cannot use password authentication for VNC connects.

Security of the VNC protocol

The VNC protocol is not considered to be safe. Although the password is sent

encrypted, it may be vulnerable when an attacker can sniff both the encrypted

password and the encryption key. Therefore, it is recommended to use VNC with

TLS/SSL or tunneled over SSH. virt-viewer, Virtual Machine Manager and

Remmina (refer to the section called “Remmina: the remote desktop client” in

“Administration Guide”) support both methods.

12.2. Connecting to a VM Host Server

To connect to a hypervisor with libvirt, you need to specify a uniform resource identifier (URI).

This URI is needed with virsh and virt-viewer (except when working as root on the VM

Host Server) and is optional for the Virtual Machine Manager. Although the latter can be called with

a connection parameter (for example, virt-manager -c qemu:///system), it also offers a

graphical interface to create connection URIs. See the section called “Managing connections with

Virtual Machine Manager” for details.

HYPERVISOR❶+PROTOCOL❷://USER@REMOTE❸/CONNECTION_TYPE❹

Specify the hypervisor. SUSE Linux Enterprise Server currently supports the following

hypervisors: test (testing purposes), qemu (KVM), and xen (Xen). This parameter is

mandatory.

When connecting to a remote host, specify the protocol here. It can be one of: ssh (connection

via SSH tunnel), tcp (TCP connection with SASL/Kerberos authentication), tls (TLS/SSL

encrypted connection with authentication via x509 certificates).

When connecting to a remote host, specify the user name and the remote host name. If no user

name is specified, the user name that has called the command ($USER) is used. See below for

3.

4.

5.

6.

Chapter 12. Connecting and authorizing

96

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

❹

more information. For TLS connections, the host name needs to be specified exactly as in the

x509 certificate.

When connecting to the QEMU/KVM hypervisor, two connection types are accepted: system for

full access rights, or session for restricted access. Since session access is not supported on

SUSE Linux Enterprise Server, this documentation focuses on system access.

Example hypervisor connection URIs

test:///default

Connect to the local testing hypervisor.

qemu:///system or xen:///system

Connect to the QEMU/Xen hypervisor on the local host having full access (type system).

qemu+ssh://tux@mercury.example.com/system or xen+ssh://

tux@mercury.example.com/system

Connect to the QEMU/Xen hypervisor on the remote host mercury.example.com. The

connection is established via an SSH tunnel.

qemu+tls://saturn.example.com/system or xen+tls://saturn.example.com/

system

Connect to the QEMU/Xen hypervisor on the remote host mercury.example.com. The

connection is established using TLS/SSL.

For more details and examples, refer to the libvirt documentation at https://libvirt.org/uri.html.

User names in URIs

A user name needs to be specified when using Unix socket authentication

(regardless of whether using the user/password authentication scheme or Polkit).

This applies to all SSH and local connections.

There is no need to specify a user name when using SASL authentication (for TCP or

TLS connections) or when doing no additional server-side authentication for TLS

connections. With SASL, the user name is not evaluated—you are prompted for an

SASL user/password combination in any case.

12.2.1. “system” access for non-privileged users

As mentioned above, a connection to the QEMU hypervisor can be established using two different

protocols: session and system. A “session” connection is spawned with the same privileges as

97

https://libvirt.org/uri.html

the client program. Such a connection is intended for desktop virtualization, since it is restricted, for

example, no USB/PCI device assignments, no virtual network setup, limited remote access to

libvirtd.

The “system” connection intended for server virtualization has no functional restrictions but is, by

default, only accessible by root. However, with the addition of the DAC (Discretionary Access

Control) driver to libvirt, it is now possible to grant non-privileged users “system” access. To

grant “system” access to the user tux, proceed as follows:

Procedure 12.3. Granting “system” access to a regular user

Enable access via Unix sockets, as described in the section called “Access control for Unix

sockets with permissions and group ownership”. In that example, access to libvirt is granted

to all members of the group libvirt and tux made a member of this group. This ensures

that tux can connect using virsh or Virtual Machine Manager.

Edit /etc/libvirt/qemu.conf and change the configuration as follows:

user = "tux"
group = "libvirt"
dynamic_ownership = 1

This ensures that the VM Guests are started by tux and that resources bound to the guest,

for example, virtual disks, can be accessed and modified by tux.

Make tux a member of the group kvm:

>sudo usermod --append --groups kvm tux

This step is needed to grant access to /dev/kvm, which is required to start VM Guests.

Restart libvirtd:

>sudo systemctl restart libvirtd

12.2.2. Managing connections with Virtual Machine Manager

The Virtual Machine Manager uses a Connection for every VM Host Server it manages. Each

connection contains all VM Guests on the respective host. By default, a connection to the local

host is already configured and connected.

All configured connections are displayed in the Virtual Machine Manager main window. Active

connections are marked with a small triangle, which you can click to fold or unfold the list of VM

Guests for this connection.

Inactive connections are listed gray and are marked with Not Connected. Either double-click or

right-click it and choose Connect from the context menu. You can also Delete an existing

connection from this menu.

1.

2.

3.

4.

Chapter 12. Connecting and authorizing

98

Editing existing connections

It is not possible to edit an existing connection. To change a connection, create a new

one with the desired parameters and delete the “old” one.

To add a new connection in the Virtual Machine Manager, proceed as follows:

Choose File > Add Connection

Choose the host's Hypervisor (Xen or QEMU/KVM)

To set up a remote connection, choose Connect to remote host. For more information, see

the section called “Configuring remote connections”.

In case of a remote connection, specify the Hostname of the remote machine in the format

USERNAME@REMOTE _HOST.

Specifying a user name

There is no need to specify a user name for TCP and TLS connections: in

these cases, it is not evaluated. However, for SSH connections, specifying a

user name is necessary when you want to connect as a user other than root.

If you do not want the connection to be automatically started when starting the Virtual

Machine Manager, deactivate Autoconnect.

Finish the configuration by clicking Connect.

12.3. Configuring remote connections

A major benefit of libvirt is the ability to manage VM Guests on different remote hosts from a

central location. This section gives detailed instructions on how to configure server and client to

allow remote connections.

12.3.1. Remote tunnel over SSH (qemu+ssh or xen+ssh)

Enabling a remote connection that is tunneled over SSH on the VM Host Server only requires the

ability to accept SSH connections. Make sure the SSH daemon is started (systemctl status

sshd) and that the ports for service SSH are opened in the firewall.

User authentication for SSH connections can be done using traditional file user/group ownership

and permissions as described in the section called “Access control for Unix sockets with

permissions and group ownership”. Connecting as user tux (qemu+ssh://tuxsIVname;/

system or xen+ssh://tuxsIVname;/system) works out of the box and does not require

additional configuration on the libvirt side.

1.

2.

3.

4.

5.

99

When connecting via SSH qemu+ssh://USER@SYSTEM or xen+ssh://USER@SYSTEM you need

to provide the password for USER. This can be avoided by copying your public key to

~USER/.ssh/authorized_keys on the VM Host Server as explained in the section called

“Public key authentication” in “Security and Hardening Guide”. Using gnome-keyring on the

machine from which you are connecting adds even more convenience. For more information, see

the section called “Automated public key logins with gnome-keyring” in “Security and Hardening

Guide”.

12.3.2. Remote TLS/SSL connection with x509 certificate (qemu+tls or xen+tls)

Using TCP connections with TLS/SSL encryption and authentication via x509 certificates is much

more complicated to set up than SSH, but it is a lot more scalable. Use this method if you need to

manage several VM Host Servers with a varying number of administrators.

12.3.2.1. Basic concept

TLS (Transport Layer Security) encrypts the communication between two computers by using

certificates. The computer starting the connection is always considered the “client”, using a “client

certificate”, while the receiving computer is always considered the “server”, using a “server

certificate”. This scenario applies, for example, if you manage your VM Host Servers from a central

desktop.

If connections are initiated from both computers, each needs to have a client and a server

certificate. This is the case, for example, if you migrate a VM Guest from one host to another.

Each x509 certificate has a matching private key file. Only the combination of certificate and

private key file can identify itself correctly. To assure that a certificate was issued by the assumed

owner, it is signed and issued by a central certificate called certificate authority (CA). Both the

client and the server certificates must be issued by the same CA.

User authentication

Using a remote TLS/SSL connection only ensures that two computers are allowed to

communicate in a certain direction. Restricting access to certain users can indirectly

be achieved on the client side by restricting access to the certificates. For more

information, see the section called “Restricting access (security considerations)”.

libvirt also supports user authentication on the server with SASL. For more

information, see the section called “Central user authentication with SASL for TLS

sockets”.

Chapter 12. Connecting and authorizing

100

https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf

12.3.2.2. Configuring the VM Host Server

The VM Host Server is the machine receiving connections. Therefore, the server certificates need

to be installed. The CA certificate needs to be installed, too. When the certificates are in place, TLS

support can be turned on for libvirt.

Create the server certificate and export it together with the respective CA certificate.

Create the following directories on the VM Host Server:

>sudo mkdir -p /etc/pki/CA/ /etc/pki/libvirt/private/

Install the certificates as follows:

>sudo /etc/pki/CA/cacert.pem
>sudo /etc/pki/libvirt/servercert.pem
>sudo /etc/pki/libvirt/private/serverkey.pem

Restrict access to certificates

Make sure to restrict access to certificates, as explained in the section called

“Restricting access (security considerations)”.

Enable TLS support by enabling the relevant socket and restarting libvirtd:

>sudo systemctl stop libvirtd.service
>sudo systemctl enable --now libvirtd-tls.socket
>sudo systemctl start libvirtd.service

By default, libvirt uses the TCP port 16514 for accepting secure TLS connections. Open

this port in the firewall.

Restarting libvirtd with TLS enabled

If you enable TLS for libvirt, the server certificates need to be in place, otherwise

restarting libvirtd fails. You also need to restart libvirtd in case you change

the certificates.

12.3.2.3. Configuring the client and testing the setup

The client is the machine initiating connections. Therefore the client certificates need to be

installed. The CA certificate needs to be installed, too.

Create the client certificate and export it together with the respective CA certificate.

Create the following directories on the client:

>sudo mkdir -p /etc/pki/CA/ /etc/pki/libvirt/private/

Install the certificates as follows:

1.

2.

3.

4.

1.

2.

101

>sudo /etc/pki/CA/cacert.pem
>sudo /etc/pki/libvirt/clientcert.pem
>sudo /etc/pki/libvirt/private/clientkey.pem

Restrict access to certificates

Make sure to restrict access to certificates, as explained in the section called

“Restricting access (security considerations)”.

Test the client/server setup by issuing the following command. Replace

mercury.example.com with the name of your VM Host Server. Specify the same fully

qualified host name as used when creating the server certificate.

#QEMU/KVM
virsh -c qemu+tls://mercury.example.com/system list --all

#Xen
virsh -c xen+tls://mercury.example.com/system list --all

If your setup is correct, you can see a list of all VM Guests registered with libvirt on the

VM Host Server.

12.3.2.4. Enabling VNC for TLS/SSL connections

Currently, VNC communication over TLS is only supported by a few tools. Common VNC viewers

such as tightvnc or tigervnc do not support TLS/SSL. The only supported alternative to

Virtual Machine Manager and virt-viewer is remmina (refer to the section called “Remmina:

the remote desktop client” in “Administration Guide”).

12.3.2.4.1. VNC over TLS/SSL: VM Host Server configuration

To access the graphical console via VNC over TLS/SSL, you need to configure the VM Host Server

as follows:

Open ports for the service VNC in your firewall.

Create a directory /etc/pki/libvirt-vnc and link the certificates into this directory as

follows:

>sudo mkdir -p /etc/pki/libvirt-vnc && cd /etc/pki/libvirt-vnc
>sudo ln -s /etc/pki/CA/cacert.pem ca-cert.pem
>sudo ln -s /etc/pki/libvirt/servercert.pem server-cert.pem
>sudo ln -s /etc/pki/libvirt/private/serverkey.pem server-key.pem

Edit /etc/libvirt/qemu.conf and set the following parameters:

vnc_listen = "0.0.0.0"
 vnc_tls = 1
 vnc_tls_x509_verify = 1

Restart the libvirtd:

3.

1.

2.

3.

4.

Chapter 12. Connecting and authorizing

102

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

>sudo systemctl restart libvirtd

VM Guests need to be restarted

The VNC TLS setting is only set when starting a VM Guest. Therefore, you

need to restart all machines that have been running before making the

configuration change.

12.3.2.4.2. VNC over TLS/SSL: client configuration

The only action needed on the client side is to place the x509 client certificates in a location

recognized by the client of choice. However, Virtual Machine Manager and virt-viewer expect

the certificates in a different location. Virtual Machine Manager can either read from a system-wide

location applying to all users, or from a per-user location. Remmina (refer to the section called

“Remmina: the remote desktop client” in “Administration Guide”) asks for the location of certificates

when initializing the connection to the remote VNC session.

Virtual Machine Manager (virt-manager)

To connect to the remote host, Virtual Machine Manager requires the setup explained in the

section called “Configuring the client and testing the setup”. To be able to connect via VNC,

the client certificates also need to be placed in the following locations:

System-wide location

/etc/pki/CA/cacert.pem

/etc/pki/libvirt-vnc/clientcert.pem

/etc/pki/libvirt-vnc/private/clientkey.pem

Per-user location

/etc/pki/CA/cacert.pem

~/.pki/libvirt-vnc/clientcert.pem

~/.pki/libvirt-vnc/private/clientkey.pem

virt-viewer

virt-viewer only accepts certificates from a system-wide location:

/etc/pki/CA/cacert.pem

/etc/pki/libvirt-vnc/clientcert.pem

/etc/pki/libvirt-vnc/private/clientkey.pem

Restrict access to certificates

Make sure to restrict access to certificates, as explained in the section called

“Restricting access (security considerations)”.

103

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

12.3.2.5. Restricting access (security considerations)

Each x509 certificate consists of two pieces: the public certificate and a private key. A client can

only authenticate using both pieces. Therefore, any user that has read access to the client

certificate and its private key can access your VM Host Server. On the other hand, an arbitrary

machine equipped with the full server certificate can pretend to be the VM Host Server. Since this

is not desirable, access to at least the private key files needs to be restricted as much as possible.

The easiest way to control access to a key file is to use access permissions.

Server certificates

Server certificates need to be readable for QEMU processes. On SUSE Linux Enterprise

Server QEMU, processes started from libvirt tools are owned by root, so it is sufficient

if the root can read the certificates:

>chmod 700 /etc/pki/libvirt/private/
>chmod 600 /etc/pki/libvirt/private/serverkey.pem

If you change the ownership for QEMU processes in /etc/libvirt/qemu.conf, you also

need to adjust the ownership of the key file.

System-wide client certificates

To control access to a key file that is available system-wide, restrict read access to a certain

group, so that only members of that group can read the key file. In the following example, a

group libvirt is created, and group ownership of the clientkey.pem file and its parent

directory is set to libvirt. Afterward, the access permissions are restricted to owner and

group. Finally, the user tux is added to the group libvirt, and thus can access the key

file.

CERTPATH="/etc/pki/libvirt/"
create group libvirt
groupadd libvirt
change ownership to user root and group libvirt
chown root.libvirt $CERTPATH/private $CERTPATH/clientkey.pem
restrict permissions
chmod 750 $CERTPATH/private
chmod 640 $CERTPATH/private/clientkey.pem
add user tux to group libvirt
usermod --append --groups libvirt tux

Per-user certificates

User-specific client certificates for accessing the graphical console of a VM Guest via VNC

need to be placed in the user's home directory in ~/.pki. Contrary to SSH, for example, the

VNC viewer using these certificates does not check the access permissions of the private

key file. Therefore, it is solely the user's responsibility to make sure the key file is not

readable by others.

Chapter 12. Connecting and authorizing

104

12.3.2.5.1. Restricting access from the server side

By default, every client that is equipped with appropriate client certificates may connect to a VM

Host Server accepting TLS connections. Therefore, it is possible to use additional server-side

authentication with SASL as described in the section called “User name and password

authentication with SASL”.

It is also possible to restrict access with a allowlist of DNs (distinguished names), so only clients

with a certificate matching a DN from the list can connect.

Add a list of allowed DNs to tls_allowed_dn_list in /etc/libvirt/libvirtd.conf. This

list may contain wild cards. Do not specify an empty list, since that would result in refusing all

connections.

tls_allowed_dn_list = [
 "C=US,L=Provo,O=SUSE Linux Products GmbH,OU=*,CN=venus.example.com,EMAIL=*",
 "C=DE,L=Nuremberg,O=SUSE Linux Products GmbH,OU=Documentation,CN=*"]

Get the distinguished name of a certificate with the following command:

>certtool -i --infile /etc/pki/libvirt/clientcert.pem | grep "Subject:"

Restart libvirtd after having changed the configuration:

>sudo systemctl restart libvirtd

12.3.2.6. Central user authentication with SASL for TLS sockets

A direct user authentication via TLS is not possible—this is handled indirectly on each client via the

read permissions for the certificates as explained in the section called “Restricting access (security

considerations)”. However, if a central, server-based user authentication is needed, libvirt also

allows to use SASL (Simple Authentication and Security Layer) on top of TLS for direct user

authentication. See the section called “User name and password authentication with SASL” for

configuration details.

12.3.2.7. Troubleshooting

12.3.2.7.1. Virtual Machine Manager/virsh cannot connect to server

Check the following in the given order:

Is it a firewall issue (TCP port 16514 needs to be open on the server)?

Is the client certificate (certificate and key) readable by the user that has started Virtual Machine

Manager/ virsh?

Has the same full qualified host name as in the server certificate been specified with the

connection?

105

Is TLS enabled on the server (listen_tls = 1)?

Has libvirtd been restarted on the server?

12.3.2.7.2. VNC connection fails

Ensure that you can connect to the remote server using Virtual Machine Manager. If so, check

whether the virtual machine on the server has been started with TLS support. The virtual machine's

name in the following example is sles.

>ps ax | grep qemu | grep "\-name sles" | awk -F" -vnc " '{ print FS $2 }'

If the output does not begin with a string similar to the following, the machine has not been started

with TLS support and must be restarted.

 -vnc 0.0.0.0:0,tls,x509verify=/etc/pki/libvirt

Chapter 12. Connecting and authorizing

106

Chapter 13. Advanced storage topics

This chapter introduces advanced topics about manipulating storage from the perspective of the

VM Host Server.

13.1. Locking disk files and block devices with virtlockd

Locking block devices and disk files prevents concurrent writes to these resources from different

VM Guests. It provides protection against starting the same VM Guest twice, or adding the same

disk to two different virtual machines. This reduces the risk of a virtual machine's disk image

becoming corrupted because of a wrong configuration.

The locking is controlled by a daemon called virtlockd. Since it operates independently from

the libvirtd daemon, locks endure a crash or a restart of libvirtd. Locks even persist during

an update of the virtlockd itself, since it can re-execute itself. This ensures that VM Guests do

not need to be restarted upon a virtlockd update. virtlockd is supported for KVM, QEMU,

and Xen.

13.1.1. Enable locking

Locking virtual disks is not enabled by default on SUSE Linux Enterprise Server. To enable and

automatically start it upon rebooting, perform the following steps:

Edit /etc/libvirt/qemu.conf and set

lock_manager = "lockd"

Start the virtlockd daemon with the following command:

>sudo systemctl start virtlockd

Restart the libvirtd daemon with:

>sudo systemctl restart libvirtd

Make sure virtlockd is automatically started when booting the system:

>sudo systemctl enable virtlockd

13.1.2. Configure locking

By default virtlockd is configured to automatically lock all disks configured for your VM Guests.

The default setting uses a “direct” lockspace, where the locks are acquired against the actual file

paths associated with the VM Guest <disk> devices. For example, flock(2) is called directly on

/var/lib/libvirt/images/my-server/disk0.raw when the VM Guest contains the

following <disk> device:

1.

2.

3.

4.

107

<disk type='file' device='disk'>
 <driver name='qemu' type='raw'/>
 <source file='/var/lib/libvirt/images/my-server/disk0.raw'/>
 <target dev='vda' bus='virtio'/>
</disk>

The virtlockd configuration can be changed by editing the file /etc/libvirt/qemu-

lockd.conf. It also contains detailed comments with further information. Make sure to activate

configuration changes by reloading virtlockd:

>sudo systemctl reload virtlockd

13.1.2.1. Enabling an indirect lockspace

The default configuration of virtlockd uses a “direct” lockspace. This means that the locks are

acquired against the actual file paths associated with the <disk> devices.

If the disk file paths are not accessible to all hosts, virtlockd can be configured to allow an

“indirect” lockspace. This means that a hash of the disk image path is used to create a file in the

indirect lockspace directory. The locks are then held on these hash files instead of the actual disk

file paths. Indirect lockspace is also useful if the file system containing the disk files does not

support fcntl() locks. An indirect lockspace is specified with the file_lockspace_dir

setting:

file_lockspace_dir = "/MY_LOCKSPACE_DIRECTORY"

13.1.2.2. Enable locking on LVM or iSCSI volumes

When wanting to lock virtual disks placed on LVM or iSCSI volumes shared by several hosts,

locking needs to be done by UUID rather than by path (which is used by default). Furthermore, the

lockspace directory needs to be placed on a shared file system accessible by all hosts sharing the

volume. Set the following options for LVM and/or iSCSI:

lvm_lockspace_dir = "/MY_LOCKSPACE_DIRECTORY"
iscsi_lockspace_dir = "/MY_LOCKSPACE_DIRECTORY"

13.2. Online resizing of guest block devices

Sometimes you need to change—extend or shrink—the size of the block device used by your

guest system. For example, when the disk space originally allocated is no longer enough, it is time

to increase its size. If the guest disk resides on a logical volume, you can resize it while the guest

system is running. This is a big advantage over an offline disk resizing (see the virt-resize

command from the the section called “Guestfs tools” package) as the service provided by the guest

is not interrupted by the resizing process. To resize a VM Guest disk, follow these steps:

Procedure 13.1. Online resizing of guest disk

Inside the guest system, check the current size of the disk (for example /dev/vda).1.

Chapter 13. Advanced storage topics

108

#fdisk -l /dev/vda
Disk /dev/sda: 160.0 GB, 160041885696 bytes, 312581808 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

On the host, resize the logical volume holding the /dev/vda disk of the guest to the

required size, for example, 200 GB.

#lvresize -L 200G /dev/mapper/vg00-home
Extending logical volume home to 200 GiB
Logical volume home successfully resized

On the host, resize the block device related to the disk /dev/mapper/vg00-home of the

guest. You can find the DOMAIN_ID with virsh list.

#virsh blockresize --path /dev/vg00/home --size 200G DOMAIN_ID
Block device '/dev/vg00/home' is resized

Check that the new disk size is accepted by the guest.

#fdisk -l /dev/vda
Disk /dev/sda: 200.0 GB, 200052357120 bytes, 390727260 sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

13.3. Sharing directories between host and guests (file system pass-through)

libvirt allows to share directories between host and guests using QEMU's file system pass-through

(also called VirtFS) feature. Such a directory can be also be accessed by several VM Guests at

once and therefore be used to exchange files between VM Guests.

Windows guests and file system pass-through

Sharing directories between VM Host Server and Windows guests via File System

Pass-Through does not work, because Windows lacks the drivers required to mount

the shared directory.

To make a shared directory available on a VM Guest, proceed as follows:

Open the guest's console in Virtual Machine Manager and either choose View > Details from

the menu or click Show virtual hardware details in the toolbar. Choose Add Hardware >

Filesystem to open the Filesystem Passthrough dialog.

Driver allows you to choose between a Handle or Path base driver. The default setting is

Path. Mode lets you choose the security model, which influences the way file permissions

are set on the host. Three options are available:

Passthrough (default)

Files on the file system are directly created with the client-user's credentials. This is

similar to what NFSv3 is using.

2.

3.

4.

1.

2.

109

Squash

Same as Passthrough, but failure of privileged operations like chown are ignored. This

is required when KVM is not run with root privileges.

Mapped

Files are created with the file server's credentials (qemu.qemu). The user credentials

and the client-user's credentials are saved in extended attributes. This model is

recommended when host and guest domains should be kept isolated.

Specify the path to the directory on the VM Host Server with Source Path. Enter a string at

Target Path to be used as a tag to mount the shared directory. The string of this field is a tag

only, not a path on the VM Guest.

Apply the setting. If the VM Guest is currently running, you need to shut it down to apply the

new setting (rebooting the guest is not sufficient).

Boot the VM Guest. To mount the shared directory, enter the following command:

>sudo mount -t 9p -o trans=virtio,version=9p2000.L,rw TAG /MOUNT_POINT

To make the shared directory permanently available, add the following line to the /etc/

fstab file:

TAG /MOUNT_POINT 9p trans=virtio,version=9p2000.L,rw 0 0

13.4. Using RADOS block devices with libvirt

RADOS Block Devices (RBD) store data in a Ceph cluster. They allow snapshotting, replication

and data consistency. You can use an RBD from your libvirt-managed VM Guests similarly to

how you use other block devices.

For more details, refer to the SUSE Enterprise Storage Administration Guide, chapter Using libvirt

with Ceph. The SUSE Enterprise Storage documentation is available from https://

documentation.suse.com/ses/.

3.

4.

5.

Chapter 13. Advanced storage topics

110

https://documentation.suse.com/ses/
https://documentation.suse.com/ses/

Chapter 14. Configuring virtual machines with Virtual Machine
Manager

Figure 14.1. Details view of a VM Guest

The left panel of the window lists VM Guest overview and already installed hardware. After clicking

an item on the list, you can access its detailed settings in the details view. You can change the

hardware parameters to match your needs, then click Apply to confirm them. Certain changes take

effect immediately, while others need a reboot of the machine—and virt-manager warns you

about that fact.

To remove installed hardware from a VM Guest, select the appropriate list entry in the left panel

and then click Remove in the bottom right of the window.

To add new hardware, click Add Hardware below the left panel, then select the type of the

hardware you want to add in the Add New Virtual Hardware window. Modify its parameters and

confirm with Finish.

The following sections describe configuration options for the specific hardware type being added.

They do not focus on modifying an existing piece of hardware, as the options are identical.

14.1. Machine setup

This section describes the setup of the virtualized processor and memory hardware. These

components are vital to a VM Guest, therefore you cannot remove them. It also shows how to view

the overview and performance information, and how to change boot parameters.

111

14.1.1. Overview

Overview shows basic details about VM Guest and the hypervisor.

Figure 14.2. Overview details

Name, Title, and Description are editable and help you identify VM Guest in the Virtual Machine

Manager list of machines.

Figure 14.3. VM Guest title and description

UUID shows the universally unique identifier of the virtual machine, while Status shows its current

status—Running, Paused, or Shutoff.

The Hypervisor Details section shows the hypervisor type, CPU architecture, used emulator, and

chipset type. None of the hypervisor parameters can be changed.

14.1.2. Performance

Performance shows regularly updated charts of CPU and memory usage, and disk and network I/

O.

Chapter 14. Configuring virtual machines with Virtual Machine Manager

112

Figure 14.4. Performance

Enabling disabled charts

Not all the charts in the Graph view are enabled by default. To enable these charts,

go to File > View Manager, then select Edit > Preferences > Polling, and check the

charts that you want to see regularly updated.

Figure 14.5. Statistics charts

14.1.3. Processor

CPU includes detailed information about VM Guest processor configuration.

113

Figure 14.6. Processor view

In the CPUs section, you can configure the number of virtual CPUs allocated to the VM Guest.

Logical host CPUs shows the number of online and usable CPUs on the VM Host Server.

The Configuration section lets you configure the CPU model and topology.

When activated, the Copy host CPU configuration option uses the host CPU model for VM Guest.

You can see the details of the host CPU model in the output of the virsh capabilities

command. When deactivated, the CPU model needs to be specified from the models available in

the drop-down box.

The host CPU model provides a good trade-off between CPU features and the ability to migrate

the VM Guest. libvirt does not model every aspect of each CPU, so the VM Guest CPU does

not match the VM Host Server CPU exactly. But the ABI provided to the VM Guest is reproducible

and during migration the complete CPU model definition is transferred to the destination VM Host

Server, ensuring the migrated VM Guest can see the exact same CPU model on the destination.

The host-passthrough model provides the VM Guest with a CPU that is exactly the same as

the VM Host Server CPU. This can be useful when the VM Guest workload requires CPU features

not available in libvirt's simplified host-model CPU. The host-passthrough model comes

with the disadvantage of reduced migration capability. A VM Guest with host-passthrough

model CPU can only be migrated to a VM Host Server with identical hardware.

Chapter 14. Configuring virtual machines with Virtual Machine Manager

114

For more information on libvirt's CPU model and topology options, see the CPU model and

topology documentation at https://libvirt.org/formatdomain.html#cpu-model-and-topology.

After you activate Manually set CPU topology, you can specify a custom number of sockets, cores

and threads for the CPU.

14.1.4. Memory

Memory contains information about the memory that is available to VM Guest.

Figure 14.7. Memory view

Total host memory

Total amount of memory installed on VM Host Server.

Current allocation

The amount of memory currently available to VM Guest. You can hotplug more memory by

increasing this value up to the value of Maximum allocation.

Enable shared memory

Specify if the virtual machine can use shared memory via the memfd backed. It is a

requirement for using the virtiofs file system. Find more details in https://libvirt.org/kbase/

virtiofs.html.

115

https://libvirt.org/formatdomain.html#cpu-model-and-topology
https://libvirt.org/kbase/virtiofs.html
https://libvirt.org/kbase/virtiofs.html

Maximum allocation

The maximum value to which you can hotplug the currently available memory. Any change to

this value takes effect after the next VM Guest reboot.

Enable launch security

If the VM Host Server supports AMD-SEV technology, activating this option enables a

secured guest with encrypted memory. This option requires a virtual machine with chipset

type Q35. For more details, refer to AMD Secure Encrypted Virtualization (AMD-SEV) Guide.

Large memory VM Guests

VM Guests with memory requirements of 4 TB or more must either use the host-

passthrough CPU mode, or explicitly specify the virtual CPU address size when

using host-model or custom CPU modes. The default virtual CPU address size for

these modes may not be sufficient for memory configurations of 4 TB or more. The

address size can only be specified by editing the VM Guests XML configuration. See

the section called “Configuring memory allocation” for more information on specifying

virtual CPU address size.

14.1.5. Boot options

Boot Options introduces options affecting the VM Guest boot process.

Figure 14.8. Boot options

Chapter 14. Configuring virtual machines with Virtual Machine Manager

116

In the Autostart section, you can specify whether the virtual machine should automatically start

during the VM Host Server boot phase.

In the Boot device order, activate the devices used for booting VM Guest. You can change their

order with the up and down arrow buttons on the right side of the list. To choose from a list of

bootable devices on VM Guest start, activate Enable boot menu.

To boot a different kernel than the one on the boot device, activate Enable direct kernel boot and

specify the paths to the alternative kernel and initrd placed on the VM Host Server file system. You

can also specify kernel arguments that are passed to the loaded kernel.

14.2. Storage

This section gives you a detailed description of configuration options for storage devices. It

includes both hard disks and removable media, such as USB or CD-ROM drives.

Procedure 14.1. Adding a new storage device

Below the left panel, click Add Hardware to open the Add New Virtual Hardware window.

There, select Storage.

Figure 14.9. Add a new storage

To create a qcow2 disk image in the default location, activate Create a disk image for the

virtual machine and specify its size in gigabytes.

To gain more control over the disk image creation, activate Select or create custom storage

and click Manage to manage storage pools and images. The window Choose Storage

1.

2.

117

Volume opens, which has almost identical functionality as the Storage tab described in the

section called “Managing storage with Virtual Machine Manager”.

Supported storage formats

SUSE only supports the following storage formats: raw and qcow2.

After you create and specify the disk image file, specify the Device type. It can be one of the

following options:

Disk device

CDROM device: does not allow using Create a disk image for the virtual machine.

Floppy device: does not allow using Create a disk image for the virtual machine.

LUN Passthrough: required to use an existing SCSI storage directly without adding it

into a storage pool.

Select the Bus type for your device. The list of available options depends on the device type

you selected in the previous step. The types based on VirtIO use paravirtualized drivers.

In the Advanced options section, select the preferred Cache mode. For more information on

cache modes, see Chapter 19, Disk cache modes.

Confirm your settings with Finish. A new storage device appears in the left panel.

14.3. Controllers

This section focuses on adding and configuring new controllers.

Procedure 14.2. Adding a new controller

Below the left panel, click Add Hardware to open the Add New Virtual Hardware window.

There, select Controller.

3.

◦

◦

◦

◦

4.

5.

6.

1.

Chapter 14. Configuring virtual machines with Virtual Machine Manager

118

Figure 14.10. Add a new controller

Select the type of the controller. You can choose from IDE, Floppy, SCSI, SATA, VirtIO Serial

(paravirtualized), USB, or CCID (smart card devices).

Optionally, for a USB or SCSI controller, select a controller model.

Confirm your settings with Finish. A new controller appears in the left panel.

14.4. Networking

This section describes how to add and configure new network devices.

Procedure 14.3. Adding a new network device

Below the left panel, click Add Hardware to open the Add New Virtual Hardware window.

There, select Network.

2.

3.

4.

1.

119

Figure 14.11. Add a new network interface

From the Network source list, select the source for the network connection. The list includes

VM Host Server's available physical network interfaces, network bridges, or network bonds.

You can also assign the VM Guest to an already defined virtual network. See the section

called “Configuring networks” for more information on setting up virtual networks with Virtual

Machine Manager.

Specify a MAC address for the network device. While Virtual Machine Manager pre-fills a

random value for your convenience, it is recommended to supply a MAC address

appropriate for your network environment to avoid network conflicts.

Select a device model from the list. You can either leave the Hypervisor default, or specify

one of e1000, rtl8139, or virtio models. virtio uses paravirtualized drivers.

Confirm your settings with Finish. A new network device appears in the left panel.

14.5. Input devices

This section focuses on adding and configuring new input devices, such as a mouse, a keyboard

or a tablet.

Procedure 14.4. Adding a new input device

Below the left panel, click Add Hardware to open the Add New Virtual Hardware window.

There, select Input.

2.

3.

4.

5.

1.

Chapter 14. Configuring virtual machines with Virtual Machine Manager

120

Figure 14.12. Add a new input device

Select a device type from the list.

Confirm your settings with Finish. A new input device appears in the left panel.

Enabling seamless and synchronized mouse pointer movement

When you click within a VM Guest's console with the mouse, the pointer is captured

by the console window and cannot be used outside the console unless it is explicitly

released (by pressing Alt—Ctrl). To prevent the console from grabbing the key and

to enable seamless pointer movement between host and guest instead, follow the

instructions in Procedure 14.4, “Adding a new input device” to add an EvTouch USB

Graphics Tablet to the VM Guest.

Adding a tablet has the additional advantage of synchronizing the mouse pointer

movement between VM Host Server and VM Guest when using a graphical

environment on the guest. With no tablet configured on the guest, you may often see

two pointers with one dragging behind the other.

14.6. Video

This section describes how to add and configure new video devices.

2.

3.

121

Procedure 14.5. Adding a video device

Below the left panel, click Add Hardware to open the Add New Virtual Hardware window.

There, select Video.

Figure 14.13. Add a new video device

Select a model from the drop-down box.

Secondary video devices

Only QXL and Virtio can be added as secondary video devices.

Confirm your settings with Finish. A new video device appears in the left panel.

14.7. USB redirectors

USB devices that are connected to the client machine can be redirected to the VM Guest by using

USB Redirectors.

Procedure 14.6. Adding a USB redirector

Below the left panel, click Add Hardware to open the Add New Virtual Hardware window.

There, select USB Redirection.

1.

2.

3.

4.

1.

Chapter 14. Configuring virtual machines with Virtual Machine Manager

122

Figure 14.14. Add a new USB redirector

Select a device type from the list. Depending on your configuration, you can either select a

Spice channel or a TCP redirector.

Confirm your settings with Finish. A new USB redirector appears in the left panel.

14.8. Miscellaneous

Smartcard

Smartcard functionality can be added via the Smartcard element. A physical USB smartcard

reader can then be passed through to the VM Guest.

Watchdog

Virtual watchdog devices are also supported. They can be created via the Watchdog

element. The model and the action of the device can be specified.

Requirements for virtual watchdog devices

QA virtual watchdog devices require a specific driver and daemon to be

installed in the VM Guest. Otherwise, the virtual watchdog device does not

work.

TPM

You can use the Host TPM device in the VM Guest by adding TPM functionality via the TPM

element.

2.

3.

123

Virtual TPMs

The Host TPM can only be used in one VM Guest at a time.

14.9. Adding a CD/DVD-ROM device with Virtual Machine Manager

KVM supports CD or DVD-ROMs in VM Guest either by directly accessing a physical drive on the

VM Host Server or by accessing ISO images. To create an ISO image from an existing CD or DVD,

use dd:

>sudo dd if=/dev/CD_DVD_DEVICE of=my_distro.iso bs=2048

To add a CD/DVD-ROM device to your VM Guest, proceed as follows:

Double-click a VM Guest entry in the Virtual Machine Manager to open its console and

switch to the Details view with View > Details.

Click Add Hardware and choose Storage in the pop-up window.

Change the Device Type to IDE CDROM.

Select Select or create custom storage.

To assign the device to a physical medium, enter the path to the VM Host Server's CD/

DVD-ROM device, for example, /dev/cdrom) next to Manage. Alternatively, use

Manage to open a file browser and then click Browse Local to select the device.

Assigning the device to a physical medium is only possible when the Virtual Machine

Manager was started on the VM Host Server.

To assign the device to an existing image, click Manage to choose an image from a

storage pool. If the Virtual Machine Manager was started on the VM Host Server,

alternatively choose an image from another location on the file system by clicking

Browse Local. Select an image and close the file browser with Choose Volume.

Save the new virtualized device with Finish.

Reboot the VM Guest to make the new device available. For more information, see the

section called “Ejecting and changing floppy or CD/DVD-ROM media with Virtual Machine

Manager”.

14.10. Adding a floppy device with Virtual Machine Manager

Currently, KVM only supports the use of floppy disk images—using a physical floppy drive is not

supported. Create a floppy disk image from an existing floppy using dd:

>sudo dd if=/dev/fd0 of=/var/lib/libvirt/images/floppy.img

To create an empty floppy disk image, use one of the following commands:

1.

2.

3.

4.

1.

2.

5.

6.

Chapter 14. Configuring virtual machines with Virtual Machine Manager

124

Raw image

>sudo dd if=/dev/zero of=/var/lib/libvirt/images/floppy.img bs=512
count=2880

FAT formatted image

>sudo mkfs.msdos -C /var/lib/libvirt/images/floppy.img 1440

To add a floppy device to your VM Guest, proceed as follows:

Double-click a VM Guest entry in the Virtual Machine Manager to open its console and

switch to the Details view with View > Details.

Click Add Hardware and choose Storage in the pop-up window.

Change the Device Type to Floppy Disk.

Choose Select or create custom storage and click Manage to choose an existing image from

a storage pool. If Virtual Machine Manager was started on the VM Host Server, alternatively

choose an image from another location on the file system by clicking Browse Local. Select

an image and close the file browser with Choose Volume.

Save the new virtualized device with Finish.

Reboot the VM Guest to make the new device available. For more information, see the

section called “Ejecting and changing floppy or CD/DVD-ROM media with Virtual Machine

Manager”.

14.11. Ejecting and changing floppy or CD/DVD-ROM media with Virtual Machine Manager

Whether you are using the VM Host Server's physical CD/DVD-ROM device or an ISO/floppy

image: before you can change the media or image of an existing device in the VM Guest, you first

need to disconnect the media from the guest.

Double-click a VM Guest entry in the Virtual Machine Manager to open its console and

switch to the Details view with View > Details.

Choose the Floppy or CD/DVD-ROM device and “eject” the medium by clicking Disconnect.

To “insert” a new medium, click Connect.

If using the VM Host Server's physical CD/DVD-ROM device, first change the media in

the device (this may require unmounting it on the VM Host Server before it can be

ejected). Then choose CD-ROM or DVD and select the device from the drop-down

box.

If you are using an ISO image, choose ISO image Location and select an image by

clicking Manage. When connecting from a remote host, you may only choose images

from existing storage pools.

Click OK to finish. The new media can now be accessed in the VM Guest.

1.

2.

3.

4.

5.

6.

1.

2.

3.

1.

2.

4.

125

14.12. Assigning a host PCI device to a VM Guest

You can directly assign host-PCI devices to guests (PCI pass-through). When the PCI device is

assigned to one VM Guest, it cannot be used on the host or by another VM Guest unless it is

reassigned. A prerequisite for this feature is a VM Host Server configuration as described in

Requirements for VFIO and SR-IOV.

14.12.1. Adding a PCI device with Virtual Machine Manager

The following procedure describes how to assign a PCI device from the host machine to a VM

Guest using Virtual Machine Manager:

Double-click a VM Guest entry in the Virtual Machine Manager to open its console and

switch to the Details view with View > Details.

Click Add Hardware and choose the PCI Host Device category in the left panel. A list of

available PCI devices appears in the right part of the window.

Figure 14.15. Adding a PCI device

From the list of available PCI devices, choose the one you want to pass to the guest.

Confirm with Finish.

1.

2.

3.

Chapter 14. Configuring virtual machines with Virtual Machine Manager

126

SLES 11 SP4 KVM guests

On a newer QEMU machine type (pc-i440fx-2.0 or higher) with SLES 11 SP4 KVM

guests, the acpiphp module is not loaded by default in the guest. This module must

be loaded to enable hotplugging of disk and network devices. To load the module

manually, use the command modprobe acpiphp. It is also possible to autoload the

module by adding install acpiphp /bin/true to the /etc/

modprobe.conf.local file.

KVM guests using QEMU Q35 machine type

KVM guests using the QEMU Q35 machine type have a PCI topology that includes a

pcie-root controller and seven pcie-root-port controllers. The pcie-root

controller does not support hotplugging. Each pcie-root-port controller supports

hotplugging a single PCIe device. PCI controllers cannot be hotplugged, so plan

accordingly and add more pcie-root-ports for more than seven hotplugged PCIe

devices. A pcie-to-pci-bridge controller can be added to support hotplugging

legacy PCI devices. See https://libvirt.org/pci-hotplug.html for more information about

PCI topology between QEMU machine types.

14.13. Assigning a host USB device to a VM Guest

Analogous to assigning host PCI devices (see the section called “Assigning a host PCI device to a

VM Guest”), you can directly assign host USB devices to guests. When the USB device is

assigned to one VM Guest, it cannot be used on the host or by another VM Guest unless it is

reassigned.

14.13.1. Adding a USB device with Virtual Machine Manager

To assign a host USB device to VM Guest using Virtual Machine Manager, follow these steps:

Double-click a VM Guest entry in the Virtual Machine Manager to open its console and

switch to the Details view with View > Details.

Click Add Hardware and choose the USB Host Device category in the left panel. A list of

available USB devices appears in the right part of the window.

1.

2.

127

https://libvirt.org/pci-hotplug.html

Figure 14.16. Adding a USB device

From the list of available USB devices, choose the one you want to pass to the guest.

Confirm with Finish. The new USB device appears in the left pane of the Details view.

USB device removal

To remove the host USB device assignment, click it in the left pane of the

Details view and confirm with Remove.

3.

Chapter 14. Configuring virtual machines with Virtual Machine Manager

128

Chapter 15. Configuring virtual machines with virsh

15.1. Editing the VM configuration

The configuration of a VM is stored in an XML file in /etc/libvirt/qemu/ and looks like this:

Example 15.1. Example XML configuration file

<domain type='kvm'>
 <name>sles15</name>
 <uuid>ab953e2f-9d16-4955-bb43-1178230ee625</uuid>
 <memory unit='KiB'>2097152</memory>
 <currentMemory unit='KiB'>2097152</currentMemory>
 <vcpu placement='static'>2</vcpu>
 <os>
 <type arch='x86_64' machine='pc-q35-2.0'>hvm</type>
 </os>
 <features>...</features>
 <cpu mode='custom' match='exact' check='partial'>
 <model fallback='allow'>Skylake-Client-IBRS</model>
 </cpu>
 <clock>...</clock>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>destroy</on_crash>
 <pm>
 <suspend-to-mem enabled='no'/>
 <suspend-to-disk enabled='no'/>
 </pm>
 <devices>
 <emulator>/usr/bin/qemu-system-x86_64</emulator>
 <disk type='file' device='disk'>...</disk>
 </devices>
 ...
</domain>

To edit the configuration of a VM Guest, check if it is offline:

>sudovirsh list --inactive

If your VM Guest is in this list, you can safely edit its configuration:

>sudovirsh edit NAME_OF_VM_GUEST

Before saving the changes, virsh validates your input against a RelaxNG schema.

15.2. Changing the machine type

When installing with the virt-install tool, the machine type for a VM Guest is pc-q35 by

default. The machine type is stored in the VM Guest's configuration file in the type element:

<type arch='x86_64' machine='pc-q35-2.3'>hvm</type>

As an example, the following procedure shows how to change this value to the machine type q35.

The value q35 is an Intel* chipset and includes PCIe, supports up to 12 USB ports, and has

support for SATA and IOMMU.

129

Procedure 15.1. Changing machine type

Check whether your VM Guest is inactive:

>sudovirsh list --inactive
Id Name State
--
- sles15 shut off

Edit the configuration for this VM Guest:

>sudovirsh edit sles15

Replace the value of the machine attribute with pc-q35-2.0 :

<type arch='x86_64' machine='pc-q35-2.0'>hvm</type>

Restart the VM Guest:

>sudovirsh start sles15

Check if the machine type has changed. Log in to the VM Guest and run the following

command:

>sudodmidecode | grep Product
Product Name: Standard PC (Q35 + ICH9, 2009)

Machine type update recommendations

Whenever the QEMU version on the host system is upgraded, for example, when

upgrading the VM Host Server to a new service pack, upgrade the machine type of

the VM Guests to the latest available version. To check, use the command qemu-

system-x86_64 -M help on the VM Host Server.

The default machine type pc-i440fx, for example, is regularly updated. If your VM

Guest still runs with a machine type of pc-i440fx-1.X, we strongly recommend an

update to pc-i440fx-2.X. This allows taking advantage of the most recent updates

and corrections in machine definitions, and ensures better future compatibility.

15.3. Configuring hypervisor features

libvirt automatically enables a default set of hypervisor features that are sufficient in most

circumstances, but also allows enabling and disabling features as needed. As an example, Xen

does not support enabling PCI pass-through by default. It must be enabled with the passthrough

setting. Hypervisor features can be configured with virsh. Look for the <features> element in

the VM Guest's configuration file and adjust its features as required. Continuing with the Xen pass-

through example:

1.

2.

3.

4.

5.

Chapter 15. Configuring virtual machines with virsh

130

>sudo virsh edit sle15sp1
 <features>
 <xen>
 <passthrough/>
 </xen>
 </features>

Save your changes and restart the VM Guest.

See the Hypervisor features section of the libvirt Domain XML format manual at https://libvirt.org/

formatdomain.html#elementsFeatures for more information.

15.4. Configuring CPU

Many aspects of the virtual CPUs presented to VM Guests are configurable with virsh. The

number of current and maximum CPUs allocated to a VM Guest can be changed, as well as the

model of the CPU and its feature set. The following subsections describe how to change the

common CPU settings of a VM Guest.

15.4.1. Configuring the number of CPUs

The number of allocated CPUs is stored in the VM Guest's XML configuration file in /etc/

libvirt/qemu/ in the vcpu element:

<vcpu placement='static'>1</vcpu>

In this example, the VM Guest has only one allocated CPU. The following procedure shows how to

change the number of allocated CPUs for the VM Guest:

Check whether your VM Guest is inactive:

>sudovirsh list --inactive
Id Name State
--
- sles15 shut off

Edit the configuration for an existing VM Guest:

>sudovirsh edit sles15

Change the number of allocated CPUs:

<vcpu placement='static'>2</vcpu>

Restart the VM Guest:

>sudovirsh start sles15

Check if the number of CPUs in the VM has changed.

1.

2.

3.

4.

5.

131

https://libvirt.org/formatdomain.html#elementsFeatures
https://libvirt.org/formatdomain.html#elementsFeatures

>sudovirsh vcpuinfo sled15
VCPU: 0
CPU: N/A
State: N/A
CPU time N/A
CPU Affinity: yy

VCPU: 1
CPU: N/A
State: N/A
CPU time N/A
CPU Affinity: yy

You can also change the number of CPUs while the VM Guest is running. CPUs can be

hotplugged until the maximum number configured at VM Guest start is reached. Likewise, they can

be hot-unplugged until the lower limit of 1 is reached. The following example shows changing the

active CPU count from 2 to a predefined maximum of 4.

Check the current live vcpu count:

>sudovirsh vcpucount sles15 | grep live
maximum live 4
current live 2

Change the current, or active, number of CPUs to 4:

>sudovirsh setvcpus sles15 --count 4 --live

Check that the current live vcpu count is now 4:

>sudovirsh vcpucount sles15 | grep live
maximum live 4
current live 4

15.4.2. Configuring the CPU model

The CPU model exposed to a VM Guest can often influence the workload running within it. The

default CPU model is derived from a CPU mode known as host-model.

<cpu mode='host-model'/>

When starting a VM Guest with the CPU mode host-model, libvirt copies its model of the

host CPU into the VM Guest definition. The host CPU model and features copied to the VM Guest

definition can be observed in the output of the virsh capabilities.

Another interesting CPU mode is host-passthrough.

<cpu mode='host-passthrough'/>

When starting a VM Guest with the CPU mode host-passthrough, it is presented with a CPU

that is exactly the same as the VM Host Server CPU. This can be useful when the VM Guest

workload requires CPU features not available in libvirt's simplified host-model CPU. The

host-passthrough CPU mode comes with the disadvantage of reduced migration flexibility. A

1.

2.

3.

Chapter 15. Configuring virtual machines with virsh

132

VM Guest with host-passthrough CPU mode can only be migrated to a VM Host Server with

identical hardware.

When using the host-passthrough CPU mode, it is still possible to disable undesirable

features. The following configuration presents the VM Guest with a CPU that is exactly the same

as the host CPU but with the vmx feature disabled.

<cpu mode='host-passthrough'>
 <feature policy='disable' name='vmx'/>
 </cpu>

The custom CPU mode is another common mode used to define a normalized CPU that can be

migrated throughout dissimilar hosts in a cluster. For example, in a cluster with hosts containing

Nehalem, IvyBridge and SandyBridge CPUs, the VM Guest can be configured with a custom CPU

mode that contains a Nehalem CPU model.

<cpu mode='custom' match='exact'>
 <model fallback='allow'>Nehalem</model>
 <feature policy='require' name='vme'/>
 <feature policy='require' name='ds'/>
 <feature policy='require' name='acpi'/>
 <feature policy='require' name='ss'/>
 <feature policy='require' name='ht'/>
 <feature policy='require' name='tm'/>
 <feature policy='require' name='pbe'/>
 <feature policy='require' name='dtes64'/>
 <feature policy='require' name='monitor'/>
 <feature policy='require' name='ds_cpl'/>
 <feature policy='require' name='vmx'/>
 <feature policy='require' name='est'/>
 <feature policy='require' name='tm2'/>
 <feature policy='require' name='xtpr'/>
 <feature policy='require' name='pdcm'/>
 <feature policy='require' name='dca'/>
 <feature policy='require' name='rdtscp'/>
 <feature policy='require' name='invtsc'/>
 </cpu>

For more information on libvirt's CPU model and topology options, see the CPU model and

topology documentation at https://libvirt.org/formatdomain.html#cpu-model-and-topology.

15.5. Changing boot options

The boot menu of the VM Guest can be found in the os element and looks similar to this example:

<os>
 <type>hvm</type>
 <loader>readonly='yes' secure='no' type='rom'/>/usr/lib/xen/boot/hvmloader</
loader>
 <nvram template='/usr/share/OVMF/OVMF_VARS.fd'/>/var/lib/libvirt/nvram/
guest_VARS.fd</nvram>
 <boot dev='hd'/>
 <boot dev='cdrom'/>
 <bootmenu enable='yes' timeout='3000'/>
 <smbios mode='sysinfo'/>
 <bios useserial='yes' rebootTimeout='0'/>
 </os>

133

https://libvirt.org/formatdomain.html#cpu-model-and-topology

In this example, two devices are available, hd and cdrom . The configuration also reflects the

actual boot order, so the hd comes before the cdrom .

15.5.1. Changing boot order

The VM Guest's boot order is represented through the order of devices in the XML configuration

file. As the devices are interchangeable, it is possible to change the boot order of the VM Guest.

Open the VM Guest's XML configuration.

>sudovirsh edit sles15

Change the sequence of the bootable devices.

...
<boot dev='cdrom'/>
<boot dev='hd'/>
...

Check if the boot order was changed successfully by looking at the boot menu in the BIOS of

the VM Guest.

15.5.2. Using direct kernel boot

Direct Kernel Boot allows you to boot from a kernel and initrd stored on the host. Set the path to

both files in the kernel and initrd elements:

<os>
 ...
 <kernel>/root/f8-i386-vmlinuz</kernel>
 <initrd>/root/f8-i386-initrd</initrd>
 ...
<os>

To enable Direct Kernel Boot:

Open the VM Guest's XML configuration:

>sudovirsh edit sles15

Inside the os element, add a kernel element and the path to the kernel file on the host:

...
<kernel>/root/f8-i386-vmlinuz</kernel>
...

Add an initrd element and the path to the initrd file on the host:

...
<initrd>/root/f8-i386-initrd</initrd>
...

Start your VM to boot from the new kernel:

>sudovirsh start sles15

1.

2.

3.

1.

2.

3.

4.

Chapter 15. Configuring virtual machines with virsh

134

15.6. Configuring memory allocation

The amount of memory allocated for the VM Guest can also be configured with virsh. It is stored

in the memory element and defines the maximum allocation of memory for the VM Guest at boot

time. The optional currentMemory element defines the actual memory allocated to the VM

Guest. currentMemory can be less than memory, allowing for increasing (or ballooning) the

memory while the VM Guest is running. If currentMemory is omitted, it defaults to the same

value as the memory element.

You can adjust memory settings by editing the VM Guest configuration, but be aware that changes

do not take place until the next boot. The following steps demonstrate changing a VM Guest to

boot with 4G of memory, but allow later expansion to 8G:

Open the VM Guest's XML configuration:

>sudovirsh edit sles15

Search for the memory element and set to 8G:

...
<memory unit='KiB'>8388608</memory>
...

If the currentMemory element does not exist, add it below the memory element, or change

its value to 4G:

[...]
<memory unit='KiB'>8388608</memory>
<currentMemory unit='KiB'>4194304</currentMemory>
[...]

Changing the memory allocation while the VM Guest is running can be done with the setmem

subcommand. The following example shows increasing the memory allocation to 8G:

Check VM Guest existing memory settings:

>sudovirsh dominfo sles15 | grep memory
Max memory: 8388608 KiB
Used memory: 4194608 KiB

Change the used memory to 8G:

>sudovirsh setmem sles15 8388608

Check the updated memory settings:

>sudovirsh dominfo sles15 | grep memory
Max memory: 8388608 KiB
Used memory: 8388608 KiB

1.

2.

3.

1.

2.

3.

135

Large memory VM Guests

VM Guests with memory requirements of 4 TB or more must either use the host-

passthrough CPU mode, or explicitly specify the virtual CPU address size when

using host-model or custom CPU modes. The default virtual CPU address size

may not be sufficient for memory configurations of 4 TB or more. The following

example shows how to use the VM Host Server's physical CPU address size when

using the host-model CPU mode.

[...]
<cpu mode='host-model' check='partial'>
<maxphysaddr mode='passthrough'>
</cpu>
[...]

For more information on specifying virtual CPU address size, see the maxphysaddr

option in the CPU model and topology documentation at https://libvirt.org/

formatdomain.html#cpu-model-and-topology.

15.7. Adding a PCI device

To assign a PCI device to VM Guest with virsh, follow these steps:

Identify the host PCI device to assign to the VM Guest. In the following example, we are

assigning a DEC network card to the guest:

>sudolspci -nn
[...]
03:07.0 Ethernet controller [0200]: Digital Equipment Corporation DECchip \
21140 [FasterNet] [1011:0009] (rev 22)
[...]

Write down the device ID, 03:07.0 in this example.

Gather detailed information about the device using virsh nodedev-dumpxml ID. To get

the ID, replace the colon and the period in the device ID (03:07.0) with underscores. Prefix

the result with “pci_0000_”: pci_0000_03_07_0.

>sudovirsh nodedev-dumpxml pci_0000_03_07_0
<device>
 <name>pci_0000_03_07_0</name>
 <path>/sys/devices/pci0000:00/0000:00:14.4/0000:03:07.0</path>
 <parent>pci_0000_00_14_4</parent>
 <driver>
 <name>tulip</name>
 </driver>
 <capability type='pci'>

<domain>0</domain> <bus>3</bus> <slot>7</slot> <function>0</function>
 <product id='0x0009'>DECchip 21140 [FasterNet]</product>
 <vendor id='0x1011'>Digital Equipment Corporation</vendor>
 <numa node='0'/>
 </capability>
</device>

1.

2.

Chapter 15. Configuring virtual machines with virsh

136

https://libvirt.org/formatdomain.html#cpu-model-and-topology
https://libvirt.org/formatdomain.html#cpu-model-and-topology

Write down the values for domain, bus and function (see the previous XML code printed in

bold).

Detach the device from the host system before attaching it to the VM Guest:

>sudovirsh nodedev-detach pci_0000_03_07_0
 Device pci_0000_03_07_0 detached

Multi-function PCI devices

When using a multi-function PCI device that does not support FLR (function

level reset) or PM (power management) reset, you need to detach all its

functions from the VM Host Server. The whole device must be reset for security

reasons. libvirt refuses to assign the device if one of its functions is still in

use by the VM Host Server or another VM Guest.

Convert the domain, bus, slot, and function value from decimal to hexadecimal. In our

example, domain = 0, bus = 3, slot = 7, and function = 0. Ensure that the values are inserted

in the right order:

>printf "<address domain='0x%x' bus='0x%x' slot='0x%x' function='0x%x'/>\n"
0 3 7 0

This results in:

<address domain='0x0' bus='0x3' slot='0x7' function='0x0'/>

Run virsh edit on your domain, and add the following device entry in the <devices>

section using the result from the previous step:

<hostdev mode='subsystem' type='pci' managed='yes'>
 <source>
 <address domain='0x0' bus='0x03' slot='0x07' function='0x0'/>
 </source>
</hostdev>

managed compared to unmanaged

libvirt recognizes two modes for handling PCI devices: they can be

managed or unmanaged. In the managed case, libvirt handles all details

of unbinding the device from the existing driver if needed, resetting the device,

binding it to vfio-pci before starting the domain, etc. When the domain is

terminated or the device is removed from the domain, libvirt unbinds from

vfio-pci and rebinds to the original driver when using a managed device. If

the device is unmanaged, the user must ensure that all these management

aspects of the device are done before assigning it to a domain, and after the

device is no longer used by the domain.

3.

4.

5.

137

In the example above, the managed='yes' option means that the device is managed. To

switch the device mode to unmanaged, set managed='no' in the listing above. If you do so,

you need to take care of the related driver with the virsh nodedev-detach and virsh

nodedev-reattach commands. Before starting the VM Guest, you need to detach the

device from the host by running virsh nodedev-detach pci_0000_03_07_0. In case

the VM Guest is not running, you can make the device available for the host by running

virsh nodedev-reattach pci_0000_03_07_0.

Shut down the VM Guest and disable SELinux if it is running on the host.

>sudosetsebool -P virt_use_sysfs 1

Start your VM Guest to make the assigned PCI device available:

>sudovirsh start sles15

SLES11 SP4 KVM guests

On a newer QEMU machine type (pc-i440fx-2.0 or higher) with SLES 11 SP4 KVM

guests, the acpiphp module is not loaded by default in the guest. This module must

be loaded to enable hotplugging of disk and network devices. To load the module

manually, use the command modprobe acpiphp. It is also possible to autoload the

module by adding install acpiphp /bin/true to the /etc/

modprobe.conf.local file.

KVM guests using QEMU Q35 machine type

KVM guests using the QEMU Q35 machine type have a PCI topology that includes a

pcie-root controller and seven pcie-root-port controllers. The pcie-root

controller does not support hotplugging. Each pcie-root-port controller supports

hotplugging a single PCIe device. PCI controllers cannot be hotplugged, so plan

accordingly and add more pcie-root-ports to hotplug more than seven PCIe

devices. A pcie-to-pci-bridge controller can be added to support hotplugging

legacy PCI devices. See https://libvirt.org/pci-hotplug.html for more information about

PCI topology between QEMU machine types.

15.7.1. PCI Pass-Through for IBM Z

To support IBM Z, QEMU extended PCI representation by allowing the user to configure extra

attributes. Two more attributes—uid and fid—were added to the <zpci/>libvirt

specification. uid represents user-defined identifier, while fid represents PCI function identifier.

These attributes are optional and if you do not specify them, they are automatically generated with

non-conflicting values.

6.

7.

Chapter 15. Configuring virtual machines with virsh

138

https://libvirt.org/pci-hotplug.html

To include zPCI attribute in your domain specification, use the following example definition:

<controller type='pci' index='0' model='pci-root'/>
<controller type='pci' index='1' model='pci-bridge'>
 <model name='pci-bridge'/>
 <target chassisNr='1'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x0'>
 <zpci uid='0x0001' fid='0x00000000'/>
 </address>
</controller>
<interface type='bridge'>
 <source bridge='virbr0'/>
 <model type='virtio'/>
 <address type='pci' domain='0x0000' bus='0x01' slot='0x01' function='0x0'>
 <zpci uid='0x0007' fid='0x00000003'/>
 </address>
</interface>

15.8. Adding a USB device

To assign a USB device to VM Guest using virsh, follow these steps:

Identify the host USB device to assign to the VM Guest:

>sudolsusb
[...]
Bus 001 Device 003: ID 0557:2221 ATEN International Co., Ltd Winbond Hermon
[...]

Write down the vendor and product IDs. In our example, the vendor ID is 0557 and the

product ID is 2221.

Run virsh edit on your domain, and add the following device entry in the <devices>

section using the values from the previous step:

<hostdev mode='subsystem' type='usb'>
 <source startupPolicy='optional'>

<vendor id='0557'/> <product id='2221'/>
 </source>
</hostdev>

Vendor/product or device's address

Instead of defining the host device with vendor and product IDs, you can

use the address element as described for host PCI devices in the section

called “Adding a PCI device”.

Shut down the VM Guest and disable SELinux if it is running on the host:

>sudosetsebool -P virt_use_sysfs 1

Start your VM Guest to make the assigned PCI device available:

>sudovirsh start sles15

1.

2.

3.

4.

139

15.9. Adding SR-IOV devices

Single Root I/O Virtualization (SR-IOV) capable PCIe devices can replicate their resources, so they

appear as multiple devices. Each of these “pseudo-devices” can be assigned to a VM Guest.

SR-IOV is an industry specification that was created by the Peripheral Component Interconnect

Special Interest Group (PCI-SIG) consortium. It introduces physical functions (PF) and virtual

functions (VF). PFs are full PCIe functions used to manage and configure the device. PFs also can

move data. VFs lack the configuration and management part—they only can move data and a

reduced set of configuration functions. As VFs do not have all PCIe functions, the host operating

system or the Hypervisor must support SR-IOV to access and initialize VFs. The theoretical

maximum for VFs is 256 per device (consequently the maximum for a dual-port Ethernet card

would be 512). In practice, this maximum is much lower, since each VF consumes resources.

15.9.1. Requirements

The following requirements must be met to use SR-IOV:

An SR-IOV-capable network card (as of SUSE Linux Enterprise Server15, only network

cards support SR-IOV)

An AMD64/Intel 64 host supporting hardware virtualization (AMD-V or Intel VT-x), see the

section called “KVM hardware requirements” for more information

A chipset that supports device assignment (AMD-Vi or Intel VT-d)

libvirt 0.9.10 or better

SR-IOV drivers must be loaded and configured on the host system

A host configuration that meets the requirements listed at Requirements for VFIO and SR-

IOV

A list of the PCI addresses of the VFs assigned to VM Guests

Checking if a device is SR-IOV-capable

The information whether a device is SR-IOV-capable can be obtained from its PCI

descriptor by running lspci. A device that supports SR-IOV reports a capability

similar to the following:

Capabilities: [160 v1] Single Root I/O Virtualization (SR-IOV)

•

•

•

•

•

•

•

Chapter 15. Configuring virtual machines with virsh

140

Adding an SR-IOV device at VM Guest creation

Before adding an SR-IOV device to a VM Guest when initially setting it up, the VM

Host Server already needs to be configured as described in the section called

“Loading and configuring the SR-IOV host drivers”.

15.9.2. Loading and configuring the SR-IOV host drivers

To access and initialize VFs, an SR-IOV-capable driver needs to be loaded on the host system.

Before loading the driver, make sure the card is properly detected by running lspci. The

following example shows the lspci output for the dual-port Intel 82576NS network card:

>sudo/sbin/lspci | grep 82576
01:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)
04:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)
04:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)

In case the card is not detected, the hardware virtualization support in the BIOS/EFI may not

have been enabled. To check if hardware virtualization support is enabled, look at the

settings in the host's BIOS.

Check whether the SR-IOV driver is already loaded by running lsmod. In the following

example, a check for the igb driver (for the Intel 82576NS network card) returns a result.

That means the driver is already loaded. If the command returns nothing, the driver is not

loaded.

>sudo/sbin/lsmod | egrep "^igb "
igb 185649 0

Skip the following step if the driver is already loaded. If the SR-IOV driver is not yet loaded,

the non-SR-IOV driver needs to be removed first, before loading the new driver. Use rmmod

to unload a driver. The following example unloads the non-SR-IOV driver for the Intel

82576NS network card:

>sudo/sbin/rmmod igbvf

Load the SR-IOV driver subsequently using the modprobe command—the VF parameter

(max_vfs) is mandatory:

>sudo/sbin/modprobe igb max_vfs=8

As an alternative, you can also load the driver via SYSFS:

Find the PCI ID of the physical NIC by listing Ethernet devices:

1.

2.

3.

4.

1.

141

>sudolspci | grep Eth
06:00.0 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk)
(rev 10)
06:00.1 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk)
(rev 10)

To enable VFs, echo the number of desired VFs to load to the sriov_numvfs parameter:

>sudoecho 1 > /sys/bus/pci/devices/0000:06:00.1/sriov_numvfs

Verify that the VF NIC was loaded:

>sudolspci | grep Eth
06:00.0 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk)
(rev 10)
06:00.1 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk)
(rev 10)
06:08.0 Ethernet controller: Emulex Corporation OneConnect NIC (Skyhawk)
(rev 10)

Obtain the maximum number of VFs available:

>sudolspci -vvv -s 06:00.1 | grep 'Initial VFs'
 Initial VFs: 32, Total VFs: 32, Number of VFs: 0,
Function Dependency Link: 01

Create a /etc/systemd/system/before.service file which loads VF via SYSFS on

boot:

[Unit]
Before=
[Service]
Type=oneshot
RemainAfterExit=true
ExecStart=/bin/bash -c "echo 1 > /sys/bus/pci/devices/0000:06:00.1/
sriov_numvfs"
beware, executable is run directly, not through a shell, check the man
pages
systemd.service and systemd.unit for full syntax
[Install]
target in which to start the service
WantedBy=multi-user.target
#WantedBy=graphical.target

Before starting the VM, it is required to create another service file (after-

local.service) pointing to the /etc/init.d/after.local script that detaches the

NIC. Otherwise the VM would fail to start:

[Unit]
Description=/etc/init.d/after.local Compatibility
After=libvirtd.service
Requires=libvirtd.service
[Service]
Type=oneshot
ExecStart=/etc/init.d/after.local
RemainAfterExit=true

[Install]
WantedBy=multi-user.target

Copy it to /etc/systemd/system.

2.

3.

4.

5.

6.

7.

Chapter 15. Configuring virtual machines with virsh

142

#! /bin/sh
...
virsh nodedev-detach pci_0000_06_08_0

Save it as /etc/init.d/after.local.

Reboot the machine and check if the SR-IOV driver is loaded by re-running the lspci

command from the first step of this procedure. If the SR-IOV driver was loaded successfully

you should see additional lines for the VFs:

01:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)
01:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)
01:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
01:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
01:10.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
[...]
04:00.0 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)
04:00.1 Ethernet controller: Intel Corporation 82576NS Gigabit Network
Connection (rev 01)
04:10.0 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
04:10.1 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
04:10.2 Ethernet controller: Intel Corporation 82576 Virtual Function (rev
01)
[...]

15.9.3. Adding a VF network device to a VM Guest

When the SR-IOV hardware is properly set up on the VM Host Server, you can add VFs to VM

Guests. To do so, you need to collect specific data first.

Procedure 15.2. Adding a VF network device to an existing VM Guest

The following procedure uses example data. Replace it with appropriate data from your setup.

Use the virsh nodedev-list command to get the PCI address of the VF you want to

assign and its corresponding PF. Numerical values from the lspci output shown in the

section called “Loading and configuring the SR-IOV host drivers”, for example, 01:00.0 or

04:00.1, are transformed by adding the prefix pci_0000_ and by replacing colons and

dots with underscores. So a PCI ID listed as 04:00.0 by lspci is listed as

pci_0000_04_00_0 by virsh. The following example lists the PCI IDs for the second port of

the Intel 82576NS network card:

8.

1.

143

❶

>sudovirsh nodedev-list | grep 0000_04_pci_0000_04_00_0pci_0000_04_00_1
pci_0000_04_10_0
pci_0000_04_10_1
pci_0000_04_10_2
pci_0000_04_10_3
pci_0000_04_10_4
pci_0000_04_10_5
pci_0000_04_10_6
pci_0000_04_10_7
pci_0000_04_11_0
pci_0000_04_11_1
pci_0000_04_11_2
pci_0000_04_11_3
pci_0000_04_11_4
pci_0000_04_11_5

The first two entries represent the PFs, whereas the other entries represent the VFs.

Run the following virsh nodedev-dumpxml command on the PCI ID of the VF you want

to add:

>sudovirsh nodedev-dumpxml pci_0000_04_10_0
<device>
 <name>pci_0000_04_10_0</name>
 <parent>pci_0000_00_02_0</parent>
 <capability type='pci'>

<domain>0</domain> <bus>4</bus> <slot>16</slot> <function>0</function>
 <product id='0x10ca'>82576 Virtual Function</product>
 <vendor id='0x8086'>Intel Corporation</vendor>
 <capability type='phys_function'>
 <address domain='0x0000' bus='0x04' slot='0x00' function='0x0'/>
 </capability>
 </capability>
</device>

The following data is needed for the next step:

<domain>0</domain>

<bus>4</bus>

<slot>16</slot>

<function>0</function>

Create a temporary XML file, for example, /tmp/vf-interface.xml, containing the data

necessary to add a VF network device to an existing VM Guest. The minimal content of the

file needs to look like the following:

<interface type='hostdev'>❶
 <source>
 <address type='pci' domain='0' bus='11' slot='16' function='0'2/>❷
 </source>
</interface>

VFs do not get a fixed MAC address; it changes every time the host reboots. When

adding network devices the “traditional” way with hostdev, it would require to reconfigure

the VM Guest's network device after each reboot of the host, because of the MAC

address change. To avoid this kind of problem, libvirt introduced the hostdev value,

which sets up network-specific data before assigning the device.

2.

◦

◦

◦

◦

3.

Chapter 15. Configuring virtual machines with virsh

144

❷ Specify the data you acquired in the previous step here.

In case a device is already attached to the host, it cannot be attached to a VM Guest. To

make it available for guests, detach it from the host first:

>sudovirsh nodedev-detach pci_0000_04_10_0

Add the VF interface to an existing VM Guest:

>sudovirsh attach-device GUEST /tmp/vf-interface.xml --OPTION

GUEST needs to be replaced by the domain name, ID or UUID of the VM Guest. --OPTION

can be one of the following:

--persistent

This option always adds the device to the domain's persistent XML. If the domain is

running, the device is hotplugged.

--config

This option affects the persistent XML only, even if the domain is running. The device

appears in the VM Guest on next boot.

--live

This option affects a running domain only. If the domain is inactive, the operation fails.

The device is not persisted in the XML and becomes available in the VM Guest on

next boot.

--current

This option affects the current state of the domain. If the domain is inactive, the device

is added to the persistent XML and becomes available on next boot. If the domain is

active, the device is hotplugged but not added to the persistent XML.

To detach a VF interface, use the virsh detach-device command, which also takes the

options listed above.

15.9.4. Dynamic allocation of VFs from a pool

If you define the PCI address of a VF into a VM Guest's configuration statically as described in the

section called “Adding a VF network device to a VM Guest”, it is hard to migrate such guest to

another host. The host must have identical hardware in the same location on the PCI bus, or the

VM Guest configuration must be modified before each start.

Another approach is to create a libvirt network with a device pool that contains all the VFs of

an SR-IOV device. The VM Guest then references this network, and each time it is started, a single

VF is dynamically allocated to it. When the VM Guest is stopped, the VF is returned to the pool,

available for another guest.

4.

5.

6.

145

15.9.4.1. Defining network with pool of VFs on VM Host Server

The following example of network definition creates a pool of all VFs for the SR-IOV device with its

physical function (PF) at the network interface eth0 on the host:

<network>
 <name>passthrough</name>
 <forward mode='hostdev' managed='yes'>
 <pf dev='eth0'/>
 </forward>
 </network>

To use this network on the host, save the above code to a file, for example /tmp/

passthrough.xml, and execute the following commands. Remember to replace eth0 with the

real network interface name of your SR-IOV device's PF:

>sudovirsh net-define /tmp/passthrough.xml>sudovirsh net-autostart passthrough>s
udovirsh net-start passthrough

15.9.4.2. Configuring VM Guests to use VF from the pool

The following example of VM Guest device interface definition uses a VF of the SR-IOV device

from the pool created in the section called “Defining network with pool of VFs on VM Host Server”.

libvirt automatically derives the list of all VFs associated with that PF the first time the guest is

started.

<interface type='network'>
 <source network='passthrough'>
</interface>

After the first VM Guest starts that uses the network with the pool of VFs, verify the list of

associated VFs. Do so by running virsh net-dumpxml passthrough on the host.

<network connections='1'>
 <name>passthrough</name>
 <uuid>a6a26429-d483-d4ed-3465-4436ac786437</uuid>
 <forward mode='hostdev' managed='yes'>
 <pf dev='eth0'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x1'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x3'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x5'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x10' function='0x7'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x1'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x3'/>
 <address type='pci' domain='0x0000' bus='0x02' slot='0x11' function='0x5'/>
 </forward>
 </network>

15.10. Listing attached devices

Although there is no mechanism in virsh to list all VM Host Server's devices that have already

been attached to its VM Guests, you can list all devices attached to a specific VM Guest by running

the following command:

virsh dumpxml VMGUEST_NAME | xpath -e /domain/devices/hostdev

Chapter 15. Configuring virtual machines with virsh

146

For example:

>sudo virsh dumpxml sles12 | -e xpath /domain/devices/hostdev
Found 2 nodes:
-- NODE --
<hostdev mode="subsystem" type="pci" managed="yes">
 <driver name="xen" />
 <source>
 <address domain="0x0000" bus="0x0a" slot="0x10" function="0x1" />
 </source>
 <address type="pci" domain="0x0000" bus="0x00" slot="0x0a" function="0x0" />
 </hostdev>
-- NODE --
<hostdev mode="subsystem" type="pci" managed="yes">
 <driver name="xen" />
 <source>
 <address domain="0x0000" bus="0x0a" slot="0x10" function="0x2" />
 </source>
 <address type="pci" domain="0x0000" bus="0x00" slot="0x0b" function="0x0" />
</hostdev>

Listing SR-IOV devices attached via <interface type='hostdev'>

For SR-IOV devices that are attached to the VM Host Server via <interface

type='hostdev'>, you need to use a different XPath query:

virsh dumpxml VMGUEST_NAME | xpath -e /domain/devices/interface/@type

15.11. Configuring storage devices

Storage devices are defined within the disk element. The usual disk element supports several

attributes. The following two attributes are the most important:

The type attribute describes the source of the virtual disk device. Valid values are file ,

block , dir , network , or volume .

The device attribute shows how the disk is exposed to the VM Guest OS. As an example,

possible values can include floppy , disk , cdrom , and others.

The following child elements are the most important:

driver contains the driver and the bus. These are used by the VM Guest to work with the

new disk device.

The target element contains the device name under which the new disk is shown in the

VM Guest. It also contains the optional bus attribute, which defines the type of bus on which

the new disk should operate.

The following procedure shows how to add storage devices to the VM Guest:

Edit the configuration for an existing VM Guest:

>sudovirsh edit sles15

•

•

•

•

1.

147

Add a disk element inside the devices element together with the attributes type and

device:

<disk type='file' device='disk'>

Specify a driver element and use the default values:

<driver name='qemu' type='qcow2'/>

Create a disk image as a source for the new virtual disk device:

>sudoqemu-img create -f qcow2 /var/lib/libvirt/images/sles15.qcow2 32G

Add the path for the disk source:

<source file='/var/lib/libvirt/images/sles15.qcow2'/>

Define the target device name in the VM Guest and the bus on which the disk should work:

<target dev='vda' bus='virtio'/>

Restart your VM:

>sudovirsh start sles15

Your new storage device should be available in the VM Guest OS.

15.12. Configuring controller devices

libvirt manages controllers automatically based on the type of virtual devices used by the VM

Guest. If the VM Guest contains PCI and SCSI devices, PCI and SCSI controllers are created and

managed automatically. libvirt also models controllers that are hypervisor-specific, for example,

a virtio-serial controller for KVM VM Guests or a xenbus controller for Xen VM Guests.

Although the default controllers and their configuration are generally fine, there may be use cases

where controllers or their attributes need to be adjusted manually. For example, a virtio-serial

controller may need more ports, or a xenbus controller may need more memory or more virtual

interrupts.

The xenbus controller is unique in that it serves as the controller for all Xen paravirtual devices. If a

VM Guest has many disk and/or network devices, the controller may need more memory. Xen's

max_grant_frames attribute sets how many grant frames, or blocks of shared memory, are

allocated to the xenbus controller for each VM Guest.

The default of 32 is enough in most circumstances, but a VM Guest with multiple I/O devices and

an I/O-intensive workload may experience performance issues because of grant frame exhaustion.

The xen-diag can check the current and maximum max_grant_frames values for dom0 and

your VM Guests. The VM Guests must be running:

2.

3.

4.

5.

6.

7.

Chapter 15. Configuring virtual machines with virsh

148

>sudo virsh list
 Id Name State

 0 Domain-0 running
 3 sle15sp1 running

>sudo xen-diag gnttab_query_size 0
domid=0: nr_frames=1, max_nr_frames=256

>sudo xen-diag gnttab_query_size 3
domid=3: nr_frames=3, max_nr_frames=32

The sle15sp1 guest is using only three frames out of 32. If you are seeing performance issues,

and log entries that point to insufficient frames, increase the value with virsh. Look for the

<controller type='xenbus'> line in the guest's configuration file and add the

maxGrantFrames control element:

>sudo virsh edit sle15sp1
 <controller type='xenbus' index='0' maxGrantFrames='40'/>

Save your changes and restart the guest. Now it should show your change:

>sudo xen-diag gnttab_query_size 3
domid=3: nr_frames=3, max_nr_frames=40

Similar to maxGrantFrames, the xenbus controller also supports maxEventChannels. Event

channels are like paravirtual interrupts, and in conjunction with grant frames, form a data transfer

mechanism for paravirtual drivers. They are also used for inter-processor interrupts. VM Guests

with a large number of vCPUs and/or many paravirtual devices may need to increase the

maximum default value of 1023. maxEventChannels can be changed similarly to

maxGrantFrames:

>sudo virsh edit sle15sp1
 <controller type='xenbus' index='0' maxGrantFrames='128'
maxEventChannels='2047'/>

See the Controllers section of the libvirt Domain XML format manual at https://libvirt.org/

formatdomain.html#elementsControllers for more information.

15.13. Configuring video devices

When using the Virtual Machine Manager, only the Video device model can be defined. The

amount of allocated VRAM or 2D/3D acceleration can only be changed in the XML configuration.

15.13.1. Changing the amount of allocated VRAM

Edit the configuration for an existing VM Guest:

>sudovirsh edit sles15

Change the size of the allocated VRAM:

1.

2.

149

https://libvirt.org/formatdomain.html#elementsControllers
https://libvirt.org/formatdomain.html#elementsControllers

<video>
<model type='vga' vram='65535' heads='1'>
...
</model>
</video>

Check if the amount of VRAM in the VM has changed by looking at the amount in the Virtual

Machine Manager.

15.13.2. Changing the state of 2D/3D acceleration

Edit the configuration for an existing VM Guest:

>sudovirsh edit sles15

To enable/disable 2D/3D acceleration, change the value of accel3d and accel2d

accordingly:

<video>
 <model>
 <acceleration accel3d='yes' accel2d='no'>
 </model>
</video>

Enabling 2D/3D acceleration

Only virtio and vbox video devices are capable of 2D/3D acceleration. You

cannot enable it on other video devices.

15.14. Configuring network devices

This section describes how to configure specific aspects of virtual network devices by using

virsh.

Find more details about libvirt network interface specification in https://libvirt.org/

formatdomain.html#elementsDriverBackendOptions.

15.14.1. Scaling network performance with multiqueue virtio-net

The multiqueue virtio-net feature scales the network performance by allowing the VM Guest's

virtual CPUs to transfer packets in parallel. Refer to the section called “Scaling network

performance with multiqueue virtio-net” for more general information.

To enable multiqueue virtio-net for a specific VM Guest, edit its XML configuration as described in

the section called “Editing the VM configuration” and modify its network interface as follows:

3.

1.

2.

Chapter 15. Configuring virtual machines with virsh

150

https://libvirt.org/formatdomain.html#elementsDriverBackendOptions
https://libvirt.org/formatdomain.html#elementsDriverBackendOptions

<interface type='network'>
 [...]
 <model type='virtio'/>
 <driver name='vhost' queues='NUMBER_OF_QUEUES'/>
</interface>

15.15. Using macvtap to share VM Host Server network interfaces

Macvtap provides direct attachment of a VM Guest virtual interface to a host network interface. The

macvtap-based interface extends the VM Host Server network interface and has its own MAC

address on the same Ethernet segment. Typically, this is used to make both the VM Guest and the

VM Host Server show up directly on the switch that the VM Host Server is connected to.

Macvtap cannot be used with a Linux bridge

Macvtap cannot be used with network interfaces already connected to a Linux bridge.

Before attempting to create the macvtap interface, remove the interface from the

bridge.

VM Guest to VM Host Server communication with macvtap

When using macvtap, a VM Guest can communicate with other VM Guests, and with

other external hosts on the network. But it cannot communicate with the VM Host

Server on which the VM Guest runs. This is the defined behavior of macvtap,

because of the way the VM Host Server's physical Ethernet is attached to the

macvtap bridge. Traffic from the VM Guest into that bridge that is forwarded to the

physical interface cannot be bounced back up to the VM Host Server's IP stack.

Similarly, traffic from the VM Host Server's IP stack that is sent to the physical

interface cannot be bounced back up to the macvtap bridge for forwarding to the VM

Guest.

Virtual network interfaces based on macvtap are supported by libvirt by specifying an interface type

of direct. For example:

<interface type='direct'>
 <mac address='aa:bb:cc:dd:ee:ff'/>
 <source dev='eth0' mode='bridge'/>
 <model type='virtio'/>
 </interface>

The operation mode of the macvtap device can be controlled with the mode attribute. The following

list shows its possible values and a description for each:

vepa: all VM Guest packets are sent to an external bridge. Packets whose destination is a

VM Guest on the same VM Host Server as where the packet originates from are sent back to

•

151

the VM Host Server by the VEPA capable bridge (today's bridges are typically not VEPA

capable).

bridge: packets whose destination is on the same VM Host Server as where they originate

from are directly delivered to the target macvtap device. Both origin and destination devices

need to be in bridge mode for direct delivery. If either of them is in vepa mode, a VEPA

capable bridge is required.

private: all packets are sent to the external bridge and delivered to a target VM Guest on

the same VM Host Server if they are sent through an external router or gateway and that

device sends them back to the VM Host Server. This procedure is followed if either the

source or destination device is in private mode.

passthrough: a special mode that gives more power to the network interface. All packets

are forwarded to the interface, allowing virtio VM Guests to change the MAC address or set

promiscuous mode to bridge the interface or create VLAN interfaces on top of it. A network

interface is not shareable in passthrough mode. Assigning an interface to a VM Guest

disconnects it from the VM Host Server. For this reason SR-IOV virtual functions are often

assigned to the VM Guest in passthrough mode.

15.16. Disabling a memory balloon device

Memory Balloon has become a default option for KVM. The device is added to the VM Guest

explicitly, so you do not need to add this element in the VM Guest's XML configuration. To disable

Memory Balloon in the VM Guest for any reason, set model='none' as shown below:

<devices>
 <memballoon model='none'/>
</device>

15.17. Configuring multiple monitors (dual head)

libvirt supports a dual head configuration to display the video output of the VM Guest on

multiple monitors.

No support for Xen

The Xen hypervisor does not support dual head configuration.

Procedure 15.3. Configuring dual head

While the virtual machine is running, verify that the xf86-video-qxl package is installed

in the VM Guest:

>rpm -q xf86-video-qxl

Shut down the VM Guest and start editing its configuration XML as described in the section

called “Editing the VM configuration”.

•

•

•

1.

2.

Chapter 15. Configuring virtual machines with virsh

152

Verify that the model of the virtual graphics card is “qxl”:

<video>
 <model type='qxl' ... />

Increase the heads parameter in the graphics card model specification from the default 1 to

2, for example:

<video>
 <model type='qxl' ram='65536' vram='65536' vgamem='16384' heads='2'
primary='yes'/>
 <alias name='video0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x0'/
>
</video>

Configure the virtual machine to use the Spice display instead of VNC:

<graphics type='spice' port='5916' autoport='yes' listen='0.0.0.0'>
 <listen type='address' address='0.0.0.0'/>
</graphics>

Start the virtual machine and connect to its display with virt-viewer, for example:

>virt-viewer --connect qemu+ssh://USER@VM_HOST/system

From the list of VMs, select the one whose configuration you have modified and confirm with

Connect.

After the graphical subsystem (Xorg) loads in the VM Guest, select View > Displays >

Display 2 to open a new window with the second monitor's output.

15.18. Crypto adapter pass-through to KVM guests on IBM Z

15.18.1. Introduction

IBM Z machines include cryptographic hardware with useful functions such as random number

generation, digital signature generation, or encryption. KVM allows dedicating these crypto

adapters to guests as pass-through devices. The means that the hypervisor cannot observe

communications between the guest and the device.

15.18.2. What is covered

This section describes how to dedicate a crypto adapter and domains on an IBM Z host to a KVM

guest. The procedure includes the following basic steps:

Mask the crypto adapter and domains from the default driver on the host.

Load the vfio-ap driver.

Assign the crypto adapter and domains to the vfio-ap driver.

Configure the guest to use the crypto adapter.

3.

4.

5.

6.

7.

8.

•

•

•

•

153

15.18.3. Requirements

You need to have the QEMU / libvirt virtualization environment correctly installed and

functional.

The vfio_ap and vfio_mdev modules for the running kernel need to be available on the

host operating system.

15.18.4. Dedicate a crypto adapter to a KVM host

Verify that the vfio_ap and vfio_mdev kernel modules are loaded on the host:

>lsmod | grep vfio_

If any of them is not listed, load it manually, for example:

>sudo modprobe vfio_mdev

Create a new MDEV device on the host and verify that it was added:

uuid=$(uuidgen)
$ echo ${uuid} | sudo tee /sys/devices/vfio_ap/matrix/mdev_supported_types/
vfio_ap-passthrough/create
dmesg | tail
[...]
[272197.818811] iommu: Adding device 24f952b3-03d1-4df2-9967-0d5f7d63d5f2
to group 0
[272197.818815] vfio_mdev 24f952b3-03d1-4df2-9967-0d5f7d63d5f2: MDEV:
group_id = 0

Identify the device on the host's logical partition that you intend to dedicate to a KVM guest:

>ls -l /sys/bus/ap/devices/
[...]
lrwxrwxrwx 1 root root 0 Nov 23 03:29 00.0016 -> ../../../devices/ap/
card00/00.0016/
lrwxrwxrwx 1 root root 0 Nov 23 03:29 card00 -> ../../../devices/ap/card00/

In this example, it is card 0 queue 16. To match the Hardware Management Console (HMC)

configuration, you need to convert from 16 hexadecimal to 22 decimal.

Mask the adapter from the zcrypt use:

>lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUEST_CNT

00 CEX5C CCA-Coproc online 5
00.0016 CEX5C CCA-Coproc online 5

Mask the adapter:

>cat /sys/bus/ap/apmask
0xff
echo -0x0 | sudo tee /sys/bus/ap/apmask
0x7fff

Mask the domain:

•

•

1.

2.

3.

4.

Chapter 15. Configuring virtual machines with virsh

154

>cat /sys/bus/ap/aqmask
0xff
echo -0x0 | sudo tee /sys/bus/ap/aqmask
0xfffffdff

Assign adapter 0 and domain 16 (22 decimal) to vfio-ap:

>sudo echo +0x0 > /sys/devices/vfio_ap/matrix/${uuid}/assign_adapter
>echo +0x16 | sudo tee /sys/devices/vfio_ap/matrix/${uuid}/assign_domain
>echo +0x16 | sudo tee /sys/devices/vfio_ap/matrix/${uuid}/
assign_control_domain

Verify the matrix that you have configured:

>cat /sys/devices/vfio_ap/matrix/${uuid}/matrix
00.0016

Either create a new VM (refer to Chapter 10, Guest installation) and wait until it is initialized,

or use an existing VM. In both cases, make sure the VM is shut down.

Change its configuration to use the MDEV device:

>sudo virsh edit VM_NAME
[...]
<hostdev mode='subsystem' type='mdev' model='vfio-ap'>
 <source>
 <address uuid='24f952b3-03d1-4df2-9967-0d5f7d63d5f2'/>
 </source>
</hostdev>
[...]

Restart the VM:

>sudo virsh reboot VM_NAME

Log in to the guest and verify that the adapter is present:

>lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUEST_CNT

00 CEX5C CCA-Coproc online 1
00.0016 CEX5C CCA-Coproc online 1

15.18.5. Further reading

The installation of virtualization components is detailed in Chapter 6, Installation of

virtualization components.

The vfio_ap architecture is detailed in https://www.kernel.org/doc/Documentation/s390/

vfio-ap.txt.

A general outline together with a detailed procedure is described in https://

bugs.launchpad.net/ubuntu/+source/linux/+bug/1787405.

The architecture of VFIO Mediated devices (MDEVs) is detailed in https://www.kernel.org/

doc/html/latest/driver-api/vfio-mediated-device.html.

5.

6.

7.

8.

9.

10.

•

•

•

•

155

https://www.kernel.org/doc/Documentation/s390/vfio-ap.txt
https://www.kernel.org/doc/Documentation/s390/vfio-ap.txt
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1787405
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1787405
https://www.kernel.org/doc/html/latest/driver-api/vfio-mediated-device.html
https://www.kernel.org/doc/html/latest/driver-api/vfio-mediated-device.html

Chapter 16. Enhancing virtual machine security with AMD SEV-SNP

16.1. Supported hardware

A system with an AMD EPYC (3rd Gen or newer) is required to run AMD SEV-SNP virtual

machines. The BIOS of the AMD machine must provide the necessary options to enable support

for confidential computing on the platform.

16.2. Enabling confidential compute module

The necessary packages for AMD SEV-SNP feature are shipped via a confidential compute

module. You must enable it at system installation time or later via the SUSEConnect command-line

tool.

To check whether the module is already enabled, run the command:

>sudo suseconnect -l

This displays the list of available modules with their activation status and commands to

enable the inactive modules.

The inactive confidential compute module appears as given below:

Confidential Computing Technical Preview Module 15 SP6 x86_64
Activate with: suseconnect -p sle-module-confidential-computing/15.6/x86_64

To enable the confidential computing module technology preview, run the command:

>sudosuseconnect -p sle-module-confidential-computing/15.6/x86_64
Registering system to SUSE Customer Center
Updating system details on https://scc.suse.com ...
Activating sle-module-confidential-computing 15.6 x86_64 ...
Adding service to system ...
Installing release package ...
Successfully registered system

The confidential compute module is enabled and you can install the packages.

16.3. Installing packages and setting up the base system

The confidential compute module provides replacement packages supporting AMD SEV-SNP. To

ensure a maximum of compatibility, these packages are based on the code streams from SUSE

Linux Enterprise Server15 SP7.

The three components that need to be replaced are:

The Linux kernel

QEMU Virtual Machine Monitor

libvirt framework

To install the replacement packages, run the command:

•

•

•

•

•

1.

Chapter 16. Enhancing virtual machine security with AMD SEV-SNP

156

>sudozypper install --from SLE-Module-Confidential-Computing-15-SP6-Pool --
from SLE-Module-Confidential-Computing-15-SP6-Updates qemu-ovmf-x86_64
libvirt kernel-coco

After replacing the packages, you must set up the system with a configuration change to

make the AMD SEV-SNP feature ready to use. The IOMMU on the host side must be

configured in non-passthrough mode. This is required to prevent peripheral devices from

writing to memory that belongs to an encrypted guest and destroying its data integrity. The

default IOMMU configuration in SUSE Linux Enterprise Server15 SP7 is passthrough

mode.

To disable the IOMMU configuration in SUSE Linux Enterprise Server15 SP7, open the /

etc/default/grub file and add iommu=nopt to the GRUB_CMDLINE_LINUX_DEFAULT

variable.

To update the bootloader configuration, run the command:

>sudo ; update-bootloader

The system is now ready to be restarted with the confidential computing kernel. It is not

selected as the default kernel in the bootloader, so ensure to select it in the boot menu.

16.4. Verifying setup

You can verify the installation and configuration of the packages.

To verify whether the system has started with the new kernel, check the response for the

command uname -r.

>sudouname -r6.4.0-150616.coco15sp6-coco

Ensure that the kernel version displayed contains the coco tag.

To check the initialization result of the AMD Secure Processor in the kernel log when the

kernel is running, run the command:

>sudodmesg | grep -i ccp
[10.103166] ccp 0000:42:00.1: enabling device (0000 -> 0002)
[10.114951] ccp 0000:42:00.1: no command queues available
[10.127137] ccp 0000:42:00.1: sev enabled
[10.133152] ccp 0000:42:00.1: psp enabled
[10.240817] ccp 0000:42:00.1: SEV firmware update successful
[11.128307] ccp 0000:42:00.1: SEV API:1.55 build:8
[11.135057] ccp 0000:42:00.1: SEV-SNP API:1.55 build:8

The message about the SEV-SNP API version indicates the successful initialization of the

AMD Secure Processor. Sometimes it happens that these messages do not appear in the

kernel log. In this case the BIOS settings or the IOMMU configuration are often the root-

cause.

2.

3.

4.

1.

2.

157

16.5. Launching an AMD SEV-SNP virtual machine

You can run AMD SEV-SNP protected virtual machines using the libvirt framework once the

confidential computing kernel is booted and the AMD Secure Processor is initialized.

libvirt has several ways of setting up new virtual machines. This document uses a prepared

disk image and the virt-manager graphical user interface.

Connect virt-manager to the AMD EPYC host and create a new virtual machine.

In the Create a new virtual machine window, select the details:

Select how you want to install the operating system.

Select the ISO or CDROM install media.

Select the memory and CPU settings.

Select the required storage details.

In the fifth step, verify the details and select Customize configuration before install.

Figure 16.1. Create Virtual Machine

Click Finish.

Select the XML tab in the virtual machine configuration window.

In the XML tab, you can edit the XML configuration of the virtual machine used by the

libvirt back-end.

1.

2.

◦

◦

◦

◦

3.

4.

5.

Chapter 16. Enhancing virtual machine security with AMD SEV-SNP

158

Figure 16.2. XML view of virtual machine configuration

To protect the virtual machine with AMD SEV-SNP, set the correct firmware by modifying the

os section as given below:

Figure 16.3. Set firmware

The loader line sets the firmware to the SEV version of OVMF.

Add a launchSecurity section. For AMD SEV-SNP, the section looks like this:

Figure 16.4. launchSecurity

Click Apply and then click the Details tab.

Select CPUs in the left-hand list and set the CPU Model to host-model:

6.

7.

8.

9.

159

Figure 16.5. The Details view of virtual machine configuration

Click Apply and click Begin Installation.

This starts the virtual machine and installs it according to your settings. The virtual machine

boots up once the process is complete, and you can verify the AMD SEV-SNP protection.

16.6. Verifying the AMD SEV-SNP virtual machine

From the appearance of the virtual machine, one cannot tell whether it runs in a confidential

computing environment. But there are several ways to verify that from within the virtual machine.

To check the kernel log, run the command:

>sudodmesg | grep -i sev-snp
[1.986186] Memory Encryption Features active: AMD SEV SEV-ES SEV-SNP

The presence of the SEV-SNP feature in the kernel log, among other active memory encryption

features, shows that it is active for the virtual machine.

There are also cryptographically secure ways to prove the security of the AMD SEV-SNP

environment.

10.

Chapter 16. Enhancing virtual machine security with AMD SEV-SNP

160

Chapter 17. Migrating VM Guests

One of the major advantages of virtualization is that VM Guests are portable. When a VM Host

Server needs maintenance, or when the host becomes overloaded, the guests can be moved to

another VM Host Server. KVM and Xen even support “live” migrations during which the VM Guest

is constantly available.

17.1. Types of migration

Depending on the required scenario, there are three ways you can migrate virtual machines (VM).

Live migration

The source VM continues to run while its configuration and memory is transferred to the

target host. When the transfer is complete, the source VM is suspended and the target VM is

resumed.

Live migration is useful for VMs that need to be online without any downtime.

Note

VMs experiencing heavy I/O load or frequent memory page writes are

challenging to live migrate. In such cases, consider using non-live or offline

migration.

Non-live migration

The source VM is suspended and its configuration and memory transferred to the target

host. Then the target VM is resumed.

Non-live migration is more reliable than live migration, although it creates downtime for the

VM. If downtime is tolerable, non-live migration can be an option for VMs that are difficult to

live migrate.

Offline migration

The VM definition is transferred to the target host. The source VM is not stopped and the

target VM is not resumed.

Offline migration can be used to migrate inactive VMs.

Important

The --persistent option must be used together with offline migration.

161

17.2. Migration requirements

To successfully migrate a VM Guest to another VM Host Server, the following requirements need to

be met:

The source and target systems must have the same architecture.

Storage devices must be accessible from both machines, for example, via NFS or iSCSI. For

more information, see Chapter 13, Advanced storage topics.

This is also true for CD-ROM or floppy images that are connected during the move.

However, you can disconnect them before the move as described in the section called

“Ejecting and changing floppy or CD/DVD-ROM media with Virtual Machine Manager”.

libvirtd needs to run on both VM Host Servers and you must be able to open a remote

libvirt connection between the target and the source host (or vice versa). Refer to the

section called “Configuring remote connections” for details.

If a firewall is running on the target host, ports need to be opened to allow the migration. If

you do not specify a port during the migration process, libvirt chooses one from the

range 49152:49215. Make sure that either this range (recommended) or a dedicated port of

your choice is opened in the firewall on the target host.

The source and target machines should be in the same subnet on the network, otherwise

networking fails after the migration.

All VM Host Servers participating in migration must have the same UID for the qemu user

and the same GIDs for the kvm, qemu and libvirt groups.

No running or paused VM Guest with the same name must exist on the target host. If a shut-

down machine with the same name exists, its configuration is overwritten.

All CPU models, except the host cpu model, are supported when migrating VM Guests.

The SATA disk device type is not migratable.

File system pass-through feature is incompatible with migration.

The VM Host Server and VM Guest need to have proper timekeeping installed. See

Chapter 20, VM Guest clock settings.

No physical devices can be passed from host to guest. Live migration is currently not

supported when using devices with PCI pass-through or SR-IOV. If live migration needs to

be supported, use software virtualization (paravirtualization or full virtualization).

The cache mode setting is an important setting for migration. See: the section called “Cache

modes and live migration”.

Backward migration, for example, from SLES 15 SP2 to 15 SP1, is not supported.

SUSE strives to support live migration of VM Guests from a VM Host Server running a

service pack under LTSS to a VM Host Server running a newer service pack within the same

SLES major version. For example, VM Guest migration from a SLES 12 SP2 host to a SLES

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 17. Migrating VM Guests

162

12 SP5 host. SUSE only performs minimal testing of LTSS-to-newer migration scenarios and

recommends thorough on-site testing before attempting to migrate critical VM Guests.

The image directory should be located in the same path on both hosts.

All hosts should be on the same level of microcode (especially the Spectre microcode

updates). This can be achieved by installing the latest updates of SUSE Linux Enterprise

Server on all hosts.

17.3. Live-migrating with Virtual Machine Manager

When using the Virtual Machine Manager to migrate VM Guests, it does not matter on which

machine it is started. You can start Virtual Machine Manager on the source or the target host or

even on a third host. In the latter case, you need to be able to open remote connections to both the

target and the source host.

Start Virtual Machine Manager and establish a connection to the target or the source host. If

the Virtual Machine Manager was started neither on the target nor the source host,

connections to both hosts need to be opened.

Right-click the VM Guest that you want to migrate and choose Migrate. Make sure the guest

is running or paused—it is not possible to migrate guests that are shut down.

Increasing the speed of the migration

To increase the speed of the migration, pause the VM Guest. This is the

equivalent of “non-live migration” described in the section called “Types of

migration”.

Choose a New Host for the VM Guest. If the desired target host does not show up, make

sure that you are connected to the host.

To change the default options for connecting to the remote host, under Connection, set the

Mode, and the target host's Address (IP address or host name) and Port. If you specify a

Port, you must also specify an Address.

Under Advanced options, choose whether the move should be permanent (default) or

temporary, using Temporary move.

Additionally, there is the option Allow unsafe, which allows migrating without disabling the

cache of the VM Host Server. This can speed up the migration but only works when the

current configuration allows for a consistent view of the VM Guest storage without using

cache="none"/0_DIRECT.

•

•

1.

2.

3.

163

Bandwidth option

In recent versions of Virtual Machine Manager, the option of setting a

bandwidth for the migration has been removed. To set a specific bandwidth,

use virsh instead.

To perform the migration, click Migrate.

When the migration is complete, the Migrate window closes and the VM Guest is now listed

on the new host in the Virtual Machine Manager window. The original VM Guest is still

available on the source host in the shut-down state.

17.4. Migrating with virsh

To migrate a VM Guest with virshmigrate, you need to have direct or remote shell access to the

VM Host Server, because the command needs to be run on the host. The migration command

looks like this:

>virsh migrate [OPTIONS] VM_ID_or_NAMECONNECTION_URI [--migrateuri tcp://REMOTE_
HOST:PORT]

The most important options are listed below. See virsh help migrate for a full list.

--live

Does a live migration. If not specified, the guest is paused during the migration (“non-live

migration”).

--suspend

Leaves the VM paused on the target host during live or non-live migration.

--persistent

Persists the migrated VM on the target host. Without this option, the VM is not be included in

the list of domains reported by virsh list --all when shut down.

--undefinesource

When specified, the VM Guest definition on the source host is deleted after a successful

migration. However, virtual disks attached to this guest are not deleted.

--parallel --parallel-connections NUM_OF_CONNECTIONS

Parallel migration can be used to increase migration data throughput in cases where a single

migration thread is not capable of saturating the network link between source and target

hosts. On hosts with 40 GB network interfaces, it may require four migration threads to

4.

Chapter 17. Migrating VM Guests

164

saturate the link. With parallel migration, the time required to migrate large memory VMs can

be reduced.

The following examples use mercury.example.com as the source system and jupiter.example.com

as the target system; the VM Guest's name is opensuse131 with ID 37.

Non-live migration with default parameters

>virsh migrate 37 qemu+ssh://tux@jupiter.example.com/system

Transient live migration with default parameters

>virsh migrate --live opensuse131 qemu+ssh://tux@jupiter.example.com/system

Persistent live migration; delete VM definition on source

>virsh migrate --live --persistent --undefinesource 37 \
qemu+tls://tux@jupiter.example.com/system

Non-live migration using port 49152

>virsh migrate opensuse131 qemu+ssh://tux@jupiter.example.com/system \
--migrateuri tcp://@jupiter.example.com:49152

Live migration transferring all used storage

>virsh migrate --live --persistent --copy-storage-all \
opensuse156 qemu+ssh://tux@jupiter.example.com/system

Important

When migrating VM's storage using the --copy-storage-all option, the

storage must be placed in a libvirt storage pool. The target storage pool

must exist with identical type and name as the source pool.

To obtain the XML representation of the source pool, use the following

command:

>sudo virsh pool-dumpxml EXAMPLE_VM > EXAMPLE_POOL.xml

To create and start the storage pool on the target host, copy its XML

representation there and use the following commands:

>sudo virsh pool-define EXAMPLE_POOL.xml>sudo virsh pool-start E
XAMPLE_VM

165

Transient compared to persistent migrations

By default, virsh migrate creates a temporary (transient) copy of the VM Guest

on the target host. A shut-down version of the original guest description remains on

the source host. A transient copy is deleted from the server after it is shut down.

To create a permanent copy of a guest on the target host, use the switch --

persistent. A shut-down version of the original guest description remains on the

source host, too. Use the option --undefinesource together with --persistent

for a “real” move where a permanent copy is created on the target host and the

version on the source host is deleted.

It is not recommended to use --undefinesource without the --persistent

option, since this results in the loss of both VM Guest definitions when the guest is

shut down on the target host.

17.5. Step-by-step example

17.5.1. Exporting the storage

First, you need to export the storage to share the guest image between hosts. This can be done by

an NFS server. In the following example, we want to share the /volume1/VM directory for all

machines that are on the network 10.0.1.0/24. We are using a SUSE Linux Enterprise NFS server.

As root user, edit the /etc/exports file and add:

/volume1/VM 10.0.1.0/24 (rw,sync,no_root_squash)

You need to restart the NFS server:

>sudo systemctl restart nfsserver
>sudo exportfs
/volume1/VM 10.0.1.0/24

17.5.2. Defining the pool on the target hosts

On each host where you want to migrate the VM Guest, the pool must be defined to be able to

access the volume (that contains the Guest image). Our NFS server IP address is 10.0.1.99, its

share is the /volume1/VM directory, and we want to get it mounted in the /var/lib/libvirt/

images/VM directory. The pool name is VM. To define this pool, create a VM.xml file with the

following content:

Chapter 17. Migrating VM Guests

166

<pool type='netfs'>
 <name>VM</name>
 <source>
 <host name='10.0.1.99'/>
 <dir path='/volume1/VM'/>
 <format type='auto'/>
 </source>
 <target>
 <path>/var/lib/libvirt/images/VM</path>
 <permissions>
 <mode>0755</mode>
 <owner>-1</owner>
 <group>-1</group>
 </permissions>
 </target>
 </pool>

Then load it into libvirt using the pool-define command:

#virsh pool-define VM.xml

An alternative way to define this pool is to use the virsh command:

#virsh pool-define-as VM --type netfs --source-host 10.0.1.99 \
 --source-path /volume1/VM --target /var/lib/libvirt/images/VM
Pool VM created

The following commands assume that you are in the interactive shell of virsh, which can also be

reached by using the command virsh without any arguments. Then the pool can be set to start

automatically at host boot (autostart option):

virsh #pool-autostart VM
Pool VM marked as autostarted

To disable the autostart:

virsh #pool-autostart VM --disable
Pool VM unmarked as autostarted

Check if the pool is present:

virsh #pool-list --all
 Name State Autostart

 default active yes
 VM active yes

virsh #pool-info VM
Name: VM
UUID: 42efe1b3-7eaa-4e24-a06a-ba7c9ee29741
State: running
Persistent: yes
Autostart: yes
Capacity: 2,68 TiB
Allocation: 2,38 TiB
Available: 306,05 GiB

167

Pool needs to exist on all target hosts

Remember: this pool must be defined on each host where you want to be able to

migrate your VM Guest.

17.5.3. Creating the volume

The pool has been defined—now we need a volume which contains the disk image:

virsh #vol-create-as VM sled12.qcow2 8G --format qcow2
Vol sled12.qcow2 created

The volume names shown are used later to install the guest with virt-install.

17.5.4. Creating the VM Guest

Let us create a SUSE Linux Enterprise Server VM Guest with the virt-install command. The

VM pool is specified with the --disk option, cache=none is recommended if you do not want to

use the --unsafe option while doing the migration.

#virt-install --connect qemu:///system --virt-type kvm --name \
 sles15 --memory 1024 --disk vol=VM/sled12.qcow2,cache=none --cdrom \
 /mnt/install/ISO/SLE-15-Server-DVD-x86_64-Build0327-Media1.iso --graphics \
 vnc --os-variant sled15
Starting install...
Creating domain...

17.5.5. Migrate the VM Guest

Everything is ready to do the migration now. Run the migrate command on the VM Host Server

that is currently hosting the VM Guest, and choose the target.

virsh # migrate --live sled12 --verbose qemu+ssh://IP/Hostname/system
Password:
Migration: [12 %]

Chapter 17. Migrating VM Guests

168

Chapter 18. Xen to KVM migration guide

As the KVM virtualization solution is becoming more and more popular among server

administrators, many of them need a path to migrate their existing Xen based environments to

KVM. As of now, there are no mature tools to automatically convert Xen VMs to KVM. There is,

however, a technical solution that helps convert Xen virtual machines to KVM. The following

information and procedures help you to perform such a migration.

Migration procedure not supported

The migration procedure described in this document is not fully supported by SUSE.

We provide it as a guidance only.

18.1. Migration to KVM using virt-v2v

This section contains information to help you import virtual machines from foreign hypervisors

(such as Xen) to KVM managed by libvirt.

Microsoft Windows guests

This section is focused on converting Linux guests. Converting Microsoft Windows

guests using virt-v2v is the same as converting Linux guests, except with regard

to handling the Virtual Machine Driver Pack (VMDP). Additional details on converting

Windows guests with the VMDP can be found separately at Virtual Machine Driver

Pack documentation.

18.1.1. Introduction to virt-v2v

virt-v2v is a command-line tool to convert VM Guests from a foreign hypervisor to run on KVM

managed by libvirt. It enables paravirtualized virtio drivers in the converted virtual machine if

possible. A list of supported operating systems and hypervisors follows:

Supported guest operating systems

SUSE Linux Enterprise Server

openSUSE

Red Hat Enterprise Linux

Fedora

Microsoft Windows Server 2003 and 2008

Supported source hypervisor

Xen

•

•

•

•

•

•

169

https://documentation.suse.com/sle-vmdp/
https://documentation.suse.com/sle-vmdp/

Supported target hypervisor

KVM (managed by libvirt)

18.1.2. Installing virt-v2v

The installation of virt-v2v is simple:

>sudo zypper install virt-v2v

Remember that virt-v2v requires root privileges, so you need to run it either as root, or via

sudo.

18.1.3. Converting virtual machines to run under KVM managed by libvirt

virt-v2v converts virtual machines from the Xen hypervisor to run under KVM managed by

libvirt. To learn more about libvirt and virsh, see Part II, “Managing virtual machines with

libvirt ”. Additionally, all virt-v2v command line options are explained in the virt-v2v man

page (man 1 virt-v2v).

Before converting a virtual machine, make sure to complete the following steps:

Procedure 18.1. Preparing the environment for the conversion

Create a new local storage pool.

virt-v2v copies the storage of the source virtual machine to a local storage pool managed

by libvirt (the original disk image remains unchanged). You can create the pool either

with Virtual Machine Manager or virsh. For more information, see the section called

“Managing storage with Virtual Machine Manager” and the section called “Managing storage

with virsh ”.

Prepare the local network interface.

Check that the converted virtual machine can use a local network interface on the VM Host

Server. It is normally a network bridge and if it is not yet defined, create it with YaST >

System > Network Settings > Add > Bridge.

•

1.

2.

Chapter 18. Xen to KVM migration guide

170

Mappings of network devices

Network devices on the source Xen host can be mapped during the conversion

process to corresponding network devices on the KVM target host. For

example, the Xen bridge br0 can be mapped to the default KVM network

device. Sample mappings can be found in /etc/virt-v2v.conf. To enable

these mappings, modify the XML rule and ensure the section is not commented

out with <!-- and --> markers. For example:

 <network type='bridge' name='br0'>
 <network type='network' name='default'/>
 </network>

No network bridge

If there is no network bridge available, Virtual Machine Manager can optionally

create it.

virt-v2v has the following basic command syntax:

virt-v2v -i INPUT_METHOD -os STORAGE_POOLSOURCE_VM

input_method

There are two input methods: libvirt or libvirtxml. See the SOURCE_VM parameter

for more information.

storage_pool

The storage pool you already prepared for the target virtual machine.

source_vm

The source virtual machine to convert. It depends on the INPUT_METHOD parameter: for

libvirt, specify the name of a libvirt domain. For libvirtxml, specify the path to an

XML file containing a libvirt domain specification.

Conversion time

Conversion of a virtual machine takes a lot of system resources, mainly for copying

the whole disk image for a virtual machine. Converting a single virtual machine

typically takes up to 10 minutes.Virtual machines using large disk images can take

much longer.

171

18.1.3.1. Conversion based on the libvirt XML description file

This section describes how to convert a local Xen virtual machine using the libvirt XML

configuration file. This method is suitable if the host is already running the KVM hypervisor. Make

sure that the libvirt XML file of the source virtual machine, and the libvirt storage pool

referenced from it are available on the local host.

Obtain the libvirt XML description of the source virtual machine.

Obtaining the XML files

To obtain the libvirt XML files of the source virtual machine, you must run

the host OS under the Xen kernel. If you already rebooted the host to the KVM-

enabled environment, reboot back to the Xen kernel, dump the libvirt XML

file, and then reboot back to the KVM environment.

First identify the source virtual machine under virsh:

#virsh list
 Id Name State
--
[...]
 2 sles12_xen running
[...]

sles12_xen is the source virtual machine to convert. Now export its XML and save it to

sles12_xen.xml:

#virsh dumpxml sles12_xen > sles12_xen.xml

Verify that all disk image paths are correct from the KVM host's perspective. This is not a

problem when converting on one machine, but may require manual changes when

converting using an XML dump from another host.

<source file='/var/lib/libvirt/images/XenPool/SLES.qcow2'/>

Copying images

To avoid copying an image twice, manually copy the disk image or images

directly to the libvirt storage pool. Update the source file entries in the XML

description file. The virt-v2v process detects the existing disks and converts

them in place.

Run virt-v2v to convert to KVM virtual machine:

#virt-v2v sles12_xen.xml❶ \
-i LIBVIRTXML❷ \
-os remote_host.example.com:/exported_dir❸ \
--bridge br0❹ \
-on sles12_kvm❺

1.

2.

3.

Chapter 18. Xen to KVM migration guide

172

❶

❷

❸

❹

❺

❶

❷

❸

❹

❺

❻

The XML description of the source Xen-based virtual machine.

virt-v2v reads the information about the source virtual machine from a libvirt XML

file.

Storage pool where the target virtual machine disk image is placed. In this example, the

image is placed on an NFS share /exported_dir on the

remote_host.example.com server.

The target KVM-based virtual machine uses the network bridge br0 on the host.

The target virtual machine is renamed to sles12_kvm to prevent name collision with the

existing virtual machine of the same name.

18.1.3.2. Conversion based on the libvirt domain name

This method is useful if you are still running libvirt under Xen, and plan to reboot to the KVM

hypervisor later.

Find the libvirt domain name of the virtual machine you want to convert.

#virsh list
 Id Name State
--
[...]
 2 sles12_xen running
[...]

sles12_xen is the source virtual machine to convert.

Run virt-v2v to convert to KVM virtual machine:

#virt-v2v sles12_xen❶ \
-i libvirt❷ \
-os storage_pool❸ \
--network eth0❹ \
-of qcow2❺ \
-oa sparse❻ \
-on sles12_kvm

The domain name of the Xen-based virtual machine.

virt-v2v reads the information about the source virtual machine directly from the active

libvirt connection.

The target disk image is placed in a local libvirt storage pool.

All guest bridges (or networks) are connected to a locally managed network.

Format for the disk image of the target virtual machine. Supported options are raw or

qcow2.

Whether the converted guest disk space is sparse or preallocated.

1.

2.

173

18.1.3.3. Converting a remote Xen virtual machine

This method is useful if you need to convert a Xen virtual machine running on a remote host. As

virt-v2v connects to the remote host via ssh, ensure the SSH service is running on the host.

Passwordless SSH access

virt-v2v requires a passwordless SSH connection to the remote host. This means

a connection using an SSH key added to the ssh-agent. See man ssh-keygen and

man ssh-add for more details on this. More information is also available at

Chapter 22, Securing network operations with OpenSSH in “Security and Hardening

Guide”.

To connect to a remote libvirt connection, construct a valid connection URI relevant for your

remote host. In the following example, the remote host name is remote_host.example.com,

and the user name for the connection is root. The connection URI then looks as follows:

xen+ssh://root@remote_host.example.com/

For more information on libvirt connection URIs, see https://libvirt.org/uri.html.

Find the libvirt domain name of the remote virtual machine you want to convert.

#virsh -c xen+ssh://root@remote_host.example.com/ list
 Id Name State
--
 1 sles12_xen running
[...]

sles12_xen is the source virtual machine to convert.

The virt-v2v command for the remote connection looks like this:

#virt-v2v sles12_xen \
-i libvirt \
-ic xen+ssh://root@remote_host.example.com/ \
-os local_storage_pool \
--bridge br0

18.1.4. Running converted virtual machines

After virt-v2v completes successfully, a new libvirt domain is created with the name

specified with the -on option. If you did not specify -on, the same name as the source virtual

machine is used. The new guest can be managed with standard libvirt tools, such as virsh or

Virtual Machine Manager.

1.

2.

Chapter 18. Xen to KVM migration guide

174

https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf
https://libvirt.org/uri.html

Rebooting the machine

If you completed the conversion under Xen as described in the section called

“Conversion based on the libvirt domain name”, you may need to reboot the host

machine and boot with the non-Xen kernel.

18.2. Xen to KVM manual migration

18.2.1. General outline

The preferred solution to manage virtual machines is based on libvirt; for more information,

see https://libvirt.org/. It has several advantages over the manual way of defining and running

virtual machines—libvirt is cross-platform, supports many hypervisors, has secure remote

management, has virtual networking, and, most of all, provides a unified abstract layer to manage

virtual machines. Therefore the main focus of this article is on the libvirt solution.

Generally, the Xen to KVM migration consists of the following basic steps:

Make a backup copy of the original Xen VM Guest.

Optionally, apply changes specific to paravirtualized guests.

Obtain information about the original Xen VM Guest and update it to KVM equivalents.

Shut down the guest on the Xen host, and run the new one under the KVM hypervisor.

No live migration

The Xen to KVM migration cannot be done live while the source VM Guest is running.

Before running the new KVM-ready VM Guest, you are advised to shut down the

original Xen VM Guest.

18.2.2. Back up the Xen VM Guest

To back up your Xen VM Guest, follow these steps:

Identify the relevant Xen guest you want to migrate, and remember its ID/name.

>sudo virsh list --all
Id Name State

 0 Domain-0 running
 1 SLES15SP3 running
[...]

Shut down the guest. You can do this either by shutting down the guest OS, or with virsh:

>sudo virsh shutdown SLES11SP3

1.

2.

3.

4.

1.

2.

175

https://libvirt.org/

Back up its configuration to an XML file.

>sudo virsh dumpxml SLES11SP3 > sles11sp3.xml

Back up its disk image file. Use the cp or rsync commands to create the backup copy.

Remember that it is always a good idea to check the copy with the md5sum command.

After the image file is backed up, you can start the guest again with

>sudo virsh start SLES11SP3

18.2.3. Changes specific to paravirtualized guests

Apply the following changes if you are migrating a paravirtualized Xen guest. You can do it either

on the running guest, or on the stopped guest using guestfs-tools.

Important

After applying the changes described in this section, the image file related to the

migrated VM Guest is not usable under Xen anymore.

18.2.3.1. Install the default kernel

No booting

After installing the default kernel, the system fails to boot the Xen guest.

Before cloning the Xen guest disk image for use under the KVM hypervisor, make sure it is

bootable without the Xen hypervisor. This is crucial for paravirtualized Xen guests as they normally

contain a special Xen kernel, and often do not have a complete GRUB 2 boot loader installed.

For SLES 11, update the /etc/sysconfig/kernel file. Change the INITRD_MODULES

parameter by removing all Xen drivers and replacing them with virtio drivers. Replace

INITRD_MODULES="xenblk xennet"

with

INITRD_MODULES="virtio_blk virtio_pci virtio_net virtio_balloon"

For SLES 12, 15 and openSUSE, search for xenblk xennet in /etc/dracut.conf.d/

*.conf and replace them with virtio_blk virtio_pci virtio_net

virtio_balloon

Paravirtualized Xen guests run a specific Xen kernel. To run the guest under KVM, you need

to install the default kernel.

3.

4.

5.

1.

2.

Chapter 18. Xen to KVM migration guide

176

Default kernel is already installed

You do not need to install the default kernel for a fully virtualized guest, as it is

already installed.

Enter rpm -q kernel-default on the Xen guest to find out whether the default kernel is

installed. If not, install it with zypper in kernel-default.

The kernel we are going to use to boot the guest under KVM must have virtio

(paravirtualized) drivers available. Run the following command to find out. Do not forget to

replace 6.4.0-150700.38 with your kernel version:

>sudo sudo find /lib/modules/6.4.0-150700.38-default/kernel/drivers/ -name
virtio*
/lib/modules/6.4.0-150700.38-default/kernel/drivers/block/virtio_blk.ko.zst
/lib/modules/6.4.0-150700.38-default/kernel/drivers/bluetooth/
virtio_bt.ko.zst
/lib/modules/6.4.0-150700.38-default/kernel/drivers/char/hw_random/virtio-
rng.ko.zst
/lib/modules/6.4.0-150700.38-default/kernel/drivers/crypto/virtio
/lib/modules/6.4.0-150700.38/kernel/drivers/block/virtio_blk.ko
...

Update /etc/fstab. Change any storage devices from xvda to vda.

Update the boot loader configuration. Enter rpm -q grub2 on the Xen guest to find out

whether GRUB 2 is already installed. If not, install it with zypper in grub2.

Now make the newly installed default kernel the default for booting the OS. Also remove/

update the kernel command line options that may refer to Xen-specific devices. You can do it

either with YaST (System > Boot Loader), or manually:

Find the preferred Linux boot menu entry by listing them all:

>cat /boot/grub2/grub.cfg | grep 'menuentry '

Remember the order number (counted from zero) of the one you newly installed.

Set it as the default boot menu entry:

>sudo grub2-set-default N

Replace N with the number of the boot menu entry you previously discovered.

Open /etc/default/grubfor editing, and look for the

GRUB_CMDLINE_LINUX_DEFAULT and GRUB_CMDLINE_LINUX_RECOVERY options.

Remove or update any reference to Xen-specific devices. In the following example,

you can replace

root=/dev/xvda1 disk=/dev/xvda console=xvc

with

root=/dev/vda1 disk=/dev/vda

3.

4.

◦

◦

◦

177

Do not forget to remove all references to xvc-type consoles (such as xvc0).

Update device.map in either the /boot/grub2 or /boot/grub2-efi directory,

whichever that VM uses. Change any storage devices from xvda to vda.

To import new default settings, run

grub2-mkconfig -o /boot/grub2/grub.cfg

18.2.3.2. Update the guest for boot under KVM

Update the system to use the default serial console. List the configured consoles, and

remove symbolic links to xvc? ones.

>sudo ls -l /etc/systemd/system/getty.target.wants/
getty@tty1.service -> /usr/lib/systemd/system/getty@.service
getty@xvc0.service -> /usr/lib/systemd/system/getty@xvc0.service
getty@xvc1.service -> /usr/lib/systemd/system/getty@xvc1.service

rm /etc/systemd/system/getty.target.wants/getty@xvc?.service

Update the /etc/securetty file. Replace xvc0 with ttyS0.

18.2.4. Update the Xen VM Guest configuration

This section describes how to export the configuration of the original Xen VM Guest, and what

particular changes to apply to it so it can be imported as a KVM guest into libvirt.

18.2.4.1. Export the Xen VM Guest configuration

First export the configuration of the guest and save it to a file. For example:

5.

6.

1.

2.

Chapter 18. Xen to KVM migration guide

178

>sudo virsh dumpxml SLES11SP3
<domain type='xen'>
 <name>SLES11SP3</name>
 <uuid>fa9ea4d7-8f95-30c0-bce9-9e58ffcabeb2</uuid>
 <memory>524288</memory>
 <currentMemory>524288</currentMemory>
 <vcpu>1</vcpu>
 <bootloader>/usr/bin/pygrub</bootloader>
 <os>
 <type>linux</type>
 </os>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <emulator>/usr/lib/xen/bin/qemu-dm</emulator>
 <disk type='file' device='disk'>
 <driver name='file'/>
 <source file='/var/lib/libvirt/images/
SLES_11_SP2_JeOS.x86_64-0.0.2_para.raw'/>
 <target dev='xvda' bus='xen'/>
 </disk>
 <interface type='bridge'>
 <mac address='00:16:3e:2d:91:c3'/>
 <source bridge='br0'/>
 <script path='vif-bridge'/>
 </interface>
 <console type='pty'>
 <target type='xen' port='0'/>
 </console>
 <input type='mouse' bus='xen'/>
 <graphics type='vnc' port='-1' autoport='yes' keymap='en-us'/>
 </devices>
</domain>

You can find detailed information on the libvirt XML format for VM Guest description at https://

libvirt.org/formatdomain.html.

18.2.4.2. General changes to the guest configuration

You need to make a few general changes to the exported Xen guest XML configuration to run it

under the KVM hypervisor. The following applies to both fully virtualized and paravirtualized guests.

The following XML elements are just an example and do not need to be in your specific

configuration.

179

https://libvirt.org/formatdomain.html
https://libvirt.org/formatdomain.html

Conventions used

To refer to a node in the XML configuration file, an XPath syntax is used throughout

this document. For example, to refer to a <name> inside the <domain> tag

<domain>
 <name>sles11sp3</name>
</domain>

an XPath equivalent /domain/name is used.

Change the type attribute of the /domain element from xento kvm.

Remove the /domain/bootloader element section.

Remove the /domain/bootloader_args element section.

Change the /domain/os/type element value from linux to hvm.

Add <boot dev="hd"/> under the /domain/os element.

Add the arch attribute to the /domain/os/type element. Acceptable values are

arch=”x86_64” or arch=”i686”

Change the /domain/devices/emulator element from /usr/lib/xen/bin/qemu-

dm' to /usr/bin/qemu-kvm.

For each disk associated with the paravirtualized (PV) guest, change the following:

Change the name attribute of the /domain/devices/disk/driver element from

file to qemu, and add a type attribute for the disk type. For example, valid options

include raw and qcow2.

Change the dev attribute of the /domain/devices/disk/target element from

xvda to vda.

Change the bus attribute of the /domain/devices/disk/target element from

xen to virtio.

For each network interface card, make the following changes:

If there is a model defined in /domain/devices/interface, change its type

attribute value to virtio

<model type=”virtio”>

Delete all /domain/devices/interface/script sections.

Delete all /domain/devices/interface/target elements if the dev attribute

starts with vif or vnet or veth. If using a custom network then change the dev

value to that target.

Remove the /domain/devices/console element section if it exists.

Remove the /domain/devices/serial element section if it exists.

1.

2.

3.

4.

5.

6.

7.

8.

◦

◦

◦

9.

◦

◦

◦

10.

11.

Chapter 18. Xen to KVM migration guide

180

Change the bus attribute on the /domain/devices/input element from xen to ps2.

Add the following element for memory ballooning features under the /domain/devices

element.

<memballoon model="virtio"/>

Device name

<target dev='hda' bus='ide'/> controls the device under which the disk is

exposed to the guest OS. The dev attribute indicates the “logical” device name. The

actual device name specified is not guaranteed to map to the device name in the

guest OS. Therefore you may need to change the disk mapping on the boot loader

command line. For example, if the boot loader expects a root disk to be hda2 but

KVM still sees it as sda2, change the boot loader command line from

[...] root=/dev/hda2 resume=/dev/hda1 [...]

to

[...] root=/dev/sda2 resume=/dev/sda1 [...]

For paravirtualized xvda devices, change it to:

[...] root=/dev/vda2 resume=/dev/vda1 [...]

Otherwise the VM Guest refuses to boot in the KVM environment.

18.2.4.3. The target KVM guest configuration

After having applied all the modifications mentioned above, you end up with the following

configuration for your KVM guest:

12.

13.

181

<domain type='kvm'>
 <name>SLES11SP3</name>
 <uuid>fa9ea4d7-8f95-30c0-bce9-9e58ffcabeb2</uuid>
 <memory>524288</memory>
 <currentMemory>524288</currentMemory>
 <vcpu cpuset='0-3'>1</vcpu>
 <os>
 <type arch=”x86_64”>hvm</type>
 <boot dev="hd"/>
 </os>
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <emulator>/usr/bin/qemu-kvm</emulator>
 <disk type='file' device='disk'>
 <driver name='qemu' type="raw"/>
 <source file='/var/lib/libvirt/images/
SLES_11_SP2_JeOS.x86_64-0.0.2_para.raw'/>
 <target dev='vda' bus='virtio'/>
 </disk>
 <interface type='bridge'>
 <mac address='00:16:3e:2d:91:c3'/>
 <source bridge='br0'/>
 </interface>
 <input type='mouse' bus='usb'/>
 <graphics type='vnc' port='5900' autoport='yes' keymap='en-us'/>
 <memballoon model="virtio"/>
 </devices>
</domain>

Save the configuration to a file in your home directory, as SLES11SP3.xml, for example. It gets

copied to the default /etc/libvirt/qemu directory after the import.

18.2.5. Migrate the VM Guest

After you updated the VM Guest configuration, and applied necessary changes to the guest OS,

shut down the original Xen guest, and run its clone under the KVM hypervisor.

Shut down the guest on the Xen host by running shutdown -h now as root from the

console.

Copy the disk images associated with the VM Guest if needed. A default configuration

requires the Xen disk files to be copied from /var/lib/xen/images to /var/lib/kvm/

images. The /var/lib/kvm/images directory may need to be created (as root) if you

have not previously created a VM Guest.

Create the new domain, and register it with libvirt:

>sudo virsh define SLES11SP3.xml
 Domain SLES11SP3 defined from SLES11SP3.xml

Verify that the new guest is seen in the KVM configuration:

>virsh list –all

After the domain is created, you can start it:

1.

2.

3.

4.

5.

Chapter 18. Xen to KVM migration guide

182

>sudo virsh start SLES11SP3
 Domain SLES11SP3 started

18.3. More information

For more information on libvirt, see https://libvirt.org.

You can find more details on the libvirt XML format at https://libvirt.org/formatdomain.html.

183

https://libvirt.org
https://libvirt.org/formatdomain.html

Part III. Hypervisor-independent features

19 Disk cache modes 185

20 VM Guest clock settings 188

21 libguestfs 189

22 QEMU guest agent 199

23 Software TPM emulator 202

24 Creating crash dumps of a VM Guest
205

Part III. Hypervisor-independent features

184

Chapter 19. Disk cache modes

19.1. What is a disk cache?

A disk cache is a memory used to speed up the process of storing and accessing data from the

hard disk. Physical hard disks have their cache integrated as a standard feature. For virtual disks,

the cache uses VM Host Server's memory and you can fine-tune its behavior, for example, by

setting its type.

19.2. How does a disk cache work?

Normally, a disk cache stores the most recent and frequently used programs and data. When a

user or program requests data, the operating system first checks the disk cache. If the data is

there, the operating system quickly delivers the data to the program instead of re-reading the data

from the disk.

Figure 19.1. Caching mechanism

19.3. Benefits of disk caching

Caching of virtual disk devices affects the overall performance of guest machines. You can improve

the performance by optimizing the combination of cache mode, disk image format, and storage

subsystem.

19.4. Virtual disk cache modes

If you do not specify a cache mode, writeback is used by default. Each guest disk can use one

of the following cache modes:

writeback

writeback uses the host page cache. Writes are reported to the guest as completed when

they are placed in the host cache. Cache management handles commitment to the storage

185

device. The guest's virtual storage adapter is informed of the writeback cache and therefore

expected to send flush commands as needed to manage data integrity.

writethrough

Writes are reported as completed only when the data has been committed to the storage

device. The guest's virtual storage adapter is informed that there is no writeback cache, so

the guest does not need to send flush commands to manage data integrity.

none

The host cache is bypassed, and reads and writes happen directly between the hypervisor

and the storage device. Because the actual storage device may report a write as completed

when the data is still placed in its write queue only, the guest's virtual storage adapter is

informed that there is a writeback cache. This mode is equivalent to direct access to the

host's disk.

unsafe

Similar to the writeback mode, except all flush commands from the guests are ignored. Using

this mode implies that the user prioritizes performance gain over the risk of data loss in case

of a host failure. This mode can be useful during guest installation, but not for production

workloads.

directsync

Writes are reported as completed only when the data has been committed to the storage

device and the host cache is bypassed. Similar to writethrough, this mode can be useful for

guests that do not send flushes when needed.

19.5. Cache modes and data integrity

writethrough, none, directsync

These modes are considered to be safest when the guest operating system uses flushes as

needed. For unsafe or unstable guests, use writethough or directsync.

writeback

This mode informs the guest of the presence of a write cache, and it relies on the guest to

send flush commands as needed to maintain data integrity within its disk image. This mode

exposes the guest to data loss if the host fails. The reason is the gap between the moment a

write is reported as completed and the time the write being committed to the storage device.

Chapter 19. Disk cache modes

186

unsafe

This mode is similar to writeback caching, except the guest flush commands are ignored.

This means a higher risk of data loss caused by host failure.

19.6. Cache modes and live migration

The caching of storage data restricts the configurations that support live migration. Currently, only

raw and qcow2 image formats can be used for live migration. If a clustered file system is used, all

cache modes support live migration. Otherwise the only cache mode that supports live migration

on read/write shared storage is none.

The libvirt management layer includes checks for migration compatibility based on several

factors. If the guest storage is hosted on a clustered file system, is read-only, or is marked

shareable, then the cache mode is ignored when determining if migration can be allowed.

Otherwise libvirt does not allow migration unless the cache mode is set to none. However, this

restriction can be overridden with the “--unsafe” option to the migration APIs, which is also

supported by virsh. For example:

>virsh migrate --live --unsafe

Tip

The cache mode none is required for the AIO mode setting native. If another cache

mode is used, the AIO mode is silently switched back to the default threads.

187

Chapter 20. VM Guest clock settings

Timekeeping on the VM Host Server

It is strongly recommended to ensure the VM Host Server keeps the correct time as

well, for example, by using NTP (see Chapter 39, Time synchronization with NTP in

“Administration Guide” for more information).

20.1. KVM: using kvm_clock

KVM provides a paravirtualized clock which is supported via the kvm_clock driver. It is strongly

recommended to use kvm_clock.

Use the following command inside a VM Guest running Linux to check whether the driver

kvm_clock has been loaded:

>sudo dmesg | grep kvm-clock
[0.000000] kvm-clock: cpu 0, msr 0:7d3a81, boot clock
[0.000000] kvm-clock: cpu 0, msr 0:1206a81, primary cpu clock
[0.012000] kvm-clock: cpu 1, msr 0:1306a81, secondary cpu clock
[0.160082] Switching to clocksource kvm-clock

To check which clock source is currently used, run the following command in the VM Guest. It

should output kvm-clock:

>cat /sys/devices/system/clocksource/clocksource0/current_clocksource

kvm-clock and NTP

When using kvm-clock, it is recommended to use NTP in the VM Guest, as well.

Using NTP on the VM Host Server is also recommended.

20.1.1. Other timekeeping methods

The paravirtualized kvm-clock is currently not for Windows* operating systems. For Windows*,

use the Windows Time Service Tools for time synchronization.

20.2. Xen virtual machine clock settings

With Xen 4, the independent wallclock setting /proc/sys/xen/independent_wallclock

used for time synchronization between Xen host and guest was removed. A new configuration

option tsc_mode was introduced. It specifies a method of using the time stamp counter to

synchronize the guest time with the Xen server. Its default value 0 handles the most hardware and

software environments.

For more details on tsc_mode, see the xen-tscmode man page (man 7 xen-tscmode).

Chapter 20. VM Guest clock settings

188

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

Chapter 21. libguestfs

Important

Using libguestfs tools is fully supported on the AMD64/Intel 64 architecture only.

21.1. VM Guest manipulation overview

21.1.1. VM Guest manipulation risk

As disk images and definition files are simply another type of file in a Linux environment, it is possi‐

ble to use many tools to access, edit and write to these files. When used correctly, such tools can

be an important part of guest administration. However, even correct usage of these tools is not

without risk. Risks that should be considered when manually manipulating guest disk images in‐

clude:

Data Corruption: concurrently accessing images, by the host machine or another node in a

cluster, can cause changes to be lost or data corruption to occur if virtualization protection

layers are bypassed.

Security: mounting disk images as loop devices requires root access. While an image is loop

mounted, other users and processes can potentially access the disk contents.

Administrator Error: bypassing virtualization layers correctly requires advanced understand‐

ing of virtual components and tools. Failing to isolate the images or failing to clean up prop‐

erly after changes have been made can lead to further problems once back in virtualization

control.

21.1.2. libguestfs design

libguestfs C library has been designed to safely and securely create, access and modify virtual ma‐

chine (VM Guest) disk images. It also provides additional language bindings: for Perl, Python, and

Ruby. libguestfs can access VM Guest disk images without needing root and with multiple layers of

defense against rogue disk images.

libguestfs provides many tools designed for accessing and modifying VM Guest disk images and

contents. These tools provide such capabilities as: viewing and editing files inside guests, scripting

changes to VM Guests, monitoring disk used/free statistics, creating guests, doing V2V or P2V mi‐

grations, performing backups, cloning VM Guests, formatting disks, and resizing disks.

•

•

•

189

https://libguestfs.org/guestfs-perl.3.html
https://libguestfs.org/guestfs-python.3.html
https://libguestfs.org/guestfs-ruby.3.html

Best practices

You must not use libguestfs tools on live virtual machines. Doing so may result in disk

corruption in the VM Guest. libguestfs tools try to stop you from doing this, but cannot

catch all cases.

However, most commands have the --ro (read-only) option. With this option, you

can run a command on a live virtual machine. The results may be strange or incon‐

sistent but you do not risk disk corruption.

21.2. Package installation

libguestfs is shipped through 4 packages:

libguestfs0: which provides the main C library

guestfs-data: which contains the appliance files used when launching images (stored in

/usr/lib64/guestfs)

guestfs-tools: the core guestfs tools, man pages, and the /etc/libguestfs-

tools.conf configuration file.

guestfs-winsupport: provides support for Windows file guests in the guestfs tools. This

package only needs to be installed to handle Windows guests, for example when converting

a Windows guest to KVM.

To install guestfs tools on your system run:

>sudo zypper in guestfs-tools

21.3. Guestfs tools

21.3.1. Modifying virtual machines

The set of tools found within the guestfs-tools package is used for accessing and modifying virtual

machine disk images. This functionality is provided through a familiar shell interface with built-in

safeguards which ensure image integrity. Guestfs tools shells expose all capabilities of the guestfs

API, and create an appliance on the fly using the packages installed on the machine and the files

found in /usr/lib64/guestfs.

21.3.2. Supported file systems and disk images

Guestfs tools support multiple file systems including:

Ext2, Ext3, Ext4

Xfs

•

•

•

•

•

•

Chapter 21. libguestfs

190

Btrfs

Multiple disk image formats are also supported:

raw

qcow2

Unsupported file systems

Guestfs may also support Windows* file systems (VFAT, NTFS), BSD* and Apple* file

systems, and other disk image formats (VMDK, VHDX...). However, these file sys‐

tems and disk image formats are unsupported on SUSE Linux Enterprise Server.

21.3.3. virt-rescue

virt-rescue is similar to a rescue CD, but for virtual machines, and without the need for a CD.

virt-rescue presents users with a rescue shell and several simple recovery tools which can be

used to examine and correct problems within a virtual machine or disk image.

>virt-rescue -a sles.qcow2
Welcome to virt-rescue, the libguestfs rescue shell.

Note: The contents of / are the rescue appliance.
You need to mount the guest's partitions under /sysroot
before you can examine them. A helper script for that exists:
mount-rootfs-and-chroot.sh /dev/sda1

><rescue>
[67.194384] EXT4-fs (sda1): mounting ext3 file system
using the ext4 subsystem
[67.199292] EXT4-fs (sda1): mounted filesystem with ordered data
mode. Opts: (null)
mount: /dev/sda1 mounted on /sysroot.
mount: /dev bound on /sysroot/dev.
mount: /dev/pts bound on /sysroot/dev/pts.
mount: /proc bound on /sysroot/proc.
mount: /sys bound on /sysroot/sys.
Directory: /root
Thu Jun 5 13:20:51 UTC 2014
(none):~ #

You are now running the VM Guest in rescue mode:

(none):~ # cat /etc/fstab
devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
usbfs /proc/bus/usb usbfs noauto 0 0
tmpfs /run tmpfs noauto 0 0
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part1 / ext3 defaults 1 1

•

•

•

191

21.3.4. virt-resize

virt-resize is used to resize a virtual machine disk, making it larger or smaller overall, and re‐

sizing or deleting any partitions contained within.

Procedure 21.1. Expanding a disk

Full step-by-step example: how to expand a virtual machine disk

First, with virtual machine powered off, determine the size of the partitions available on this

virtual machine:

>virt-filesystems --long --parts --blkdevs -h -a sles.qcow2
Name Type MBR Size Parent
/dev/sda1 partition 83 16G /dev/sda
/dev/sda device - 16G -

virt-resize cannot do in-place disk modifications—there must be sufficient space to

store the resized output disk. Use the truncate command to create a file of suitable size:

>truncate -s 32G outdisk.img

Use virt-resize to resize the disk image. virt-resize requires two mandatory param‐

eters for the input and output images:

>virt-resize --expand /dev/sda1 sles.qcow2 outdisk.img
Examining sles.qcow2 ...

Summary of changes:

/dev/sda1: This partition will be resized from 16,0G to 32,0G. The
 filesystem ext3 on /dev/sda1 will be expanded using the 'resize2fs'
 method.

Setting up initial partition table on outdisk.img ...
Copying /dev/sda1 ...
◐ 84%
⟦▒▒════════⟧
00:03
Expanding /dev/sda1 using the 'resize2fs' method ...

Resize operation completed with no errors. Before deleting the old
disk, carefully check that the resized disk boots and works correctly.

Confirm the image was resized properly:

>virt-filesystems --long --parts --blkdevs -h -a outdisk.img
Name Type MBR Size Parent
/dev/sda1 partition 83 32G /dev/sda
/dev/sda device - 32G -

Bring up the VM Guest using the new disk image and confirm correct operation before delet‐

ing the old image.

1.

2.

3.

4.

5.

Chapter 21. libguestfs

192

21.3.5. Other virt-* tools

There are guestfs tools to simplify administrative tasks—such as viewing and editing files, or ob‐

taining information on the virtual machine.

21.3.5.1. virt-filesystems

This tool is used to report information regarding file systems, partitions and logical volumes in a

disk image or virtual machine.

>virt-filesystems -l -a sles.qcow2
Name Type VFS Label Size Parent
/dev/sda1 filesystem ext3 - 17178820608 -

21.3.5.2. virt-ls

virt-ls lists file names, file sizes, checksums, extended attributes and more from a virtual ma‐

chine or disk image. Multiple directory names can be given, in which case the output from each is

concatenated. To list directories from a libvirt guest, use the -d option to specify the name of the

guest. For a disk image, use the -a option.

>virt-ls -h -lR -a sles.qcow2 /var/log/
d 0755 776 /var/log
- 0640 0 /var/log/NetworkManager
- 0644 23K /var/log/Xorg.0.log
- 0644 23K /var/log/Xorg.0.log.old
d 0700 482 /var/log/YaST2
- 0644 512 /var/log/YaST2/_dev_vda
- 0644 59 /var/log/YaST2/arch.info
- 0644 473 /var/log/YaST2/config_diff_2017_05_03.log
- 0644 5.1K /var/log/YaST2/curl_log
- 0644 1.5K /var/log/YaST2/disk_vda.info
- 0644 1.4K /var/log/YaST2/disk_vda.info-1
[...]

21.3.5.3. virt-cat

virt-cat is a command-line tool to display the contents of a file that exists in the named virtual

machine (or disk image). Multiple file names can be given, in which case they are concatenated to‐

gether. Each file name must be specified by its absolute path, starting at the root directory with /.

>virt-cat -a sles.qcow2 /etc/fstab
devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 0 0

21.3.5.4. virt-df

virt-df is a command-line tool to display free space on virtual machine file systems. Unlike other

tools, it not only displays the size of disk allocated to a virtual machine, but can look inside disk im‐

ages to show how much space is being used.

193

>virt-df -a sles.qcow2
Filesystem 1K-blocks Used Available Use%
sles.qcow2:/dev/sda1 16381864 520564 15022492 4%

21.3.5.5. virt-edit

virt-edit is a command-line tool capable of editing files that reside in the named virtual ma‐

chine (or disk image).

21.3.5.6. virt-tar-in/out

virt-tar-in unpacks an uncompressed TAR archive into a virtual machine disk image or

named libvirt domain. virt-tar-out packs a virtual machine disk image directory into a TAR ar‐

chive.

>virt-tar-out -a sles.qcow2 /home homes.tar

21.3.5.7. virt-copy-in/out

virt-copy-in copies files and directories from the local disk into a virtual machine disk image or

named libvirt domain. virt-copy-out copies files and directories out of a virtual machine disk

image or named libvirt domain.

>virt-copy-in -a sles.qcow2 data.tar /tmp/
>virt-ls -a sles.qcow2 /tmp/
.ICE-unix
.X11-unix
data.tar

21.3.5.8. virt-log

virt-log shows the log files of the named libvirt domain, virtual machine or disk image. If the

package guestfs-winsupport is installed it can also show the event log of a Windows virtual

machine disk image.

Chapter 21. libguestfs

194

>virt-log -a windows8.qcow2
<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<Events>
<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/
event"><System><Provider Name="EventLog"></Provider>
<EventID Qualifiers="32768">6011</EventID>
<Level>4</Level>
<Task>0</Task>
<Keywords>0x0080000000000000</Keywords>
<TimeCreated SystemTime="2014-09-12 05:47:21"></TimeCreated>
<EventRecordID>1</EventRecordID>
<Channel>System</Channel>
<Computer>windows-uj49s6b</Computer>
<Security UserID=""></Security>
</System>
<EventData><Data><string>WINDOWS-UJ49S6B</string>
<string>WIN-KG190623QG4</string>
</Data>
<Binary></Binary>
</EventData>
</Event>

...

21.3.6. guestfish

guestfish is a shell and command-line tool for examining and modifying virtual machine file sys‐

tems. It uses libguestfs and exposes all the functionality of the guestfs API.

Examples of usage:

>guestfish -a disk.img <<EOF
run
list-filesystems
EOF

guestfish

Welcome to guestfish, the guest filesystem shell for
editing virtual machine filesystems and disk images.

Type: 'help' for help on commands
 'man' to read the manual
 'quit' to quit the shell

><fs> add sles.qcow2
><fs> run
><fs> list-filesystems
/dev/sda1: ext3
><fs> mount /dev/sda1 /
 cat /etc/fstab
devpts /dev/pts devpts mode=0620,gid=5 0 0
proc /proc proc defaults 0 0
sysfs /sys sysfs noauto 0 0
debugfs /sys/kernel/debug debugfs noauto 0 0
usbfs /proc/bus/usb usbfs noauto 0 0
tmpfs /run tmpfs noauto 0 0
/dev/disk/by-id/ata-QEMU_HARDDISK_QM00001-part1 / ext3 defaults 1 1

21.3.7. Converting a physical machine into a KVM guest

Libguestfs provides tools to help converting Xen virtual machines or physical machines into KVM

guests. The Xen to KVM conversion scenario is covered by the Chapter 18, Xen to KVM migration

195

❶

❷

❸

guide. The following section covers a special use case: converting a bare metal machine into a

KVM one.

Converting a physical machine into a KVM one is not yet supported in SUSE Linux Enterprise

Server. This feature is released as a technology preview only.

Converting a physical machine requires collecting information about it and transmitting this to a

conversion server. This is achieved by running a live system prepared with virt-p2v and

KIWI NG tools on the machine.

Procedure 21.2. Using virt-p2v

Install the needed packages with the command:

>sudo zypper in virt-p2v kiwi-desc-isoboot

Note

These steps document how to create an ISO image to create a bootable DVD.

Alternatively, you can create a PXE boot image instead; for more information

about building PXE images with KIWI NG, see man virt-p2v-make-kiwi.

Create a KIWI NG configuration:

>virt-p2v-make-kiwi -o /tmp/p2v.kiwi

The -o defines where to create the KIWI NG configuration.

Edit the config.xml file in the generated configuration if needed. For example, in con‐

fig.xml adjust the keyboard layout of the live system.

Build the ISO image with kiwi:

>kiwi --build /tmp/p2v.kiwi❶ \
 -d /tmp/build❷ \
 --ignore-repos \
 --add-repo http://URL_TO_REPOSITORIES❸ \
 --type iso

The directory where the KIWI NG configuration was generated in the previous step.

The directory where KIWI NG will place the generated ISO image and other intermediary

build results.

The URLs to the package repositories as found with zypper lr -d.

Use one --add-repo parameter per repository.

Burn the ISO on a DVD or a USB stick. With such a medium, boot the machine to be con‐

verted.

After the system is started, enter the connection details of the conversion server. This server

is a machine with the virt-v2v package installed.

1.

2.

3.

4.

5.

6.

Chapter 21. libguestfs

196

If the network setup is more complex than a DHCP client, click the Configure network button

to open the YaST network configuration dialog.

Click the Test connection button to allow moving to the next page of the wizard.

Select the disks and network interfaces to be converted and define the VM data like the

amount of allocated CPUs, memory and the Virtual Machine name.

Note

If not defined, the created disk image format is raw by default. This can be

changed by entering the desired format in the Output format field.

There are two possibilities to generate the virtual machine: either using the local or the libvirt

output. The first one places the Virtual Machine disk image and configuration in the path de‐

fined in the Output storage field. These can then be used to define a new libvirt-handled

guest using virsh. The second method creates a new libvirt-handled guest with the disk im‐

age placed in the pool defined in the Output storage field.

Click Start conversion to start it.

21.4. Troubleshooting

21.4.1. Btrfs-related problems

When using the guestfs tools on an image with Btrfs root partition (the default with SUSE Linux En‐

terprise Server) the following error message may be displayed:

>virt-ls -a /path/to/sles12sp2.qcow2 /
virt-ls: multi-boot operating systems are not supported

If using guestfish '-i' option, remove this option and instead
use the commands 'run' followed by 'list-filesystems'.
You can then mount file systems you want by hand using the
'mount' or 'mount-ro' command.

If using guestmount '-i', remove this option and choose the
filesystem(s) you want to see by manually adding '-m' option(s).
Use 'virt-filesystems' to see what file systems are available.

If using other virt tools, multi-boot operating systems won't work
with these tools. Use the guestfish equivalent commands
(see the virt tool manual page).

This is often caused by the presence of snapshots in the guests. In this case guestfs does not

know which snapshot to bootstrap. To force the use of a snapshot, use the -m parameter as fol‐

lows:

>virt-ls -m /dev/sda2:/:subvol=@/.snapshots/2/snapshot -a /path/to/
sles12sp2.qcow2 /

7.

197

21.4.2. Environment

When troubleshooting problems within a libguestfs appliance, the environment variable

LIBGUESTFS_DEBUG=1 can be used to enable debug messages. To output each command/API

call in a format that is similar to guestfish commands, use the environment variable

LIBGUESTFS_TRACE=1.

21.4.3. libguestfs-test-tool

libguestfs-test-tool is a test program that checks if basic libguestfs functionality is working.

It prints a large amount of diagnostic messages and details of the guestfs environment, then create

a test image and try to start it. If it runs to completion successfully, the following message should

be seen near the end:

===== TEST FINISHED OK =====

21.5. More information

libguestfs.org

libguestfs FAQ

•

•

Chapter 21. libguestfs

198

https://libguestfs.org
https://libguestfs.org/guestfs-faq.1.html

Chapter 22. QEMU guest agent

The QEMU guest agent (GA) runs inside the VM Guest and allows the VM Host Server to run

commands in the guest operating system via libvirt. It supports many functions—for example,

getting details about guest file systems, freezing and thawing file systems, or suspending or

rebooting a guest.

QEMU GA is included in the qemu-guest-agent package and is installed, configured and

activated by default on KVM virtual machines.

QEMU GA is installed in Xen virtual machines, but it is not activated by default. Although it is

possible to use QEMU GA with Xen virtual machines, there is no integration with libvirt as

described below for KVM virtual machines. To use QEMU GA with Xen, a channel device must be

added to the VM Guest configuration. The channel device includes a Unix domain socket path on

the VM Host Server for communicating with QEMU GA.

<channel type='unix'>
 <source mode='bind' path='/example/path'/>
 <target type='xen' name='org.qemu.guest_agent.0'/>
</channel>

22.1. Running QEMU GA commands

QEMU GA includes many built-in commands that do not have direct libvirt counterparts. Refer

to the section called “More information” to find the complete list. You can run all the QEMU GA

commands by using libvirt's general purpose command qemu-agent-command:

virsh qemu-agent-command DOMAIN_NAME '{"execute":"QEMU_GA_COMMAND"}'

For example:

>sudo virsh qemu-agent-command sle15sp2 '{"execute":"guest-info"}' --pretty
{
"return": {
 "version": "4.2.0",
 "supported_commands": [
 {
 "enabled": true,
 "name": "guest-get-osinfo",
 "success-response": true
 },
[...]

22.2. virsh commands that require QEMU GA

Several virsh commands require QEMU GA for their functionality. For example, the following

ones:

virsh guestinfo

Prints information about the guest from the guest's point of view.

199

virsh guestvcpus

Queries or changes the state of virtual CPUs from the guest's point of view.

virsh set-user-password

Sets the password for a user account in the guest.

virsh domfsinfo

Shows a list of mounted file systems within the running domain.

virsh dompmsuspend

Suspends a running guest.

22.3. Enhancing libvirt commands

If QEMU GA is enabled inside the guest, several virsh subcommands have enhanced

functionality when run in the agent mode. The following list includes only certain examples of them.

For a complete list, see the virsh man page and search for the agent string.

virsh shutdown --mode agent and virsh reboot --mode agent

This method of shutting down or rebooting leaves the guest clean for its next run, similar to

the ACPI method.

virsh domfsfreeze and virsh domfsthaw

Instructs the guest to make its file system quiescent—to flush all I/O operations in the cache

and leave volumes in a consistent state, so that no checks are needed when they are

remounted.

virsh setvcpus --guest

Changes the number of CPUs assigned to a guest.

virsh domifaddr --source agent

Queries the QEMU GA for the guest's IP address.

virsh vcpucount --guest

Prints information about the virtual CPU counts from the perspective of the guest.

22.4. More information

A complete list of commands supported by the QEMU GA is at https://www.qemu.org/docs/

master/interop/qemu-ga-ref.html.

•

Chapter 22. QEMU guest agent

200

https://www.qemu.org/docs/master/interop/qemu-ga-ref.html
https://www.qemu.org/docs/master/interop/qemu-ga-ref.html

The virsh man page (man 1 virsh) includes descriptions of the commands that support

the QEMU GA interface.

•

201

Chapter 23. Software TPM emulator

23.1. Introduction

The Trusted Platform Module (TPM) is a cryptoprocessor that secures hardware using

cryptographic keys. For developers who use the TPM to develop security features, a software TPM

emulator is a convenient solution. Compared to a hardware TPM device, the emulator has no limit

on the number of guests that can access it. Also, it is simple to switch between TPM versions 1.2

and 2.0. QEMU supports the software TPM emulator that is included in the swtpm package.

23.2. Prerequisites

Before you can install and use the software TPM emulator, you need to install the libvirt

virtualization environment. Refer to the section called “Installing virtualization components” and

install one of the provided virtualization solutions.

23.3. Installation

To use the software TPM emulator, install the swtpm package:

>sudo zypper install swtpm

23.4. Using swtpm with QEMU

swtpm provides three types of interface: socket, chardev, and cuse. This procedure focuses on

the socket interface.

Create a directory mytpm0 inside the VM directory to store the TPM states—for example, /

var/lib/libvirt/qemu/sle15sp3:

>sudo mkdir /var/lib/libvirt/qemu/sle15sp3/mytpm0

Start swtmp. It creates a socket file that QEMU can use—for example, /var/lib/

libvirt/qemu/sle15sp3:

>sudo swtpm socket
 --tpmstate dir=/var/lib/libvirt/qemu/sle15sp3/mytpm0 \
 --ctrl type=unixio,path=/var/lib/libvirt/qemu/sle15sp3/mytpm0/swtpm-sock
\
 --log level=20

1.

2.

Chapter 23. Software TPM emulator

202

TPM version 2.0

By default, swtpm starts a TPM version 1.2 emulator and stores its states in

the tpm-00.permall directory. To create a TPM 2.0 instance, run:

>sudo swtpm socket
 --tpm2
 --tpmstate dir=/var/lib/libvirt/qemu/sle15sp3/mytpm0 \
 --ctrl type=unixio,path=/var/lib/libvirt/qemu/sle15sp3/mytpm0/
swtpm-sock \
 --log level=20

TPM 2.0 states are stored in the tpm2-00.permall directory.

Add the following command line parameters to the qemu-system-ARCH command:

>qemu-system-x86_64 \
[...]
-chardev socket,id=chrtpm,path=/var/lib/libvirt/qemu/sle15sp3/mytpm0/swtpm-
sock \
-tpmdev emulator,id=tpm0,chardev=chrtpm \
-device tpm-tis,tpmdev=tpm0

Verify that the TPM device is available in the guest by running the following command:

>tpm_version
TPM 1.2 Version Info:
Chip Version: 1.2.18.158
Spec Level: 2
Errata Revision: 3
TPM Vendor ID: IBM
TPM Version: 01010000
Manufacturer Info: 49424d00

23.5. Using swtpm with libvirt

To use swtpm with libvirt, add the following TPM device to the guest XML specification:

<devices>
 <tpm model='tpm-tis'>
 <backend type='emulator' version='2.0'/>
 </tpm>
</devices>

libvirt starts swtpm for the guest automatically. You do not need to start it manually in advance.

The corresponding permall file is created in /var/lib/libvirt/swtpm/VM_UUID.

23.6. TPM measurement with OVMF firmware

If the guest uses the Open Virtual Machine Firmware (OVMF), it measures components with TPM.

You can find the event log in /sys/kernel/security/tpm0/binary_bios_measurements.

3.

4.

203

23.7. Resources

Wikipedia offers a thorough description of the TPM at the page https://en.wikipedia.org/wiki/

Trusted_Platform_Module.

Configuring a specific virtualization environment on SUSE Linux Enterprise Server is

described in Chapter 6, Installation of virtualization components.

Details on the use of swtpm are on its man page (man 8 swtpm).

A detailed libvirt specification of TPM is at https://libvirt.org/

formatdomain.html#elementsTpm

A description of enabling UEFI firmware by using OVMF is at the section called “Advanced

UEFI configuration”.

•

•

•

•

•

Chapter 23. Software TPM emulator

204

https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://libvirt.org/formatdomain.html#elementsTpm
https://libvirt.org/formatdomain.html#elementsTpm

Chapter 24. Creating crash dumps of a VM Guest

24.1. Introduction

Whenever a VM crashes, it is useful to collect a core dump of the VM memory for debugging and

analysis. For physical machines, Kexec and Kdump takes care of collecting crash dumps. For

virtual machines, it depends whether the guest is fully virtualized (FV) or paravirtualized (PV).

24.2. Creating crash dumps for fully virtualized machines

To view crash dumps for FV machines, use the same procedures as for physical machines—Kexec

and Kdump.

24.3. Creating crash dumps for paravirtualized machines

Unlike with FVs, Kexec/Kdump does not work in paravirtualized machines. Crash dumps of PV

guests must be performed by the host tool stack. If using the xl tool stack for Xen domUs, the xl

dump-core command produces the dump. For libvirt-based VM Guests, the virsh dump

command provides the same functionality.

You can configure automatic collection of a core dump with the on_crash setting in the

configuration of the VM Guest. This setting tells the host tool stack what to do if the VM Guest

encounters a crash. The default in both xl and libvirt is destroy. Useful options for

automatically collecting a core dump are coredump-destroy and coredump-restart.

24.4. Additional information

The difference between fully virtualized and paravirtualized virtual machines is described in

the section called “Virtualization modes”.

Detailed information about Kexec/Kdump mechanism is included in Chapter 20, Kexec and

Kdump in “System Analysis and Tuning Guide”.

Refer to the xl.cfg man page (man 5 xl.cfg) for more information on the xl configuration

syntax.

Refer to https://libvirt.org/formatdomain.html#events-configuration for details about the

libvirt XML settings.

•

•

•

•

205

https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf
https://libvirt.org/formatdomain.html#events-configuration

Part IV. Managing virtual machines with Xen

25 Setting up a virtual machine host 207

26 Virtual networking 217

27 Managing a virtualization environment 224

28 Block devices in Xen 229

29 Virtualization: configuration options and settings 233

30 Administrative tasks 242

31 XenStore: configuration database shared between domains 250

32 Xen as a high-availability virtualization host 255

33 Xen: converting a paravirtual (PV) guest into a fully virtual (FV/
HVM) guest 257

Part IV. Managing virtual machines with Xen

206

Chapter 25. Setting up a virtual machine host

This section documents how to set up and use SUSE Linux Enterprise Server15 SP7 as a virtual

machine host.

The hardware requirements for the Dom0 are often the same as those for the SUSE Linux

Enterprise Server operating system. Additional CPU, disk, memory and network resources should

be added to accommodate the resource demands of all planned VM Guest systems.

Resources

Remember that VM Guest systems, like physical machines, perform better when they

run on faster processors and have access to more system memory.

The virtual machine host requires several software packages and their dependencies to be

installed. To install all necessary packages, run YaST Software Management, select View >

Patterns and choose Xen Virtual Machine Host Server for installation. The installation can also be

performed with YaST using the module Virtualization > Install Hypervisor and Tools.

After the Xen software is installed, restart the computer and, on the boot screen, choose the newly

added option with the Xen kernel.

Updates are available through your update channel. To be sure to have the latest updates

installed, run YaST Online Update after the installation has finished.

25.1. Best practices and suggestions

When installing and configuring the SUSE Linux Enterprise Server operating system on the host,

be aware of the following best practices and suggestions:

If the host should always run as Xen host, run YaST System > Boot Loader and activate the

Xen boot entry as default boot section.

In YaST, click System > Boot Loader.

Change the default boot to the Xen label, then click Set as Default.

Click Finish.

For best performance, only the applications and processes required for virtualization should

be installed on the virtual machine host.

If you intend to use a watchdog device attached to the Xen host, use only one at a time. It is

recommended to use a driver with actual hardware integration over a generic software one.

•

◦

◦

◦

•

•

207

Hardware monitoring

The Dom0 kernel is running virtualized, so tools like irqbalance or lscpu do not

reflect the real hardware characteristics.

Trusted boot not supported by Xen

Trusted boot (Tboot) is not supported by Xen. To ensure that the Xen host boots

correctly, verify that the Enable Trusted Boot Support option is deactivated in the

GRUB 2 configuration dialog.

25.2. Managing Dom0 memory

In previous versions of SUSE Linux Enterprise Server, the default memory allocation scheme of a

Xen host was to allocate all host physical memory to Dom0 and enable auto-ballooning. Memory

was automatically ballooned from Dom0 when additional domains were started. This behavior has

always been error prone and disabling it was strongly encouraged. Starting with SUSE Linux

Enterprise Server 15 SP1, auto-ballooning has been disabled by default and Dom0 is given 10% of

host physical memory + 1 GB. For example, on a host with 32 GB of physical memory, 4.2 GB of

memory is allocated for Dom0.

The use of the dom0_mem Xen command line option in /etc/default/grub is still supported

and encouraged. You can restore the old behavior by setting dom0_mem to the host physical

memory size and enabling the autoballoon setting in /etc/xen/xl.conf.

Insufficient memory for Dom0

The amount of memory reserved for Dom0 is a function of the number of VM Guests

running on the host since Dom0 provides back-end network and disk I/O services for

each VM Guest. Other workloads running in Dom0 should also be considered when

calculating Dom0 memory allocation. Memory sizing of Dom0 should be determined

like any other virtual machine.

25.2.1. Setting Dom0 memory allocation

Determine memory allocation required for Dom0.

At Dom0, type xl info to view the amount of memory that is available on the machine.

Dom0's current memory allocation can be determined with the xl list command.

Edit /etc/default/grub and adjust the GRUB_CMDLINE_XEN option so that it includes

dom0_mem=MEM_AMOUNT. Replace MEM_AMOUNT with the maximum amount of memory

to allocate to Dom0. Add K, M, or G, to specify the size unit. For example:

1.

2.

3.

Chapter 25. Setting up a virtual machine host

208

GRUB_CMDLINE_XEN="dom0_mem=2G"

Restart the computer to apply the changes.

Tip

Refer to the section called “The file /etc/default/grub ” in “Administration

Guide” for more details about Xen-related boot configuration options.

Xen Dom0 memory

When using the XL tool stack and the dom0_mem= option for the Xen hypervisor in

GRUB 2 you need to disable xl autoballoon in etc/xen/xl.conf. Otherwise

launching VMs fails with errors about not being able to balloon down Dom0. So add

autoballoon=0 to xl.conf if you have the dom0_mem= option specified for Xen. Also

see Xen dom0 memory

25.3. Network card in fully virtualized guests

In a fully virtualized guest, the default network card is an emulated Realtek network card. However,

it also possible to use the split network driver to run the communication between Dom0 and a VM

Guest. By default, both interfaces are presented to the VM Guest, because the drivers of certain

operating systems require both to be present.

When using SUSE Linux Enterprise Server, only the paravirtualized network cards are available for

the VM Guest by default. The following network options are available:

emulated

To use an emulated network interface like an emulated Realtek card, specify type=ioemu

in the vif device section of the domain xl configuration. An example configuration would

look like:

vif = ['type=ioemu,mac=00:16:3e:5f:48:e4,bridge=br0']

Find more details about the xl configuration in the xl.conf man page man 5 xl.conf.

paravirtualized

When you specify type=vif and do not specify a model or type, the paravirtualized network

interface is used:

vif = ['type=vif,mac=00:16:3e:5f:48:e4,bridge=br0,backen=0']

4.

209

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf
https://wiki.xen.org/wiki/Xen_Best_Practices#Xen_dom0_dedicated_memory_and_preventing_dom0_memory_ballooning

emulated and paravirtualized

If the administrator should be offered both options, simply specify both type and model. The

xl configuration would look like:

vif = ['type=ioemu,mac=00:16:3e:5f:48:e4,model=rtl8139,bridge=br0']

In this case, one of the network interfaces should be disabled on the VM Guest.

25.4. Starting the virtual machine host

If virtualization software is correctly installed, the computer boots to display the GRUB 2 boot

loader with a Xen option on the menu. Select this option to start the virtual machine host.

Warning

When booting a Xen system, you may observe error messages in the /var/log/

messages log file or systemd journal of dom0 similar to following:

isst_if_mbox_pci: probe of 0000:ff:1e.1 failed with error -5
isst_if_pci: probe of 0000:fe:00.1 failed with error -5

Ignore them as they are harmless and are caused by the fact that the ISST driver

does not provide any power or frequency scaling feature for virtual machines.

Xen and Kdump

In Xen, the hypervisor manages the memory resource. If you need to reserve system

memory for a recovery kernel in Dom0, this memory needs to be reserved by the

hypervisor. Thus, it is necessary to add crashkernel=size to the

GRUB_CMDLINE_XEN_DEFAULT variable in the /etc/dfault/grub file, save it

and run the following command:

>sudo grub2-mkconfig -o /boot/grub2/grub.cfg

For more information on the crashkernel parameter, see the section called

“Calculating crashkernel allocation size” in “System Analysis and Tuning Guide”.

If the Xen option is not on the GRUB 2 menu, review the steps for installation and verify that the

GRUB 2 boot loader has been updated. If the installation has been done without selecting the Xen

pattern, run the YaST Software Management, select the filter Patterns and choose Xen Virtual

Machine Host Server for installation.

After booting the hypervisor, the Dom0 virtual machine starts and displays its graphical desktop

environment. If you did not install a graphical desktop, the command line environment appears.

Chapter 25. Setting up a virtual machine host

210

https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf

Graphics problems

Sometimes it may happen that the graphics system does not work properly. In this

case, add vga=ask to the boot parameters. To activate permanent settings, use

vga=mode-0x??? where ??? is calculated as 0x100 + VESA mode from https://

en.wikipedia.org/wiki/VESA_BIOS_Extensions, for example, vga=mode-0x361.

Before starting to install virtual guests, make sure that the system time is correct. To do this,

configure NTP (Network Time Protocol) on the controlling domain:

In YaST select Network Services > NTP Configuration.

Select the option to automatically start the NTP daemon during boot. Provide the IP address

of an existing NTP time server, then click Finish.

Time services on virtual guests

Hardware clocks are not precise. All modern operating systems try to correct the

system time compared to the hardware time bvia an additional time source. To get

the correct time on all VM Guest systems, also activate the network time services on

each respective guest or make sure that the guest uses the system time of the host.

For more about Independent Wallclocks in SUSE Linux Enterprise Server see

the section called “Xen virtual machine clock settings”.

For more information about managing virtual machines, see Chapter 27, Managing a virtualization

environment.

25.5. PCI Pass-Through

To take full advantage of VM Guest systems, it is sometimes necessary to assign specific PCI

devices to a dedicated domain. When using fully virtualized guests, this functionality is only

available if the chipset of the system supports this feature, and if it is activated from the BIOS.

This feature is available from both AMD* and Intel*. For AMD machines, the feature is called

IOMMU. In Intel speak, this is VT-d. Be aware that Intel-VT technology is not sufficient to use this

feature for fully virtualized guests. To make sure that your computer supports this feature, ask your

supplier specifically to deliver a system that supports PCI Pass-Through.

Limitations

Certain graphics drivers use highly optimized ways to access DMA. This is not supported,

and thus using graphics cards may be difficult.

1.

2.

•

211

https://en.wikipedia.org/wiki/VESA_BIOS_Extensions
https://en.wikipedia.org/wiki/VESA_BIOS_Extensions

When accessing PCI devices behind a PCIe bridge, all the PCI devices must be assigned to

a single guest. This limitation does not apply to PCIe devices.

Guests with dedicated PCI devices cannot be migrated live to a different host.

The configuration of PCI Pass-Through is twofold. First, the hypervisor must be informed at boot

time that a PCI device should be available for reassigning. Second, the PCI device must be

assigned to the VM Guest.

25.5.1. Configuring the hypervisor for PCI Pass-Through

Select a device to reassign to a VM Guest. To do this, run lspci -k, and read the device

number and the name of the original module that is assigned to the device:

06:01.0 Ethernet controller: Intel Corporation Ethernet Connection I217-LM
(rev 05)
 Subsystem: Dell Device 0617
 Kernel driver in use: e1000e
 Kernel modules: e1000e

In this case, the PCI number is (06:01.0) and the dependent kernel module is e1000e.

Specify a module dependency to ensure that xen_pciback is the first module to control the

device. Add the file named /etc/modprobe.d/50-e1000e.conf with the following

content:

install e1000e /sbin/modprobe xen_pciback ; /sbin/modprobe \
 --first-time --ignore-install e1000e

Instruct the xen_pciback module to control the device using the hide option. Edit or

create /etc/modprobe.d/50-xen-pciback.conf with the following content:

options xen_pciback hide=(06:01.0)

Reboot the system.

Check if the device is in the list of assignable devices with the command

xl pci-assignable-list

25.5.1.1. Dynamic assignment with xl

To avoid restarting the host system, you can use dynamic assignment with xl to use PCI Pass-

Through.

Begin by making sure that dom0 has the pciback module loaded:

>sudo modprobe pciback

Then make a device assignable by using xl pci-assignable-add. For example, to make the

device 06:01.0 available for guests, run the command:

>sudo xl pci-assignable-add 06:01.0

•

•

1.

2.

3.

4.

5.

Chapter 25. Setting up a virtual machine host

212

25.5.2. Assigning PCI devices to VM Guest systems

There are several possibilities to dedicate a PCI device to a VM Guest:

Adding the device while installing:

During installation, add the pci line to the configuration file:

pci=['06:01.0']

Hotplugging PCI devices to VM Guest systems

The command xl can be used to add or remove PCI devices on the fly. To add the device

with number 06:01.0 to a guest with name sles12 use:

xl pci-attach sles12 06:01.0

Adding the PCI device to Xend

To add the device to the guest permanently, add the following snippet to the guest

configuration file:

pci = ['06:01.0,power_mgmt=1,permissive=1']

After assigning the PCI device to the VM Guest, the guest system must care for the configuration

and device drivers for this device.

25.5.3. VGA Pass-Through

Xen 4.0 and newer supports VGA graphics adapter pass-through on fully virtualized VM Guests.

The guest can take full control of the graphics adapter with high-performance full 3D and video

acceleration.

Limitations

VGA Pass-Through functionality is similar to PCI Pass-Through and as such also requires

IOMMU (or Intel VT-d) support from the mainboard chipset and BIOS.

Only the primary graphics adapter (the one that is used when you power on the computer)

can be used with VGA Pass-Through.

VGA Pass-Through is supported only for fully virtualized guests. Paravirtual guests (PV) are

not supported.

The graphics card cannot be shared between multiple VM Guests using VGA Pass-Through

—you can dedicate it to one guest only.

To enable VGA Pass-Through, add the following settings to your fully virtualized guest

configuration file:

•

•

•

•

213

gfx_passthru=1
pci=['yy:zz.n']

where yy:zz.n is the PCI controller ID of the VGA graphics adapter as found with lspci -v on

Dom0.

25.5.4. Troubleshooting

In certain circumstances, problems may occur during the installation of the VM Guest. This section

describes several known problems and their solutions.

During boot, the system hangs

The software I/O translation buffer allocates a large chunk of low memory early in the

bootstrap process. If the requests for memory exceed the size of the buffer, it may result in a

hung boot process. To check if this is the case, switch to console 10 and check the output

there for a message similar to

kernel: PCI-DMA: Out of SW-IOMMU space for 32768 bytes at device
000:01:02.0

In this case, you need to increase the size of the swiotlb. Add swiotlb=VALUE (where

VALUE is specified as the number of slab entries) on the command line of Dom0. The

number can be adjusted up or down to find the optimal size for the machine.

swiotlb a PV guest

The swiotlb=force kernel parameter is required for DMA access to work for PCI

devices on a PV guest. For more information about IOMMU and the swiotlb option

see the file boot-options.txt from the package kernel-source.

25.5.5. More information

There are several resources on the Internet that provide interesting information about PCI Pass-

Through:

https://wiki.xenproject.org/wiki/VTd_HowTo

https://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-

enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/

https://support.amd.com/TechDocs/48882_IOMMU.pdf

25.6. USB pass-through

There are two methods for passing through individual host USB devices to a guest. The first is via

an emulated USB device controller, the second is using PVUSB.

•

•

•

Chapter 25. Setting up a virtual machine host

214

https://wiki.xenproject.org/wiki/VTd_HowTo
https://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
https://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices/
https://support.amd.com/TechDocs/48882_IOMMU.pdf

25.6.1. Identify the USB device

Before you can pass through a USB device to the VM Guest, you need to identify it on the VM Host

Server. Use the lsusb command to list the USB devices on the host system:

#lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 003: ID 0461:4d15 Primax Electronics, Ltd Dell Optical Mouse
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

To pass through the Dell mouse, for example, specify either the device tag in the form

vendor_id:device_id (0461:4d15) or the bus address in the form bus.device (2.3).

Remember to remove leading zeros, otherwise xl would interpret the numbers as octal values.

25.6.2. Emulated USB device

In emulated USB, the device model (QEMU) presents an emulated USB controller to the guest.

The USB device is then controlled from Dom0 while USB commands are translated between the

VM Guest and the host USB device. This method is only available to fully virtualized domains

(HVM).

Enable the emulated USB hub with the usb=1 option. Then specify devices among the list of

devices in the configuration file along with other emulated devices by using host:USBID. For

example:

usb=1
usbdevice=['tablet','host:2.3','host:0424:460']

25.6.3. Paravirtualized PVUSB

PVUSB is a new high performance method for USB Pass-Through from dom0 to the virtualized

guests. With PVUSB, there are two ways to add USB devices to a guest:

via the configuration file at domain creation time

via hotplug while the VM is running

PVUSB uses paravirtualized front- and back-end interfaces. PVUSB supports USB 1.1 and USB

2.0, and it works for both PV and HVM guests. To use PVUSB, you need usbfront in your guest

OS, and usbback in dom0 or usb back-end in qemu. On SUSE Linux Enterprise Server, the USB

back-end comes with qemu.

As of Xen 4.7, xl PVUSB support and hotplug support is introduced.

In the configuration file, specify USB controllers and USB host devices with usbctrl and usbdev.

For example, in case of HVM guests:

usbctrl=['type=qusb,version=2,ports=4', 'type=qusb,version=1,ports=4',]
usbdev=['hostbus=2, hostaddr=1, controller=0,port=1',]

•

•

215

Note

It is important to specify type=qusb for the controller of HVM guests.

To manage hotplugging PVUSB devices, use the usbctrl-attach, usbctrl-detach, usb-

list, usbdev-attach and usb-detach subcommands. For example:

Create a USB controller which is version USB 1.1 and has 8 ports:

#xl usbctrl-attach test_vm version=1 ports=8 type=qusb

Find the first available controller:port in the domain, and attach USB device whose

busnum:devnum is 2:3 to it; you can also specify controller and port:

#xl usbdev-attach test_vm hostbus=2 hostaddr=3

Show all USB controllers and USB devices in the domain:

#xl usb-list test_vm
Devid Type BE state usb-ver ports
0 qusb 0 1 1 8
 Port 1: Bus 002 Device 003
 Port 2:
 Port 3:
 Port 4:
 Port 5:
 Port 6:
 Port 7:
 Port 8:

Detach the USB device under controller 0 port 1:

#xl usbdev-detach test_vm 0 1

Remove the USB controller with the indicated dev_id, and all USB devices under it:

#xl usbctrl-detach test_vm dev_id

For more information, see https://wiki.xenproject.org/wiki/Xen_USB_Passthrough.

Chapter 25. Setting up a virtual machine host

216

https://wiki.xenproject.org/wiki/Xen_USB_Passthrough

Chapter 26. Virtual networking

A VM Guest system needs specific means to communicate either with other VM Guest systems or

with a local network. The network interface to the VM Guest system is made of a split device driver,

which means that any virtual Ethernet device has a corresponding network interface in Dom0. This

interface is set up to access a virtual network that is run in Dom0. The bridged virtual network is

fully integrated into the system configuration of SUSE Linux Enterprise Server and can be

configured with YaST.

When installing a Xen VM Host Server, a bridged network configuration is proposed during normal

network configuration. The user can choose to change the configuration during the installation and

customize it to the local needs.

If desired, Xen VM Host Server can be installed after performing a default Physical Server

installation using the Install Hypervisor and Tools module in YaST. This module prepares

the system for hosting virtual machines, including invocation of the default bridge networking

proposal.

In case the necessary packages for a Xen VM Host Server are installed manually with rpm or

zypper, the remaining system configuration needs to be done by the administrator manually or

with YaST.

The network scripts that are provided by Xen are not used by default in SUSE Linux Enterprise

Server. They are only delivered for reference but disabled. The network configuration that is used

in SUSE Linux Enterprise Server is done by the YaST system configuration similar to the

configuration of network interfaces in SUSE Linux Enterprise Server.

For more general information about managing network bridges, see the section called “Network

bridge”.

26.1. Network devices for guest systems

The Xen hypervisor can provide different types of network interfaces to the VM Guest systems.

The preferred network device should be a paravirtualized network interface. This yields the highest

transfer rates with the lowest system requirements. Up to eight network interfaces may be provided

for each VM Guest.

Systems that are not aware of paravirtualized hardware may not have this option. To connect

systems to a network that can only run fully virtualized, several emulated network interfaces are

available. The following emulations are at your disposal:

Realtek 8139 (PCI). This is the default emulated network card.

AMD PCnet32 (PCI)

NE2000 (PCI)

•

•

•

217

NE2000 (ISA)

Intel e100 (PCI)

Intel e1000 and its variants e1000-82540em, e1000-82544gc, e1000-82545em (PCI)

All these network interfaces are software interfaces. Because every network interface must have a

unique MAC address, an address range has been assigned to Xensource that can be used by

these interfaces.

Virtual network interfaces and MAC addresses

The default configuration of MAC addresses in virtualized environments creates a

random MAC address that looks like 00:16:3E:xx:xx:xx. Normally, the amount of

available MAC addresses should be big enough to get only unique addresses.

However, if you have a large installation, or to make sure that no problems arise from

random MAC address assignment, you can also manually assign these addresses.

For debugging or system management purposes, it may be useful to know which virtual interface in

Dom0 is connected to which Ethernet device in a running guest. This information may be read from

the device naming in Dom0. All virtual devices follow the rule vif<domain

number>.<interface_number>.

For example, to know the device name for the third interface (eth2) of the VM Guest with id 5, the

device in Dom0 would be vif5.2. To obtain a list of all available interfaces, run the command ip

a.

The device naming does not contain any information about which bridge this interface is connected

to. However, this information is available in Dom0. To get an overview about which interface is

connected to which bridge, run the command bridge link. The output may look as follows:

>sudo bridge link
2: eth0 state DOWN : <NO-CARRIER,BROADCAST,MULTICAST,SLAVE,UP> mtu 1500 master
br0
3: eth1 state UP : <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 master br1

In this example, there are three configured bridges: br0, br1 and br2. Currently, br0 and br1

each have a real Ethernet device added: eth0 and eth1, respectively.

26.2. Host-based routing in Xen

Xen can be set up to use host-based routing in the controlling Dom0, although this is not yet well

supported from YaST and requires certain amount of manual editing of configuration files. Thus,

this is a task that requires an advanced administrator.

•

•

•

Chapter 26. Virtual networking

218

The following configuration only works when using fixed IP addresses. Using DHCP is not

practicable with this procedure, because the IP address must be known to both the VM Guest and

the VM Host Server system.

The easiest way to create a routed guest is to change the networking from a bridged to a routed

network. As a requirement to the following procedures, a VM Guest with a bridged network setup

must be installed. For example, the VM Host Server is named earth with the IP 192.168.1.20, and

the VM Guest has the name alice with the IP 192.168.1.21.

Procedure 26.1. Configuring a routed IPv4 VM Guest

Make sure that alice is shut down. Use xl commands to shut down and check.

Prepare the network configuration on the VM Host Server earth:

Create a hotplug interface to route the traffic. To accomplish this, create a file named /

etc/sysconfig/network/ifcfg-alice.0 with the following content:

NAME="Xen guest alice"
BOOTPROTO="static"
STARTMODE="hotplug"

Ensure that IP forwarding is enabled:

In YaST, go to Network Settings > Routing.

Enter the Routing tab and activate Enable IPv4 Forwarding and Enable IPv6

Forwarding options.

Confirm the setting and quit YaST.

Apply the following configuration to firewalld:

Add alice.0 to the devices in the public zone:

>sudo firewall-cmd --zone=public --add-interface=alice.0

Tell the firewall which address should be forwarded:

>sudo firewall-cmd --zone=public \
--add-forward-
port=port=80:proto=tcp:toport=80:toaddr="192.168.1.21/32,0/0"

Make the runtime configuration changes permanent:

>sudo firewall-cmd --runtime-to-permanent

Add a static route to the interface of alice. To accomplish this, add the following line to

the end of /etc/sysconfig/network/routes:

192.168.1.21 - - alice.0

To make sure that the switches and routers that the VM Host Server is connected to

know about the routed interface, activate proxy_arp on earth. Add the following lines

to /etc/sysctl.conf:

1.

2.

1.

2.

1.

2.

3.

3.

▪

▪

▪

4.

5.

219

net.ipv4.conf.default.proxy_arp = 1
net.ipv4.conf.all.proxy_arp = 1

Activate all changes with the commands:

>sudo systemctl restart systemd-sysctl wicked

Proceed with configuring the Xen configuration of the VM Guest by changing the vif interface

configuration for alice as described in the section called “XL—Xen management tool”. Make

the following changes to the text file you generate during the process:

Remove the snippet

bridge=br0

And add the following one:

vifname=vifalice.0

or

vifname=vifalice.0=emu

for a fully virtualized domain.

Change the script that is used to set up the interface to the following:

script=/etc/xen/scripts/vif-route-ifup

Activate the new configuration and start the VM Guest.

The remaining configuration tasks must be accomplished from inside the VM Guest.

Open a console to the VM Guest with xl consoleDOMAIN and log in.

Check that the guest IP is set to 192.168.1.21.

Provide VM Guest with a host route and a default gateway to the VM Host Server. Do

this by adding the following lines to /etc/sysconfig/network/routes:

192.168.1.20 - - eth0
default 192.168.1.20 - -

Finally, test the network connection from the VM Guest to the world outside and from the

network to your VM Guest.

26.3. Creating a masqueraded network setup

Creating a masqueraded network setup is similar to the routed setup. However, there is no

proxy_arp needed, and certain firewall rules are different. To create a masqueraded network to a

guest dolly with the IP address 192.168.100.1 where the host has its external interface on br0,

proceed as follows. For easier configuration, only the already installed guest is modified to use a

masqueraded network:

6.

3.

1.

2.

3.

4.

4.

1.

2.

3.

5.

Chapter 26. Virtual networking

220

Procedure 26.2. Configuring a masqueraded IPv4 VM guest

Shut down the VM Guest system with xl shutdownDOMAIN.

Prepare the network configuration on the VM Host Server:

Create a hotplug interface to route the traffic. To accomplish this, create a file named /

etc/sysconfig/network/ifcfg-dolly.0 with the following content:

NAME="Xen guest dolly"
BOOTPROTO="static"
STARTMODE="hotplug"

Edit the file /etc/sysconfig/SuSEfirewall2 and add the following

configurations:

Add dolly.0 to the devices in FW_DEV_DMZ:

FW_DEV_DMZ="dolly.0"

Switch on the routing in the firewall:

FW_ROUTE="yes"

Switch on masquerading in the firewall:

FW_MASQUERADE="yes"

Tell the firewall which network should be masqueraded:

FW_MASQ_NETS="192.168.100.1/32"

Remove the networks from the masquerading exceptions:

FW_NOMASQ_NETS=""

Finally, restart the firewall with the command:

>sudo systemctl restart SuSEfirewall2

Add a static route to the interface of dolly. To accomplish this, add the following line to

the end of /etc/sysconfig/network/routes:

192.168.100.1 - - dolly.0

Activate all changes with the command:

>sudo systemctl restart wicked

Proceed with configuring the Xen configuration of the VM Guest.

Change the vif interface configuration for dolly as described in the section called “XL—

Xen management tool”.

Remove the entry:

bridge=br0

And add the following one:

1.

2.

1.

2.

▪

▪

▪

▪

▪

▪

3.

4.

3.

1.

2.

3.

221

vifname=vifdolly.0

Change the script that is used to set up the interface to the following:

script=/etc/xen/scripts/vif-route-ifup

Activate the new configuration and start the VM Guest.

The remaining configuration tasks need to be accomplished from inside the VM Guest.

Open a console to the VM Guest with xl consoleDOMAIN and log in.

Check whether the guest IP is set to 192.168.100.1.

Provide VM Guest with a host route and a default gateway to the VM Host Server. Do

this by adding the following lines to /etc/sysconfig/network/routes:

192.168.1.20 - - eth0
default 192.168.1.20 - -

Finally, test the network connection from the VM Guest to the outside world.

26.4. Special configurations

There are many network configuration possibilities available to Xen. The following configurations

are not activated by default:

26.4.1. Bandwidth throttling in virtual networks

With Xen, you may limit the network transfer rate a virtual guest may use to access a bridge. To

configure this, you need to modify the VM Guest configuration as described in the section called

“XL—Xen management tool”.

In the configuration file, first search for the device that is connected to the virtual bridge. The

configuration looks like the following:

vif = ['mac=00:16:3e:4f:94:a9,bridge=br0']

To add a maximum transfer rate, add a parameter rate to this configuration as in:

vif = ['mac=00:16:3e:4f:94:a9,bridge=br0,rate=100Mb/s']

The rate is either Mb/s (megabits per second) or MB/s (megabytes per second). In the above

example, the maximum transfer rate of the virtual interface is 100 megabits. By default, there is no

limitation to the bandwidth of a guest to the virtual bridge.

It is even possible to fine-tune the behavior by specifying the time window that is used to define the

granularity of the credit replenishment:

vif = ['mac=00:16:3e:4f:94:a9,bridge=br0,rate=100Mb/s@20ms']

4.

5.

4.

1.

2.

3.

5.

Chapter 26. Virtual networking

222

26.4.2. Monitoring the network traffic

To monitor the traffic on a specific interface, the little application iftop is a nice program that

displays the current network traffic in a terminal.

When running a Xen VM Host Server, you need to define the interface that is monitored. The

interface that Dom0 uses to get access to the physical network is the bridge device, for example,

br0. This, however, may vary on your system. To monitor all traffic to the physical interface, run a

terminal as root and use the command:

iftop -i br0

To monitor the network traffic of a special network interface of a specific VM Guest, supply the

correct virtual interface. For example, to monitor the first Ethernet device of the domain with id 5,

use the command:

ftop -i vif5.0

To quit iftop, press the key Q. More options and possibilities are available in the man page man

8 iftop.

223

Chapter 27. Managing a virtualization environment

Apart from using the recommended libvirt library (Part II, “Managing virtual machines with

libvirt ”), you can manage Xen guest domains with the xl tool from the command line.

27.1. XL—Xen management tool

The xl program is a tool for managing Xen guest domains. It is part of the xen-tools package.

xl is based on the LibXenlight library, and can be used for general domain management, such as

domain creation, listing, pausing or shutting down. You need to be root to execute xl commands.

Note

xl can only manage running guest domains specified by their configuration file. If a

guest domain is not running, you cannot manage it with xl.

Tip

To allow users to continue to have managed guest domains in the way the obsolete

xm command allowed, we now recommend using libvirt's virsh and virt-

manager tools. For more information, see Part II, “Managing virtual machines with

libvirt ”.

xl operations rely upon xenstored and xenconsoled services. Make sure you start

>systemctl start xencommons

at boot time to initialize all the daemons required by xl.

Set up a xenbr0 network bridge in the host domain

In the most common network configuration, you need to set up a bridge in the host

domain named xenbr0 to have a working network for the guest domains.

The basic structure of every xl command is:

xl <subcommand> [options] domain_id

where <subcommand> is the xl command to run, domain_id is the ID number assigned to a

domain or the name of the virtual machine, and OPTIONS indicates subcommand-specific options.

For a complete list of the available xl subcommands, run xl help. For each command, there is a

more detailed help available that is obtained with the extra parameter --help. More information

about the respective subcommands is available in the man page of xl.

Chapter 27. Managing a virtualization environment

224

For example, the xl list --help displays all options that are available to the list command. As

an example, the xl list command displays the status of all virtual machines.

>sudo xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 457 2 r----- 2712.9
sles12 7 512 1 -b---- 16.3
opensuse 512 1 12.9

The State information indicates if a machine is running, and in which state it is. The most common

flags are r (running) and b (blocked) where blocked means it is either waiting for IO, or sleeping

because there is nothing to do. For more details about the state flags, see man 1 xl.

Other useful xl commands include:

xl create creates a virtual machine from a given configuration file.

xl rebootreboots a virtual machine.

xl destroy immediately terminates a virtual machine.

xl block-list displays all virtual block devices attached to a virtual machine.

27.1.1. Guest domain configuration file

When operating domains, xl requires a domain configuration file for each domain. The default

directory to store such configuration files is /etc/xen/.

A domain configuration file is a plain text file. It consists of several KEY=VALUE pairs. Certain keys

are mandatory. General keys apply to any guest, and specific ones apply only to a specific guest

type (para or fully virtualized). A value can either be a "string" surrounded by single or double

quotes, a number, a boolean value, or a list of several values enclosed in brackets [value1,

value2, ...].

Example 27.1. Guest domain configuration file for SLED 12: /etc/xen/sled12.cfg

name= "sled12"
builder = "hvm"
vncviewer = 1
memory = 512
disk = ['/var/lib/xen/images/sled12.raw,,hda', '/dev/cdrom,,hdc,cdrom']
vif = ['mac=00:16:3e:5f:48:e4,model=rtl8139,bridge=br0']
boot = "n"

To start such domain, run xl create /etc/xen/sled12.cfg.

27.2. Automatic start of guest domains

To make a guest domain start automatically after the host system boots, follow these steps:

Create the domain configuration file if it does not exist, and save it in the /etc/xen/

directory, for example, /etc/xen/domain_name.cfg.

•

•

•

•

1.

225

Make a symbolic link of the guest domain configuration file in the auto/ subdirectory.

>sudo ln -s /etc/xen/domain_name.cfg /etc/xen/auto/domain_name.cfg

On the next system boot, the guest domain defined in domain_name.cfg is started.

27.3. Event actions

In the guest domain configuration file, you can define actions to be performed on a predefined set

of events. For example, to tell the domain to restart itself after it is powered off, include the

following line in its configuration file:

on_poweroff="restart"

A list of predefined events for a guest domain follows:

List of events

on_poweroff

Specifies what should be done with the domain if it shuts itself down.

on_reboot

Action to take if the domain shuts down with a reason code requesting a reboot.

on_watchdog

Action to take if the domain shuts down because of a Xen watchdog timeout.

on_crash

Action to take if the domain crashes.

For these events, you can define one of the following actions:

List of related actions

destroy

Destroy the domain.

restart

Destroy the domain and immediately create a new domain with the same configuration.

rename-restart

Rename the domain that terminated, and then immediately create a new domain with the

same configuration as the original.

2.

3.

Chapter 27. Managing a virtualization environment

226

preserve

Keep the domain. It can be examined, and later destroyed with xl destroy.

coredump-destroy

Write a core dump of the domain to /var/xen/dump/NAME and then destroy the domain.

coredump-restart

Write a core dump of the domain to /var/xen/dump/NAME and then restart the domain.

27.4. Time Stamp Counter

The Time Stamp Counter (TSC) may be specified for each domain in the guest domain

configuration file (for more information, see the section called “Guest domain configuration file”).

With the tsc_mode setting, you specify whether rdtsc instructions are executed “natively” (fast, but

TSC-sensitive applications may sometimes run incorrectly) or emulated (always run correctly, but

performance may suffer).

tsc_mode=0 (default)

Use this to ensure correctness while providing the best performance possible—for more

information, see https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt.

tsc_mode=1 (always emulate)

Use this when TSC-sensitive apps are running and worst-case performance degradation is

known and acceptable.

tsc_mode=2 (never emulate)

Use this when all applications running in this VM are TSC-resilient and highest performance

is required.

tsc_mode=3 (PVRDTSCP)

High-TSC-frequency applications may be paravirtualized (modified) to obtain both

correctness and highest performance—any unmodified applications must be TSC-resilient.

For background information, see https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt.

27.5. Saving virtual machines

Procedure 27.1. Save a virtual machine’s current state

Make sure the virtual machine to be saved is running.1.

227

https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt
https://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt

In the host environment, enter

>sudo xl save IDSTATE-FILE

where ID is the virtual machine ID you want to save, and STATE-FILE is the name you

specify for the memory state file. By default, the domain is no longer running after you create

its snapshot. Use -c to keep it running even after you create the snapshot.

27.6. Restoring virtual machines

Procedure 27.2. Restore a virtual machine’s current state

Make sure the virtual machine to be restored has not been started since you ran the save

operation.

In the host environment, enter

>sudo xl restore STATE-FILE

where STATE-FILE is the previously saved memory state file. By default, the domain is

running after it is restored. To pause it after the restore, use -p.

27.7. Virtual machine states

A virtual machine’s state can be displayed by viewing the results of the xl list command, which

abbreviates the state using a single character.

r - running - The virtual machine is currently running and consuming allocated resources.

b - blocked - The virtual machine’s processor is not running and not able to run. It is either

waiting for I/O or has stopped working.

p - paused - The virtual machine is paused. It does not interact with the hypervisor but still

maintains its allocated resources, such as memory.

s - shutdown - The guest operating system is in the process of being shut down, rebooted,

or suspended, and the virtual machine is being stopped.

c - crashed - The virtual machine has crashed and is not running.

d - dying - The virtual machine is shutting down or crashing.

2.

1.

2.

•

•

•

•

•

•

Chapter 27. Managing a virtualization environment

228

Chapter 28. Block devices in Xen

28.1. Mapping physical storage to virtual disks

The disk specification for a Xen domain in the domain configuration file is as straightforward as the

following example:

disk = ['format=raw,vdev=hdc,access=ro,devtype=cdrom,target=/root/image.iso']

It defines a disk block device based on the /root/image.iso disk image file. The is seen as

hdc by the guest, with read-only (ro) access. The type of the device is cdrom with raw format.

The following example defines an identical device, but using simplified positional syntax:

disk = ['/root/image.iso,raw,hdc,ro,cdrom']

You can include more disk definitions in the same line, each one separated by a comma. If a

parameter is not specified, then its default value is taken:

disk = ['/root/image.iso,raw,hdc,ro,cdrom','/dev/vg/guest-volume,,hda','...']

List of parameters

target

Source block device or disk image path.

format

The format of the image file. Default is raw.

vdev

Virtual device as seen by the guest. Supported values are hd[x], xvd[x], sd[x] etc. See /usr/

share/doc/packages/xen/misc/vbd-interface.txt for more details. This

parameter is mandatory.

access

Whether the block device is provided to the guest in read-only or read-write mode.

Supported values are ro or r for read-only, and rw or w for read/write access. Default is ro

for devtype=cdrom, and rw for other device types.

devtype

Qualifies virtual device type. Supported value is cdrom.

229

backendtype

The back-end implementation to use. Supported values are phy, tap, and qdisk. Normally

this option should not be specified as the back-end type is automatically determined.

script

Specifies that target is not a normal host path, but rather information to be interpreted by

the executable program. The specified script file is looked for in /etc/xen/scripts if it

does not point to an absolute path. These scripts are normally called block-

<script_name>.

For more information about specifying virtual disks, see /usr/share/doc/packages/xen/

misc/xl-disk-configuration.txt.

28.2. Mapping network storage to virtual disk

Similar to mapping a local disk image (see the section called “Mapping physical storage to virtual

disks”), you can map a network disk as a virtual disk as well.

The following example shows mapping of an RBD (RADOS Block Device) disk with multiple Ceph

monitors and cephx authentication enabled:

disk = ['vdev=hdc, backendtype=qdisk, \
target=rbd:libvirt-pool/new-libvirt-image:\
id=libvirt:key=AQDsPWtW8JoXJBAAyLPQe7MhCC+JPkI3QuhaAw==:auth_supported=cephx;non
e:\
mon_host=137.65.135.205\\:6789;137.65.135.206\\:6789;137.65.135.207\\:6789']

Following is an example of an NBD (Network Block Device) disk mapping:

disk = ['vdev=hdc, backendtype=qdisk, target=nbd:151.155.144.82:5555']

28.3. File-backed virtual disks and loopback devices

When a virtual machine is running, each of its file-backed virtual disks consumes a loopback

device on the host. By default, the host allows up to 64 loopback devices to be consumed.

To simultaneously run more file-backed virtual disks on a host, you can increase the number of

available loopback devices by adding the following option to the host’s /etc/

modprobe.conf.local file.

options loop max_loop=x

where x is the maximum number of loopback devices to create.

Changes take effect after the module is reloaded.

Chapter 28. Block devices in Xen

230

Tip

Enter rmmod loop and modprobe loop to unload and reload the module. In case

rmmod does not work, unmount all existing loop devices or reboot the computer.

28.4. Resizing block devices

While it is always possible to add new block devices to a VM Guest system, it is sometimes more

desirable to increase the size of an existing block device. In case such a system modification is

already planned during deployment of the VM Guest, several basic considerations should be done:

Use a block device that may be increased in size. LVM devices and file system images are

commonly used.

Do not partition the device inside the VM Guest, but use the main device directly to apply the

file system. For example, use /dev/xvdb directly instead of adding partitions to /dev/

xvdb.

Make sure that the file system to be used can be resized. Sometimes, for example, with

Ext3, certain features must be switched off to be able to resize the file system. A file system

that can be resized online and mounted is XFS. Use the command xfs_growfs to resize

that file system after the underlying block device has been increased in size. For more

information about XFS, see man 8 xfs_growfs.

When resizing an LVM device that is assigned to a VM Guest, the new size is automatically known

to the VM Guest. No further action is needed to inform the VM Guest about the new size of the

block device.

When using file system images, a loop device is used to attach the image file to the guest. For

more information about resizing that image and refreshing the size information for the VM Guest,

see the section called “Sparse image files and disk space”.

28.5. Scripts for managing advanced storage scenarios

There are scripts that can help with managing advanced storage scenarios such as disk

environments provided by dmmd (“device mapper—multi disk”) including LVM environments built

upon a software RAID set, or a software RAID set built upon an LVM environment. These scripts

are part of the xen-tools package. After installation, they can be found in /etc/xen/scripts:

block-dmmd

block-drbd-probe

block-npiv

•

•

•

•

•

•

231

The scripts allow for external commands to perform specific action, or series of actions of the block

devices before serving them up to a guest.

These scripts could formerly only be used with xl or libxl using the disk configuration syntax

script=. They can now be used with libvirt by specifying the base name of the block script in the

<source> element of the disk. For example:

<source dev='dmmd:md;/dev/md0;lvm;/dev/vgxen/lv-vm01'/>

Chapter 28. Block devices in Xen

232

Chapter 29. Virtualization: configuration options and settings

The documentation in this section, describes advanced management tasks and configuration

options that may help technology innovators implement leading-edge virtualization solutions. It is

provided as a courtesy and does not imply that all documented options and tasks are supported by

Novell, Inc.

29.1. Virtual CD readers

Virtual CD readers can be set up when a virtual machine is created or added to an existing virtual

machine. A virtual CD reader can be based on a physical CD/DVD, or based on an ISO image.

Virtual CD readers work differently depending on whether they are paravirtual or fully virtual.

29.1.1. Virtual CD readers on paravirtual machines

A paravirtual machine can have up to 100 block devices composed of virtual CD readers and

virtual disks. On paravirtual machines, virtual CD readers present the CD as a virtual disk with

read-only access. Virtual CD readers cannot be used to write data to a CD.

After you have finished accessing a CD on a paravirtual machine, it is recommended that you

remove the virtual CD reader from the virtual machine.

Paravirtualized guests can use the device type devtype=cdrom. This partly emulates the

behavior of a real CD reader, and allows CDs to be changed. It is even possible to use the eject

command to open the tray of the CD reader.

29.1.2. Virtual CD readers on fully virtual machines

A fully virtual machine can have up to four block devices composed of virtual CD readers and

virtual disks. A virtual CD reader on a fully virtual machine interacts with an inserted CD in the way

you would expect a physical CD reader to interact.

When a CD is inserted in the physical CD reader on the host computer, all virtual machines with

virtual CD readers based on the physical CD reader, such as /dev/cdrom/, can read the inserted

CD. Assuming the operating system has automount functionality, the CD should automatically

appear in the file system. Virtual CD readers cannot be used to write data to a CD. They are

configured as read-only devices.

29.1.3. Adding virtual CD readers

Virtual CD readers can be based on a CD inserted into the CD reader or on an ISO image file.

Make sure that the virtual machine is running and the operating system has finished booting.1.

233

Insert the desired CD into the physical CD reader or copy the desired ISO image to a

location available to Dom0.

Select a new, unused block device in your VM Guest, such as /dev/xvdb.

Choose the CD reader or ISO image that you want to assign to the guest.

When using a real CD reader, use the following command to assign the CD reader to your

VM Guest. In this example, the name of the guest is alice:

>sudo xl block-attach alice target=/dev/sr0,vdev=xvdb,access=ro

When assigning an image file, use the following command:

>sudo xl block-attach alice target=/path/to/file.iso,vdev=xvdb,access=ro

A new block device, such as /dev/xvdb, is added to the virtual machine.

If the virtual machine is running Linux, complete the following:

Open a terminal in the virtual machine and enter fdisk -l to verify that the device

was properly added. You can also enter ls /sys/block to see all disks available to

the virtual machine.

The CD is recognized by the virtual machine as a virtual disk with a drive designation,

for example:

/dev/xvdb

Enter the command to mount the CD or ISO image using its drive designation. For

example,

>sudo mount -o ro /dev/xvdb /mnt

mounts the CD to a mount point named /mnt.

The CD or ISO image file should be available to the virtual machine at the specified

mount point.

If the virtual machine is running Windows, reboot the virtual machine.

Verify that the virtual CD reader appears in its My Computer section.

29.1.4. Removing virtual CD readers

Make sure that the virtual machine is running and the operating system has finished booting.

If the virtual CD reader is mounted, unmount it from within the virtual machine.

Enter xl block-list alice on the host view of the guest block devices.

Enter xl block-detach aliceBLOCK_DEV_ID to remove the virtual device from the

guest. If that fails, try to add -f to force the removal.

Press the hardware eject button to eject the CD.

2.

3.

4.

5.

6.

7.

8.

1.

2.

9.

1.

2.

3.

4.

5.

Chapter 29. Virtualization: configuration options and settings

234

29.2. Remote access methods

Certain configurations, such as those that include rack-mounted servers, require a computer to run

without a video monitor, keyboard or mouse. This type of configuration is often called headless

and requires the use of remote administration technologies.

Typical configuration scenarios and technologies include:

Graphical desktop with X Window System server

If a graphical desktop, such as GNOME, is installed on the virtual machine host, you can use

a remote viewer, such as a VNC viewer. On a remote computer, log in and manage the

remote guest environment by using graphical tools, such as tigervnc or virt-viewer.

Text only

You can use the ssh command from a remote computer to log in to a virtual machine host

and access its text-based console. You can then use the xl command to manage virtual

machines, and the virt-install command to create new virtual machines.

29.3. VNC viewer

VNC viewer is used to view the environment of the running guest system in a graphical way. You

can use it from Dom0 (known as local access or on-box access), or from a remote computer.

You can use the IP address of a VM Host Server and a VNC viewer to view the display of this VM

Guest. When a virtual machine is running, the VNC server on the host assigns the virtual machine

a port number to be used for VNC viewer connections. The assigned port number is the lowest port

number available when the virtual machine starts. The number is only available for the virtual

machine while it is running. After shutting down, the port number may be assigned to other virtual

machines.

For example, if ports 1 and 2 and 4 and 5 are assigned to the running virtual machines, the VNC

viewer assigns the lowest available port number, 3. If port number 3 is still in use the next time the

virtual machine starts, the VNC server assigns a different port number to the virtual machine.

To use the VNC viewer from a remote computer, the firewall must permit access to as many ports

as VM Guest systems run from. This means from port 5900 and up. For example, to run 10 VM

Guest systems, you need to open the TCP ports 5900:5910.

To access the virtual machine from the local console running a VNC viewer client, enter one of the

following commands:

vncviewer ::590#

vncviewer :#

•

•

235

is the VNC viewer port number assigned to the virtual machine.

When accessing the VM Guest from a machine other than Dom0, use the following syntax:

>vncviewer 192.168.1.20::590#

In this case, the IP address of Dom0 is 192.168.1.20.

29.3.1. Assigning VNC viewer port numbers to virtual machines

Although the default behavior of VNC viewer is to assign the first available port number, you should

assign a specific VNC viewer port number to a specific virtual machine.

To assign a specific port number on a VM Guest, edit the xl setting of the virtual machine and

change the vnclisten to the desired value. For example, for port number 5902, specify 2 only,

as 5900 is added automatically:

vfb = ['vnc=1,vnclisten="localhost:2"']

For more information regarding editing the xl settings of a guest domain, see the section called “XL

—Xen management tool”.

Tip

Assign higher port numbers to avoid conflict with port numbers assigned by the VNC

viewer, which uses the lowest available port number.

29.3.2. Using SDL instead of a VNC viewer

If you access a virtual machine's display from the virtual machine host console (known as local or

on-box access), you should use SDL instead of VNC viewer. VNC viewer is faster for viewing

desktops over a network, but SDL is faster for viewing desktops from the same computer.

To set the default to use SDL instead of VNC, change the virtual machine's configuration

information to the following. For instructions, see the section called “XL—Xen management tool”.

vfb = ['sdl=1']

Remember that, unlike a VNC viewer window, closing an SDL window terminates the virtual

machine.

29.4. Virtual keyboards

When a virtual machine is started, the host creates a virtual keyboard that matches the keymap

entry according to the virtual machine's settings. If there is no keymap entry specified, the virtual

machine's keyboard defaults to English (US).

Chapter 29. Virtualization: configuration options and settings

236

To view a virtual machine's current keymap entry, enter the following command on the Dom0:

>xl list -l VM_NAME | grep keymap

To configure a virtual keyboard for a guest, use the following snippet:

vfb = ['keymap="de"']

For a complete list of supported keyboard layouts, see the Keymaps section of the xl.cfg man

page man 5 xl.cfg.

29.5. Dedicating CPU resources

In Xen it is possible to specify how many and which CPU cores the Dom0 or VM Guest should use

to retain its performance. The performance of Dom0 is important for the overall system, as the disk

and network drivers are running on it. Also I/O intensive guests' workloads may consume lots of

Dom0s' CPU cycles. However, the performance of VM Guests is also important, to be able to

accomplish the task they were set up for.

29.5.1. Dom0

Dedicating CPU resources to Dom0 results in a better overall performance of the virtualized

environment because Dom0 has free CPU time to process I/O requests from VM Guests. Failing to

dedicate exclusive CPU resources to Dom0 may results in a poor performance and can cause the

VM Guests to function incorrectly.

Dedicating CPU resources involves three basic steps: modifying Xen boot line, binding Dom0's

VCPUs to a physical processor, and configuring CPU-related options on VM Guests:

First you need to append the dom0_max_vcpus=X to the Xen boot line. Do so by adding the

following line to /etc/default/grub:

GRUB_CMDLINE_XEN="dom0_max_vcpus=X"

If /etc/default/grub already contains a line setting GRUB_CMDLINE_XEN, rather

append dom0_max_vcpus=X to this line.

X needs to be replaced by the number of VCPUs dedicated to Dom0.

Update the GRUB 2 configuration file by running the following command:

>sudo grub2-mkconfig -o /boot/grub2/grub.cfg

Reboot for the change to take effect.

The next step is to bind (or “pin”) each Dom0's VCPU to a physical processor.

>sudo xl vcpu-pin Domain-0 0 0
xl vcpu-pin Domain-0 1 1

1.

2.

3.

4.

237

The first line binds Dom0's VCPU number 0 to the physical processor number 0, while the

second line binds Dom0's VCPU number 1 to the physical processor number 1.

Lastly, you need to make sure no VM Guest uses the physical processors dedicated to

VCPUs of Dom0. Assuming you are running an 8-CPU system, you need to add

cpus="2-8"

to the configuration file of the relevant VM Guest.

29.5.2. VM Guests

It is often necessary to dedicate specific CPU resources to a virtual machine. By default, a virtual

machine uses any available CPU core. Its performance can be improved by assigning a

reasonable number of physical processors to it as other VM Guests are not allowed to use them

after that. Assuming a machine with 8 CPU cores while a virtual machine needs to use 2 of them,

change its configuration file as follows:

vcpus=2
cpus="2,3"

The above example dedicates 2 processors to the VM Guest, and these being the third and fourth

one, (2 and 3 counted from zero). If you need to assign more physical processors, use the

cpus="2-8" syntax.

If you need to change the CPU assignment for a guest named “alice” in a hotplug manner, do the

following on the related Dom0:

>sudo xl vcpu-set alice 2
>sudo xl vcpu-pin alice 0 2
>sudo xl vcpu-pin alice 1 3

The example dedicates 2 physical processors to the guest, and bind its VCPU 0 to physical

processor 2 and VCPU 1 to physical processor 3. Now check the assignment:

>sudo xl vcpu-list alice
Name ID VCPUs CPU State Time(s) CPU Affinity
alice 4 0 2 -b- 1.9 2-3
alice 4 1 3 -b- 2.8 2-3

29.6. HVM features

In Xen, certain features are only available for fully virtualized domains. They are rarely used, but

still may be interesting in specific environments.

29.6.1. Specify boot device on boot

Just as with physical hardware, it is sometimes desirable to boot a VM Guest from a different

device than its own boot device. For fully virtual machines, it is possible to select a boot device with

the boot parameter in a domain xl configuration file:

boot = BOOT_DEVICE

5.

Chapter 29. Virtualization: configuration options and settings

238

BOOT_DEVICE can be one of c for hard disk, d for CD-ROM, or n for Network/PXE. You can

specify multiple options, and they will be attempted in the given order. For example,

boot = dc

boots from CD-ROM, and falls back to the hard disk if CD-ROM is not bootable.

29.6.2. Changing CPUIDs for guests

To be able to migrate a VM Guest from one VM Host Server to a different VM Host Server, the VM

Guest system may only use CPU features that are available on both VM Host Server systems. If

the actual CPUs are different on both hosts, it may be necessary to hide certain features before the

VM Guest is started. This maintains the possibility to migrate the VM Guest between both hosts.

For fully virtualized guests, this can be achieved by configuring the cpuid that is available to the

guest.

To gain an overview of the current CPU, have a look at /proc/cpuinfo. This contains all the

important information that defines the current CPU.

To redefine a CPU, first have a look at the respective cpuid definitions of the CPU vendor. These

are available from:

Intel

https://www.intel.com/Assets/PDF/appnote/241618.pdf

cpuid = "host,tm=0,sse3=0"

The syntax is a comma-separated list of key=value pairs, preceded by the word host. A few

keys take a numerical value, while all others take a single character which describes what to do

with the feature bit. See man 5 xl.cfg for a complete list of cpuid keys. The respective bits may

be changed by using the following values:

1

Force the corresponding bit to 1

0

Force the corresponding bit to 0

x

Use the values of the default policy

k

Use the values defined by the host

239

https://www.intel.com/Assets/PDF/appnote/241618.pdf

s

Like k, but preserve the value over migrations

Tip

Remember that counting bits is done from right to left, starting with bit 0.

29.6.3. Increasing the number of PCI-IRQs

In case you need to increase the default number of PCI-IRQs available to Dom0 and/or VM Guest,

you can do so by modifying the Xen kernel command line. Use the command

extra_guest_irqs=DOMU_IRGS,DOM0_IRGS. The optional first number DOMU_IRGS is

common for all VM Guests, while the optional second number DOM0_IRGS (preceded by a

comma) is for Dom0. Changing the setting for VM Guest has no impact on Dom0 and vice versa.

For example to change Dom0 without changing VM Guest, use

extra_guest_irqs=,512

29.7. Virtual CPU scheduling

The Xen hypervisor schedules virtual CPUs individually across physical CPUs. With modern CPUs

supporting multiple threads on each core, virtual CPUs can run on the same core in different

threads and thus influence each other. The performance of a virtual CPU running in one thread can

be noticeably affected by what other virtual CPUs in other threads are doing. When these virtual

CPUs belong to different guest systems, these guests can influence each other. The effect can

vary, from variations in the guest CPU time accounting to worse scenarios such as side channel

attack.

Scheduling granularity addresses this problem. You can specify it at boot time by using a Xen boot

parameter:

sched-gran=GRANULARITY

Replace GRANULARITY with one of:

cpu

The regular scheduling of the Xen hypervisor. Virtual CPUs of different guests can share one

physical CPU core. This is the default.

core

Virtual CPUs of a virtual core are always scheduled together on one physical core. Two or

more virtual CPUs from different virtual cores will never be scheduled on the same physical

core. Therefore, certain physical cores may have several of their CPUs left idle, even if there

Chapter 29. Virtualization: configuration options and settings

240

are virtual CPUs wanting to run. The impact on performance will depend on the actual

workload being run inside of the guest systems. In most of the analyzed cases, the observed

performance degradation, especially if under considerable load, was smaller than disabling

HyperThreading, which leaves all the cores with just one thread (see the smt boot option at

https://xenbits.xen.org/docs/unstable/misc/xen-command-line.html#smt-x86).

socket

The granularity goes even higher to a CPU socket level.

241

https://xenbits.xen.org/docs/unstable/misc/xen-command-line.html#smt-x86

Chapter 30. Administrative tasks

30.1. The boot loader program

The boot loader controls how the virtualization software boots and runs. You can modify the boot

loader properties by using YaST, or by directly editing the boot loader configuration file.

The YaST boot loader program is located at YaST > System > Boot Loader. Click the Bootloader

Options tab and select the line containing the Xen kernel as the Default Boot Section.

Figure 30.1. Boot loader settings

Confirm with OK. Next time you boot the host, it can provide the Xen virtualization environment.

You can use the Boot Loader program to specify functionality, such as:

Pass kernel command-line parameters.

Specify the kernel image and initial RAM disk.

Select a specific hypervisor.

Pass additional parameters to the hypervisor. See https://xenbits.xen.org/docs/unstable/

misc/xen-command-line.html for their complete list.

You can customize your virtualization environment by editing the /etc/default/grub file. Add

the following line to this file: GRUB_CMDLINE_XEN="<boot_parameters>". Do not forget to run

grub2-mkconfig -o /boot/grub2/grub.cfg after editing the file.

•

•

•

•

Chapter 30. Administrative tasks

242

https://xenbits.xen.org/docs/unstable/misc/xen-command-line.html
https://xenbits.xen.org/docs/unstable/misc/xen-command-line.html

30.2. Sparse image files and disk space

If the host’s physical disk reaches a state where it has no available space, a virtual machine using

a virtual disk based on a sparse image file cannot write to its disk. Consequently, it reports I/O

errors.

If this situation occurs, you should free up available space on the physical disk, remount the virtual

machine’s file system, and set the file system back to read-write.

To check the actual disk requirements of a sparse image file, use the command du -h <image

file>.

To increase the available space of a sparse image file, first increase the file size and then the file

system.

Back up before resizing

Touching the sizes of partitions or sparse files always bears the risk of data failure.

Do not work without a backup.

The resizing of the image file can be done online, while the VM Guest is running. Increase the size

of a sparse image file with:

>sudo dd if=/dev/zero of=<image file> count=0 bs=1M seek=<new size in MB>

For example, to increase the file /var/lib/xen/images/sles/disk0 to a size of 16GB, use

the command:

>sudo dd if=/dev/zero of=/var/lib/xen/images/sles/disk0 count=0 bs=1M seek=16000

Increasing non-sparse images

It is also possible to increase the image files of devices that are not sparse files.

However, you must know exactly where the previous image ends. Use the seek

parameter to point to the end of the image file and use a command similar to the

following:

>sudo dd if=/dev/zero of=/var/lib/xen/images/sles/disk0 seek=8000
bs=1M count=2000

Be sure to use the right seek, else data loss may happen.

If the VM Guest is running during the resize operation, also resize the loop device that provides the

image file to the VM Guest. First detect the correct loop device with the command:

>sudo losetup -j /var/lib/xen/images/sles/disk0

243

Then resize the loop device, for example, /dev/loop0, with the following command:

>sudo losetup -c /dev/loop0

Finally check the size of the block device inside the guest system with the command fdisk -l /

dev/xvdb. Replace the device name with your increased disk.

The resizing of the file system inside the sparse file involves tools that are depending on the actual

file system. This is described in detail in the Storage Administration Guide in “Storage

Administration Guide”.

30.3. Migrating Xen VM Guest systems

With Xen it is possible to migrate a VM Guest system from one VM Host Server to another with

almost no service interruption. This could be used, for example, to move a busy VM Guest to a VM

Host Server that has stronger hardware or is not yet loaded. Or, if a service of a VM Host Server is

required, all VM Guest systems running on this machine can be migrated to other machines to

avoid interruption of service. These are only two examples—many more reasons may apply to your

personal situation.

Before starting, certain preliminary considerations regarding the VM Host Server should be taken

into account:

All VM Host Server systems should use a similar CPU. The frequency is not so important,

but they should be using the same CPU family. To get more information about the used CPU,

use cat /proc/cpuinfo. Find more details about comparing host CPU features in the

section called “Detecting CPU features”.

All resources that are used by a specific guest system must be available on all involved VM

Host Server systems—for example, all used block devices must exist on both VM Host

Server systems.

If the hosts included in the migration process run in different subnets, make sure that either

DHCP relay is available to the guests, or for guests with static network configuration, set up

the network manually.

Using special features like PCI Pass-Through may be problematic. Do not implement

these when deploying for an environment that should migrate VM Guest systems between

different VM Host Server systems.

For fast migrations, a fast network is mandatory. If possible, use GB Ethernet and fast

switches. Deploying VLAN may also help avoid collisions.

•

•

•

•

•

Chapter 30. Administrative tasks

244

https://fsteimke.github.io/xsltng-docs/suse/book-storage.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-storage.pdf

30.3.1. Detecting CPU features

By using the cpuid and xen_maskcalc.py tools, you can compare features of a CPU on the

host from where you are migrating the source VM Guest with the features of CPUs on the target

hosts. This way you can better predict if the guest migrations will be successful.

Run the cpuid -1r command on each Dom0 that is supposed to run or receive the

migrated VM Guest and capture the output in text files, for example:

tux@vm_host1 >sudo cpuid -1r > vm_host1.txt
tux@vm_host2 >sudo cpuid -1r > vm_host2.txt
tux@vm_host3 >sudo cpuid -1r > vm_host3.txt

Copy all the output text files on a host with the xen_maskcalc.py script installed.

Run the xen_maskcalc.py script on all output text files:

>sudo xen_maskcalc.py vm_host1.txt vm_host2.txt vm_host3.txt
cpuid = [
 "0x00000001:ecx=x00xxxxxx0xxxxxxxxx00xxxxxxxxxxx",
 "0x00000007,0x00:ebx=xxxxxxxxxxxxxxxxxx00x0000x0x0x00"
]

Copy the output cpuid=[...] configuration snipped into the xl configuration of the

migrated guestdomU.cfg or alternatively to its libvirt's XML configuration.

Start the source guest with the trimmed CPU configuration. The guest can now only use

CPU features which are present on each of the hosts.

Tip

libvirt also supports calculating a baseline CPU for migration. For more details,

refer to Virtualization Best Practices.

30.3.1.1. More information

You can find more details about cpuid at https://etallen.com/cpuid.html.

You can download the latest version of the CPU mask calculator from https://github.com/twizted/

xen_maskcalc.

1.

2.

3.

4.

5.

245

https://etallen.com/cpuid.html
https://github.com/twizted/xen_maskcalc
https://github.com/twizted/xen_maskcalc

30.3.2. Preparing block devices for migrations

The block devices needed by the VM Guest system must be available on all involved VM Host

Server systems. This is done by implementing a specific kind of shared storage that serves as a

container for the root file system of the migrated VM Guest system. Common possibilities include:

iSCSI can be set up to give access to the same block devices from different systems at the

same time. For more information about iSCSI, see Chapter 15, Mass storage over IP

networks: iSCSI in “Storage Administration Guide”.

NFS is a widely used root file system that can easily be accessed from different locations.

For more information, see Chapter 19, Sharing file systems with NFS in “Storage

Administration Guide”.

DRBD can be used if only two VM Host Server systems are involved. This adds certain extra

data security, because the used data is mirrored over the network. For more information, see

the SUSE Linux Enterprise High Availability 15 SP7 documentation at https://

documentation.suse.com/sle-ha-15/.

SCSI can also be used if the available hardware permits shared access to the same disks.

NPIV is a special mode to use Fibre channel disks. However, in this case, all migration hosts

must be attached to the same Fibre channel switch. For more information about NPIV, see

the section called “Mapping physical storage to virtual disks”. Commonly, this works if the

Fibre channel environment supports 4 Gbps or faster connections.

30.3.3. Migrating VM Guest systems

The actual migration of the VM Guest system is done with the command:

>sudo xl migrate <domain_name> <host>

The speed of the migration depends on how fast the memory print can be saved to disk, sent to the

new VM Host Server and loaded there. This means that small VM Guest systems can be migrated

faster than big systems with a lot of memory.

30.4. Monitoring Xen

For a regular operation of many virtual guests, having a possibility to check the sanity of all the

different VM Guest systems is indispensable. Xen offers several tools besides the system tools to

gather information about the system.

•

•

•

•

•

Chapter 30. Administrative tasks

246

https://fsteimke.github.io/xsltng-docs/suse/book-storage.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-storage.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-storage.pdf
https://documentation.suse.com/sle-ha-15/
https://documentation.suse.com/sle-ha-15/

Monitoring the VM Host Server

Basic monitoring of the VM Host Server (I/O and CPU) is available via the Virtual

Machine Manager. Refer to the section called “Monitoring with Virtual Machine

Manager” for details.

30.4.1. Monitor Xen with xentop

The preferred terminal application to gather information about Xen virtual environment is xentop.

Be aware that this tool needs a rather broad terminal, else it inserts line breaks into the display.

xentop has several command keys that can give you more information about the system that is

monitored. For example:

D

Change the delay between the refreshes of the screen.

N

Also display network statistics. Note, that only standard configurations are displayed. If you

use a special configuration like a routed network, no network is displayed.

B

Display the respective block devices and their cumulated usage count.

For more information about xentop, see the manual page man 1 xentop.

virt-top

libvirt offers the hypervisor-agnostic tool virt-top, which is recommended for

monitoring VM Guests. See the section called “Monitoring with virt-top ” for

details.

30.4.2. Additional tools

There are many system tools that also help monitoring or debugging a running SUSE Linux

Enterprise system. Many of these are covered in Chapter 2, System monitoring utilities in “System

Analysis and Tuning Guide”. Especially useful for monitoring a virtualization environment are the

following tools:

247

https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf

ip

The command-line utility ip may be used to monitor arbitrary network interfaces. This is

especially useful if you have set up a network that is routed or applied a masqueraded

network. To monitor a network interface with the name alice.0, run the following

command:

>watch ip -s link show alice.0

bridge

In a standard setup, all the Xen VM Guest systems are attached to a virtual network bridge.

bridge allows you to determine the connection between the bridge and the virtual network

adapter in the VM Guest system. For example, the output of bridge link may look like

the following:

2: eth0 state DOWN : <NO-CARRIER, ...,UP> mtu 1500 master br0
8: vnet0 state UNKNOWN : <BROADCAST, ...,LOWER_UP> mtu 1500 master virbr0 \
 state forwarding priority 32 cost 100

This shows that there are two virtual bridges defined on the system. One is connected to the

physical Ethernet device eth0, the other one is connected to a VLAN interface vnet0.

iptables-save

Especially when using masquerade networks, or if several Ethernet interfaces are set up

together with a firewall setup, it may be helpful to check the current firewall rules.

The command iptables may be used to check all the different firewall settings. To list all

the rules of a chain, or even of the complete setup, you may use the commands iptables-

save or iptables -S.

30.5. Providing host information for VM Guest systems

In a standard Xen environment, the VM Guest systems have only limited information about the VM

Host Server system they are running on. If a guest should know more about the VM Host Server it

runs on, vhostmd can provide more information to selected guests. To set up your system to run

vhostmd, proceed as follows:

Install the package vhostmd on the VM Host Server.

To add or remove metric sections from the configuration, edit the file /etc/vhostmd/

vhostmd.conf. However, the default works well.

Check the validity of the vhostmd.conf configuration file with the command:

>cd /etc/vhostmd
>xmllint --postvalid --noout vhostmd.conf

1.

2.

3.

Chapter 30. Administrative tasks

248

Start the vhostmd daemon with the command sudo systemctl start vhostmd.

If vhostmd should be started automatically during start-up of the system, run the command:

>sudo systemctl enable vhostmd

Attach the image file /dev/shm/vhostmd0 to the VM Guest system named alice with the

command:

>xl block-attach opensuse /dev/shm/vhostmd0,,xvdb,ro

Log on the VM Guest system.

Install the client package vm-dump-metrics.

Run the command vm-dump-metrics. To save the result to a file, use the option -d

<filename>.

The result of the vm-dump-metrics is an XML output. The respective metric entries follow the

DTD /etc/vhostmd/metric.dtd.

For more information, see the manual pages man 8 vhostmd and /usr/share/doc/

vhostmd/README on the VM Host Server system. On the guest, see the man page man 1 vm-

dump-metrics.

4.

5.

6.

7.

8.

249

Chapter 31. XenStore: configuration database shared between
domains

This section introduces basic information about XenStore, its role in the Xen environment, the

directory structure of files used by XenStore, and the description of XenStore's commands.

31.1. Introduction

XenStore is a database of configuration and status information shared between VM Guests and

the management tools running in Dom0. VM Guests and the management tools read and write to

XenStore to convey configuration information, status updates, and state changes. The XenStore

database is managed by Dom0 and supports simple operations, such as reading and writing a key.

VM Guests and management tools can be notified of any changes in XenStore by watching entries

of interest. The xenstored daemon is managed by the xencommons service.

XenStore is located on Dom0 in a single database file /var/lib/xenstored/tdb (tdb

represents tree database).

31.2. File system interface

XenStore database content is represented by a virtual file system similar to /proc (for more

information on /proc, see the section called “The /proc file system” in “System Analysis and

Tuning Guide”). The tree has three main paths: /vm, /local/domain, and /tool.

/vm - stores information about the VM Guest configuration.

/local/domain - stores information about VM Guest on the local node.

/tool - stores general information about multiple tools.

Tip

Each VM Guest has two different ID numbers. The universal unique identifier (UUID)

remains the same even if the VM Guest is migrated to another machine. The domain

identifier (DOMID) is an identification number that represents a particular running

instance. It typically changes when the VM Guest is migrated to another machine.

31.2.1. XenStore commands

The file system structure of the XenStore database can be operated with the following commands:

xenstore-ls

Displays the full dump of the XenStore database.

•

•

•

Chapter 31. XenStore: configuration database shared between domains

250

https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf

xenstore-read path_to_xenstore_entry

Displays the value of the specified XenStore entry.

xenstore-exists xenstore_path

Reports whether the specified XenStore path exists.

xenstore-list xenstore_path

Displays all the children entries of the specified XenStore path.

xenstore-write path_to_xenstore_entry

Updates the value of the specified XenStore entry.

xenstore-rm xenstore_path

Removes the specified XenStore entry or directory.

xenstore-chmod xenstore_path mode

Updates the read/write permission on the specified XenStore path.

xenstore-control

Sends a command to the xenstored back-end, such as triggering an integrity check.

31.2.2. /vm

The /vm path is indexed by the UUID of each VM Guest, and stores configuration information such

as the number of virtual CPUs and the amount of allocated memory. There is a /vm/<uuid>

directory for each VM Guest. To list the directory content, use xenstore-list.

>sudo xenstore-list /vm
00000000-0000-0000-0000-000000000000
9b30841b-43bc-2af9-2ed3-5a649f466d79-1

The first line of the output belongs to Dom0, and the second one to a running VM Guest. The

following command lists all the entries related to the VM Guest:

251

>sudo xenstore-list /vm/9b30841b-43bc-2af9-2ed3-5a649f466d79-1
image
rtc
device
pool_name
shadow_memory
uuid
on_reboot
start_time
on_poweroff
bootloader_args
on_crash
vcpus
vcpu_avail
bootloader
name

To read a value of an entry, for example, the number of virtual CPUs dedicated to the VM Guest,

use xenstore-read:

>sudo xenstore-read /vm/9b30841b-43bc-2af9-2ed3-5a649f466d79-1/vcpus
1

A list of selected /vm/<uuid> entries follows:

uuid

UUID of the VM Guest. It does not change during the migration process.

on_reboot

Specifies whether to destroy or restart the VM Guest in response to a reboot request.

on_poweroff

Specifies whether to destroy or restart the VM Guest in response to a halt request.

on_crash

Specifies whether to destroy or restart the VM Guest in response to a crash.

vcpus

Number of virtual CPUs allocated to the VM Guest.

vcpu_avail

Bitmask of active virtual CPUs for the VM Guest. The bitmask has several bits equal to the

value of vcpus, with a bit set for each online virtual CPU.

name

The name of the VM Guest.

Chapter 31. XenStore: configuration database shared between domains

252

Regular VM Guests (not Dom0) use the /vm/<uuid>/image path:

>sudo xenstore-list /vm/9b30841b-43bc-2af9-2ed3-5a649f466d79-1/image
ostype
kernel
cmdline
ramdisk
dmargs
device-model
display

An explanation of the used entries follows:

ostype

The OS type of the VM Guest.

kernel

The path on Dom0 to the kernel for the VM Guest.

cmdline

The kernel command line for the VM Guest used when booting.

ramdisk

The path on Dom0 to the RAM disk for the VM Guest.

dmargs

Shows arguments passed to the QEMU process. If you look at the QEMU process with ps,

you should see the same arguments as in /vm/<uuid>/image/dmargs.

31.2.3. /local/domain/<domid>

This path is indexed by the running domain (VM Guest) ID, and contains information about the

running VM Guest. Remember that the domain ID changes during VM Guest migration. The

following entries are available:

vm

The path of the /vm directory for this VM Guest.

on_reboot, on_poweroff, on_crash, name

See identical options in the section called “ /vm ”

domid

Domain identifier for the VM Guest.

253

cpu

The current CPU to which the VM Guest is pinned.

cpu_weight

The weight assigned to the VM Guest for scheduling purposes. Higher weights use the

physical CPUs more often.

Apart from the individual entries described above, there are also several subdirectories under /

local/domain/<domid>, containing specific entries. To see all entries available, refer to

XenStore Reference.

/local/domain/<domid>/memory

Contains memory information. /local/domain/<domid>/memory/target contains

target memory size for the VM Guest (in kilobytes).

/local/domain/<domid>/console

Contains information about a console used by the VM Guest.

/local/domain/<domid>/backend

Contains information about all back-end devices used by the VM Guest. The path has

subdirectories of its own.

/local/domain/<domid>/device

Contains information about the front-end devices for the VM Guest.

/local/domain/<domid>/device-misc

Contains miscellaneous information about devices.

/local/domain/<domid>/store

Contains information about the VM Guest's store.

Chapter 31. XenStore: configuration database shared between domains

254

https://wiki.xen.org/wiki/XenStore_Reference

Chapter 32. Xen as a high-availability virtualization host

Setting up two Xen hosts as a failover system has several advantages compared to a setup where

every server runs on dedicated hardware.

Failure of a single server does not cause major interruption of the service.

A single big machine is normally way cheaper than multiple smaller machines.

Adding new servers as needed is a trivial task.

The usage of the server is improved, which has positive effects on the power consumption of

the system.

The setup of migration for Xen hosts is described in the section called “Migrating Xen VM Guest

systems”. In the following, several typical scenarios are described.

32.1. Xen HA with remote storage

Xen can directly provide several remote block devices to the respective Xen guest systems. These

include iSCSI, NPIV and NBD. They may be used to do live migrations. When a storage system is

already in place, first try to use the same device type you already used in the network.

If the storage system cannot be used directly but provides a possibility to offer the needed space

over NFS, it is also possible to create image files on NFS. If NFS is available on all Xen host

systems, this method also allows live migrations of Xen guests.

When setting up a new system, one of the main considerations is whether a dedicated storage

area network should be implemented. The following possibilities are available:

Table 32.1. Xen remote storage

Method Complexity Comments

Ethernet low

All block device traffic goes over the same Ethernet interface as

the network traffic. This may be limiting the performance of the

guest.

Ethernet

dedicated to

storage.

medium

Running the storage traffic over a dedicated Ethernet interface

may eliminate a bottleneck on the server side. However,

planning your own network with your own IP address range and

a VLAN dedicated to storage requires certain considerations.

NPIV high

NPIV is a method to virtualize Fibre channel connections. This is

available with adapters that support a data rate of at least 4 Gbit/

s and allows the setup of complex storage systems.

•

•

•

•

255

Typically, a 1 Gbit/s Ethernet device can fully use a typical hard disk or storage system. When

using fast storage systems, such an Ethernet device may limit the speed of the system.

32.2. Xen HA with local storage

For space or budget reasons, it may be necessary to rely on storage that is local to the Xen host

systems. To still maintain the possibility of live migrations, it is necessary to build block devices that

are mirrored to both Xen hosts. The software that allows this is called Distributed Replicated Block

Device (DRBD).

If a system that uses DRBD to mirror the block devices or files between two Xen hosts should be

set up, both hosts should use the identical hardware. If one of the hosts has slower hard disks,

both hosts suffer from this limitation.

During the setup, each of the required block devices should use its own DRBD device. The setup

of such a system is a complex task.

32.3. Xen HA and private bridges

When using several guest systems that need to communicate between each other, it is possible to

do this over the regular interface. However, for security reasons it may be advisable to create a

bridge that is only connected to guest systems.

In an HA environment that also should support live migrations, such a private bridge must be

connected to the other Xen hosts. This is possible by using dedicated physical Ethernet devices

and a dedicated network.

A different implementation method is using VLAN interfaces. In that case, all the traffic goes over

the regular Ethernet interface. However, the VLAN interface does not get the regular traffic,

because only the VLAN packets that are tagged for the correct VLAN are forwarded.

For more information about the setup of a VLAN interface see the section called “Using VLAN

interfaces”.

Chapter 32. Xen as a high-availability virtualization host

256

Chapter 33. Xen: converting a paravirtual (PV) guest into a fully
virtual (FV/HVM) guest

This chapter explains how to convert a Xen paravirtual machine into a Xen fully virtualized

machine.

Procedure 33.1. Guest side

To start the guest in FV mode, you need to run the following steps inside the guest.

Before converting the guest, apply all pending patches and reboot the guest.

FV machines use the -default kernel. If this kernel is not already installed, install the

kernel-default package (while running in PV mode).

PV machines typically use disk names such as vda*. These names must be changed to the

FV hd* syntax. This change must be done in the following files:

/etc/fstab

/boot/grub/menu.lst (SLES 11 only)

/boot/grub*/device.map

/etc/sysconfig/bootloader

/etc/default/grub (SLES 12, 15, openSUSE)

Prefer UUIDs

You should use UUIDs or logical volumes within your /etc/fstab. Using

UUIDs simplifies the use of attached network storage, multipathing and

virtualization. To find the UUID of your disk, use the command blkid.

To avoid any error regenerating the initrd with the required modules, you can create a

symbolic link from /dev/hda2 to /dev/xvda2 etc. by using the ln:

ln -sf /dev/xvda2 /dev/hda2
ln -sf /dev/xvda1 /dev/hda1
.....

PV and FV machines use different disk and network driver modules. These FV modules

must be added to the initrd manually. The expected modules are xen-vbd (for disk) and

xen-vnif (for network). These are the only PV drivers for a fully virtualized VM Guest. All

other modules, such as ata_piix, ata_generic and libata, should be added

automatically.

1.

2.

3.

◦

◦

◦

◦

◦

4.

5.

257

Adding modules to the initrd

On SLES 11, you can add modules to the INITRD_MODULES line in the

/etc/sysconfig/kernel file. For example:

INITRD_MODULES="xen-vbd xen-vnif"

Run dracut to build a new initrd containing the modules.

On SLES 12, 15 and openSUSE, open or create /etc/

dracut.conf.d/10-virt.conf and add the modules with

force_drivers by adding a line as in the example below (mind the

leading whitespace):

force_drivers+=" xen-vbd xen-vnif"

Run dracut -f --kver KERNEL_VERSION-default to build a new

initrd (for the default version of the kernel) that contains the required

modules.

Find your kernel versionUse the uname -r command to get the

current version used on your system.

Before shutting down the guest, set the default boot parameter to the -default kernel

using yast bootloader.

Under SUSE Linux Enterprise Server 11, if you have an X server running on your guest, you

need to adjust the /etc/X11/xorg.conf file to adjust the X driver. Search for fbdev and

change to cirrus.

Section "Device"
 Driver "cirrus"

 EndSection

SUSE Linux Enterprise Server 12/15 and Xorg

Under SUSE Linux Enterprise Server 12/15, Xorg automatically adjusts the

driver needed to be able to get a working X server.

Shut down the guest.

◦

◦

6.

7.

8.

Chapter 33. Xen: converting a paravirtual (PV) guest into a fully virtual (FV/HVM) guest

258

Procedure 33.2. Host side

The following steps explain the action that you need to perform on the host.

To start the guest in FV mode, the configuration of the VM must be modified to match an FV

configuration. Editing the configuration of the VM can easily be done using virsh edit

[DOMAIN]. The following changes are recommended:

Make sure the machine, the type, and the loader entries in the OS section are

changed from xenpv to xenfv. The updated OS section should look similar to:

<os>
 <type arch='x86_64' machine='xenfv'>hvm</type>
 <loader>/usr/lib/xen/boot/hvmloader</loader>
 <boot dev='hd'/>
</os>

In the OS section, remove anything that is specific to PV guests:

<bootloader>pygrub</bootloader>

<kernel>/usr/lib/grub2/x86_64-xen/grub.xen</kernel>

<cmdline>xen-fbfront.video=4,1024,768</cmdline>

In the devices section, add the qemu emulator as:

<emulator>/usr/lib/xen/bin/qemu-system-i386</emulator>

Update the disk configuration so the target device and bus use the FV syntax. This

requires replacing the xen disk bus with ide, and the vda target device with hda. The

changes should look similar to:

<target dev='hda' bus='ide'/>

Change the bus for the mouse and keyboard from xen to ps2. Also add a new USB

tablet device:

<input type='mouse' bus='ps2'/>
 <input type='keyboard' bus='ps2'/>
<input type='tablet' bus='usb'/>

Change the console target type from xen to serial:

<console type='pty'>
 <target type='serial' port='0'/>
</console>

Change the video configuration from xen to cirrus, with 8 MB of VRAM:

<video>
 <model type='cirrus' vram='8192' heads='1' primary='yes'/>
</video>

If desired, add acpi and apic to the features of the VM:

1.

◦

◦

▪

▪

▪

◦

◦

◦

◦

◦

◦

259

<features>
 <acpi/>
 <apic/>
</features>

Start the guest (using virsh or virt-manager). If the guest is running kernel-default (as

verified through uname -a), the machine is running in Fully Virtual mode.

guestfs-tools

To script this process, or work on disk images directly, you can use the guestfs-tools

suite (see the section called “Guestfs tools” for more information). Several tools exist

to help modify disk images.

2.

Chapter 33. Xen: converting a paravirtual (PV) guest into a fully virtual (FV/HVM) guest

260

Part V. Managing virtual machines with QEMU

34 QEMU overview 262

35 Setting up a KVM VM Host Server 263

36 Guest installation 272

37 Running virtual machines with qemu-system-ARCH
286

38 Virtual machine administration using QEMU monitor
312

261

Chapter 34. QEMU overview

QEMU is a fast, cross-platform open source machine emulator which can emulate many hardware

architectures. QEMU lets you run a complete unmodified operating system (VM Guest) on top of

your existing system (VM Host Server). You can also use QEMU for debugging purposes—you can

easily stop your running virtual machine, inspect its state, and save and restore it later.

QEMU mainly consists of the following parts:

Processor emulator.

Emulated devices, such as graphic card, network card, hard disks, or mouse.

Generic devices used to connect the emulated devices to the related host devices.

Debugger.

User interface used to interact with the emulator.

QEMU is central to KVM and Xen Virtualization, where it provides the general machine emulation.

Xen's usage of QEMU is partially hidden from the user, while KVM's usage exposes most QEMU

features transparently. If the VM Guest hardware architecture is the same as the VM Host Server's

architecture, QEMU can use the KVM acceleration (SUSE only supports QEMU with the KVM

acceleration loaded).

Apart from providing a core virtualization infrastructure and processor-specific drivers, QEMU also

provides an architecture-specific user space program for managing VM Guests. Depending on the

architecture this program is one of:

qemu-system-i386

qemu-system-s390x

qemu-system-x86_64

qemu-system-aarch64

In the following this command is called qemu-system-ARCH; in examples the qemu-system-

x86_64 command is used.

•

•

•

•

•

•

•

•

•

Chapter 34. QEMU overview

262

Chapter 35. Setting up a KVM VM Host Server

This section documents how to set up and use SUSE Linux Enterprise Server15 SP7 as a QEMU-

KVM based virtual machine host.

Resources

The virtual guest system needs the same hardware resources as if it were installed

on a physical machine. The more guests you plan to run on the host system, the

more hardware resources—CPU, disk, memory and network—you need to add to the

VM Host Server.

35.1. CPU support for virtualization

To run KVM, your CPU must support virtualization, and virtualization needs to be enabled in BIOS.

The file /proc/cpuinfo includes information about your CPU features.

To find out whether your system supports virtualization, see the section called “KVM hardware

requirements”.

35.2. Required software

The KVM host requires several packages to be installed. To install all necessary packages, do the

following:

Verify that the yast2-vm package is installed. This package is YaST's configuration tool that

simplifies the installation of virtualization hypervisors.

Run YaST > Virtualization > Install Hypervisor and Tools.

1.

2.

263

Figure 35.1. Installing the KVM hypervisor and tools

Select KVM server and preferably also KVM tools, and confirm with Accept.

During the installation process, you can optionally let YaST create a Network Bridge for you

automatically. If you do not plan to dedicate an additional physical network card to your

virtual guests, network bridge is a standard way to connect the guest machines to the

network.

Figure 35.2. Network bridge

After all the required packages are installed (and new network setup activated), try to load

the KVM kernel module relevant for your CPU type—kvm_intel or kvm_amd:

#modprobe kvm_intel

Check if the module is loaded into memory:

>lsmod | grep kvm
kvm_intel 64835 6
kvm 411041 1 kvm_intel

3.

4.

5.

Chapter 35. Setting up a KVM VM Host Server

264

Now the KVM host is ready to serve KVM VM Guests. For more information, see Chapter 37,

Running virtual machines with qemu-system-ARCH.

35.3. KVM host-specific features

You can improve the performance of KVM-based VM Guests by letting them fully use specific

features of the VM Host Server's hardware (paravirtualization). This section introduces techniques

to make the guests access the physical host's hardware directly—without the emulation layer—to

make the most use of it.

Tip

Examples included in this section assume basic knowledge of the qemu-system-

ARCH command line options. For more information, see Chapter 37, Running virtual

machines with qemu-system-ARCH.

35.3.1. Using the host storage with virtio-scsi

virtio-scsi is an advanced storage stack for KVM. It replaces the former virtio-blk stack

for SCSI devices pass-through. It has several advantages over virtio-blk:

Improved scalability

KVM guests have a limited number of PCI controllers, which results in a limited number of

attached devices. virtio-scsi solves this limitation by grouping multiple storage devices

on a single controller. Each device on a virtio-scsi controller is represented as a logical

unit, or LUN.

Standard command set

virtio-blk uses a small set of commands that need to be known to both the virtio-

blk driver and the virtual machine monitor, and so introducing a new command requires

updating both the driver and the monitor.

By comparison, virtio-scsi does not define commands, but rather a transport protocol

for these commands following the industry-standard SCSI specification. This approach is

shared with other technologies, such as Fibre Channel, ATAPI and USB devices.

Device naming

virtio-blk devices are presented inside the guest as /dev/vdX, which is different from

device names in physical systems and may cause migration problems.

virtio-scsi keeps the device names identical to those on physical systems, making the

virtual machines easily relocatable.

265

SCSI device pass-through

For virtual disks backed by a whole LUN on the host, it is preferable for the guest to send

SCSI commands directly to the LUN (pass-through). This is limited in virtio-blk, as

guests need to use the virtio-blk protocol instead of SCSI command pass-through, and,

moreover, it is not available for Windows guests. virtio-scsi natively removes these

limitations.

35.3.1.1. virtio-scsi usage

KVM supports the SCSI pass-through feature with the virtio-scsi-pci device:

#qemu-system-x86_64 [...] \
-device virtio-scsi-pci,id=scsi

35.3.2. Accelerated networking with vhost-net

The vhost-net module is used to accelerate KVM's paravirtualized network drivers. It provides

better latency and greater network throughput. Use the vhost-net driver by starting the guest

with the following example command line:

#qemu-system-x86_64 [...] \
-netdev tap,id=guest0,vhost=on,script=no \
-net nic,model=virtio,netdev=guest0,macaddr=00:16:35:AF:94:4B

guest0 is an identification string of the vhost-driven device.

35.3.3. Scaling network performance with multiqueue virtio-net

As the number of virtual CPUs increases in VM Guests, QEMU offers a way of improving the

network performance using multiqueue. Multiqueue virtio-net scales the network performance by

allowing VM Guest virtual CPUs to transfer packets in parallel. Multiqueue support is required on

both the VM Host Server and VM Guest sides.

Performance benefit

The multiqueue virtio-net solution is most beneficial in the following cases:

Network traffic packets are large.

VM Guest has many connections active at the same time, mainly between the

guest systems, or between the guest and the host, or between the guest and

an external system.

The number of active queues is equal to the number of virtual CPUs in the VM

Guest.

•

•

•

Chapter 35. Setting up a KVM VM Host Server

266

Note

While multiqueue virtio-net increases the total network throughput, it increases CPU

consumption as it uses of the virtual CPU's power.

Procedure 35.1. How to enable multiqueue virtio-net

The following procedure lists important steps to enable the multiqueue feature with qemu-

system-ARCH. It assumes that a tap network device with multiqueue capability (supported since

kernel version 3.8) is set up on the VM Host Server.

In qemu-system-ARCH, enable multiqueue for the tap device:

-netdev tap,vhost=on,queues=2*N

where N stands for the number of queue pairs.

In qemu-system-ARCH, enable multiqueue and specify MSI-X (Message Signaled Interrupt)

vectors for the virtio-net-pci device:

-device virtio-net-pci,mq=on,vectors=2*N+2

where the formula for the number of MSI-X vectors results from: N vectors for TX (transmit)

queues, N for RX (receive) queues, one for configuration purposes, and one for possible VQ

(vector quantization) control.

In VM Guest, enable multiqueue on the relevant network interface (eth0 in this example):

>sudo ethtool -L eth0 combined 2*N

The resulting qemu-system-ARCH command line looks similar to the following example:

qemu-system-x86_64 [...] -netdev tap,id=guest0,queues=8,vhost=on \
-device virtio-net-pci,netdev=guest0,mq=on,vectors=10

The id of the network device (guest0) needs to be identical for both options.

Inside the running VM Guest, specify the following command with root privileges:

>sudo ethtool -L eth0 combined 8

Now the guest system networking uses the multiqueue support from the qemu-system-ARCH

hypervisor.

35.3.4. VFIO: secure direct access to devices

Directly assigning a PCI device to a VM Guest (PCI pass-through) avoids performance issues

caused by avoiding any emulation in performance-critical paths. VFIO replaces the traditional KVM

PCI Pass-Through device assignment. A prerequisite for this feature is a VM Host Server

configuration as described in Requirements for VFIO and SR-IOV.

1.

2.

3.

267

To be able to assign a PCI device via VFIO to a VM Guest, you need to find out which IOMMU

Group it belongs to. The IOMMU (input/output memory management unit that connects a direct

memory access-capable I/O bus to the main memory) API supports the notion of groups. A group is

a set of devices that can be isolated from all other devices in the system. Groups are therefore the

unit of ownership used by VFIO.

Procedure 35.2. Assigning a PCI device to a VM Guest via VFIO

Identify the host PCI device to assign to the guest.

>sudo lspci -nn
[...]
00:10.0 Ethernet controller [0200]: Intel Corporation 82576 \
Virtual Function [8086:10ca] (rev 01)
[...]

Note down the device ID, 00:10.0 in this example, and the vendor ID (8086:10ca).

Find the IOMMU group of this device:

>sudo readlink /sys/bus/pci/devices/0000\:00\:10.0/iommu_group
../../../kernel/iommu_groups/20

The IOMMU group for this device is 20. Now you can check the devices belonging to the

same IOMMU group:

>sudo ls -l /sys/bus/pci/devices/0000\:01\:10.0/iommu_group/devices/
[...] 0000:00:1e.0 -> ../../../../devices/pci0000:00/0000:00:1e.0
[...] 0000:01:10.0 -> ../../../../devices/pci0000:00/0000:00:1e.
0/0000:01:10.0
[...] 0000:01:10.1 -> ../../../../devices/pci0000:00/0000:00:1e.
0/0000:01:10.1

Unbind the device from the device driver:

>sudo echo "0000:01:10.0" > /sys/bus/pci/devices/0000\:01\:10.0/driver/
unbind

Bind the device to the vfio-pci driver using the vendor ID from step 1:

>sudo echo "8086 153a" > /sys/bus/pci/drivers/vfio-pci/new_id

A new device /dev/vfio/IOMMU_GROUP is created as a result, /dev/vfio/20 in this

case.

Change the ownership of the newly created device:

>sudo chown qemu.qemu /dev/vfio/DEVICE

Now run the VM Guest with the PCI device assigned.

>sudo qemu-system-ARCH [...] -device
 vfio-pci,host=00:10.0,id=ID

1.

2.

3.

4.

5.

6.

Chapter 35. Setting up a KVM VM Host Server

268

No hotplugging

As of SUSE Linux Enterprise Server15 SP7, hotplugging of PCI devices passed to a

VM Guest via VFIO is not supported.

You can find more detailed information on the VFIO driver in the /usr/src/linux/

Documentation/vfio.txt file (package kernel-source needs to be installed).

35.3.5. VirtFS: sharing directories between host and guests

VM Guests normally run in a separate computing space—they are provided their own memory

range, dedicated CPUs, and file system space. The ability to share parts of the VM Host Server's

file system makes the virtualization environment more flexible by simplifying mutual data

exchange. Network file systems, such as CIFS and NFS, have been the traditional way of sharing

directories. But as they are not specifically designed for virtualization purposes, they suffer from

major performance and feature issues.

KVM introduces a new optimized method called VirtFS (sometimes called “file system pass-

through”). VirtFS uses a paravirtual file system driver, which avoids converting the guest

application file system operations into block device operations, and then again into host file system

operations.

You typically use VirtFS for the following situations:

To access a shared directory from several guests, or to provide guest-to-guest file system

access.

To replace the virtual disk as the root file system to which the guest's RAM disk connects

during the guest boot process.

To provide storage services to different customers from a single host file system in a cloud

environment.

35.3.5.1. Implementation

In QEMU, the implementation of VirtFS is simplified by defining two types of devices:

virtio-9p-pci device which transports protocol messages and data between the host

and the guest.

fsdev device which defines the export file system properties, such as file system type and

security model.

•

•

•

•

•

269

❶

❷

❸

❹

❺

Example 35.1. Exporting host's file system with VirtFS

>sudo qemu-system-x86_64 [...] \
-fsdev local,id=exp1❶,path=/tmp/❷,security_model=mapped❸ \
-device virtio-9p-pci,fsdev=exp1❹,mount_tag=v_tmp❺

Identification of the file system to be exported.

File system path on the host to be exported.

Security model to be used—mapped keeps the guest file system modes and permissions

isolated from the host, while none invokes a “pass-through” security model in which permission

changes on the guest's files are reflected on the host as well.

The exported file system ID defined before with -fsdev id= .

Mount tag used later on the guest to mount the exported file system.

Such an exported file system can be mounted on the guest as follows:

>sudo mount -t 9p -o trans=virtio v_tmp /mnt

where v_tmp is the mount tag defined earlier with -device mount_tag= and /mnt is the mount

point where you want to mount the exported file system.

35.3.6. KSM: sharing memory pages between guests

Kernel Same Page Merging (KSM) is a Linux kernel feature that merges identical memory pages

from multiple running processes into one memory region. Because KVM guests run as processes

under Linux, KSM provides the memory overcommit feature to hypervisors for more efficient use of

memory. Therefore, if you need to run multiple virtual machines on a host with limited memory,

KSM may be helpful to you.

KSM stores its status information in the files under the /sys/kernel/mm/ksm directory:

>ls -1 /sys/kernel/mm/ksm
full_scans
merge_across_nodes
pages_shared
pages_sharing
pages_to_scan
pages_unshared
pages_volatile
run
sleep_millisecs

For more information on the meaning of the /sys/kernel/mm/ksm/* files, see /usr/src/

linux/Documentation/vm/ksm.txt (package kernel-source).

Chapter 35. Setting up a KVM VM Host Server

270

To use KSM, do the following.

Although SLES includes KSM support in the kernel, it is disabled by default. To enable it, run

the following command:

#echo 1 > /sys/kernel/mm/ksm/run

Now run several VM Guests under KVM and inspect the content of files pages_sharing

and pages_shared, for example:

>while [1]; do cat /sys/kernel/mm/ksm/pages_shared; sleep 1; done
13522
13523
13519
13518
13520
13520
13528

1.

2.

271

❶

❷

❸

❹

❶

Chapter 36. Guest installation

The libvirt-based tools such as virt-manager and virt-install offer convenient

interfaces to set up and manage virtual machines. They act as a kind of wrapper for the qemu-

system-ARCHcommand. However, it is also possible to use qemu-system-ARCH directly without

using libvirt-based tools.

qemu-system-ARCH and libvirt

Virtual Machines created with qemu-system-ARCH are not visible for the libvirt-

based tools.

36.1. Basic installation with qemu-system-ARCH

In the following example, a virtual machine for a SUSE Linux Enterprise Server 11 installation is

created. For detailed information on the commands, refer to the respective man pages.

If you do not already have an image of a system that you want to run in a virtualized environment,

you need to create one from the installation media. In such case, you need to prepare a hard disk

image, and obtain an image of the installation media or the media itself.

Create a hard disk with qemu-img.

>qemu-img create❶ -f raw❷ /images/sles/hda❸ 8G❹

The subcommand create tells qemu-img to create a new image.

Specify the disk's format with the -f parameter.

The full path to the image file.

The size of the image, 8 GB in this case. The image is created as a Sparse image file that

grows when the disk is filled with data. The specified size defines the maximum size to which

the image file can grow.

After at least one hard disk image is created, you can set up a virtual machine with qemu-

system-ARCH that boots into the installation system:

#qemu-system-x86_64 -name "sles"❶-machine accel=kvm -M pc❷ -m 768❸ \
-smp 2❹ -boot d❺ \
-drive file=/images/sles/hda,if=virtio,index=0,media=disk,format=raw❻ \
-drive file=/isos/SLE-15-SP7-Online-ARCH-GM-media1.iso,index=1,media=cdrom❼ \
-net nic,model=virtio,macaddr=52:54:00:05:11:11❽ -net user \
-vga cirrus❾ -balloon virtio❿

Name of the virtual machine that is displayed in the window caption and be used for the VNC

server. This name must be unique.

Chapter 36. Guest installation

272

❷

❸

❹

❺

❻

❼

❽

❾

❿

Specifies the machine type. Use qemu-system-ARCH-M ? to display a list of valid parameters.

pc is the default Standard PC.

Maximum amount of memory for the virtual machine.

Defines an SMP system with two processors.

Specifies the boot order. Valid values are a, b (floppy 1 and 2), c (first hard disk), d (first CD-

ROM), or n to p (Ether-boot from network adapter 1-3). Defaults to c.

Defines the first (index=0) hard disk. It is accessed as a paravirtualized (if=virtio) drive in

raw format.

The second (index=1) image drive acts as a CD-ROM.

Defines a paravirtualized (model=virtio) network adapter with the MAC address

52:54:00:05:11:11. Be sure to specify a unique MAC address, otherwise a network conflict

may occur.

Specifies the graphic card. If you specify none, the graphic card is disabled.

Defines the paravirtualized balloon device that allows to dynamically change the amount of

memory (up to the maximum value specified with the parameter -m).

After the installation of the guest operating system finishes, you can start the related virtual

machine without the need to specify the CD-ROM device:

#qemu-system-x86_64 -name "sles" -machine type=pc,accel=kvm -m 768 \
-smp 2 -boot c \
-drive file=/images/sles/hda,if=virtio,index=0,media=disk,format=raw \
-net nic,model=virtio,macaddr=52:54:00:05:11:11 \
-vga cirrus -balloon virtio

36.2. Managing disk images with qemu-img

In the previous section (see the section called “Basic installation with qemu-system-ARCH ”), we

used the qemu-img command to create an image of a hard disk. You can, however, use qemu-

img for general disk image manipulation. This section introduces qemu-img subcommands to help

manage the disk images flexibly.

36.2.1. General information on qemu-img invocation

qemu-img uses subcommands (like zypper does) to do specific tasks. Each subcommand

understands a different set of options. Certain options are general and used by more of these

subcommands, while others are unique to the related subcommand. See the qemu-img man page

(man 1 qemu-img) for a list of all supported options. qemu-img uses the following general

syntax:

>qemu-img subcommand [options]

273

and supports the following subcommands:

create

Creates a new disk image on the file system.

check

Checks an existing disk image for errors.

compare

Check if two images have the same content.

map

Dumps the metadata of the image file name and its backing file chain.

amend

Amends the image format specific options for the image file name.

convert

Converts an existing disk image to a new one in a different format.

info

Displays information about the relevant disk image.

snapshot

Manages snapshots of existing disk images.

commit

Applies changes made to an existing disk image.

rebase

Creates a new base image based on an existing image.

resize

Increases or decreases the size of an existing image.

Chapter 36. Guest installation

274

❶

❷

❸

❹

36.2.2. Creating, converting, and checking disk images

This section describes how to create disk images, check their condition, convert a disk image from

one format to another, and get detailed information about a particular disk image.

36.2.2.1. qemu-img create

Use qemu-img create to create a new disk image for your VM Guest operating system. The

command uses the following syntax:

>qemu-img create -f fmt❶ -o options❷ fname❸ size❹

The format of the target image. Supported formats are raw and qcow2.

Certain image formats support additional options to be passed on the command line. You can

specify them here with the -o option. The raw image format supports only the size option, so it

is possible to insert -o size=8G instead of adding the size option at the end of the command.

Path to the target disk image to be created.

Size of the target disk image (if not already specified with the -o size=<image_size> option.

Optional suffixes for the image size are K (kilobyte), M (megabyte), G (gigabyte), or T (terabyte).

To create a new disk image sles.raw in the directory /images growing up to a maximum size of

4 GB, run the following command:

>qemu-img create -f raw -o size=4G /images/sles.raw
Formatting '/images/sles.raw', fmt=raw size=4294967296

>ls -l /images/sles.raw
-rw-r--r-- 1 tux users 4294967296 Nov 15 15:56 /images/sles.raw

>qemu-img info /images/sles.raw
image: /images/sles11.raw
file format: raw
virtual size: 4.0G (4294967296 bytes)
disk size: 0

As you can see, the virtual size of the newly created image is 4 GB, but the actual reported disk

size is 0 as no data has been written to the image yet.

275

❶

❷

❸

❹

❺

❻

VM Guest images on the Btrfs file system

If you need to create a disk image on the Btrfs file system, you can use nocow=on to

reduce the performance overhead created by the copy-on-write feature of Btrfs:

>qemu-img create -o nocow=on test.img 8G

If you, however, want to use copy-on-write, for example, for creating snapshots or

sharing them across virtual machines, then leave the command line without the

nocow option.

36.2.2.2. qemu-img convert

Use qemu-img convert to convert disk images to another format. To get a complete list of

image formats supported by QEMU, run qemu-img-h and look at the last line of the output. The

command uses the following syntax:

>qemu-img convert -c❶ -f fmt❷ -O out_fmt❸ -o options❹ fname❺ out_fname❻

Applies compression on the target disk image. Only qcow and qcow2 formats support

compression.

The format of the source disk image. It is normally autodetected and can therefore be omitted.

The format of the target disk image.

Specify additional options relevant for the target image format. Use -o ? to view the list of

options supported by the target image format.

Path to the source disk image to be converted.

Path to the converted target disk image.

>qemu-img convert -O vmdk /images/sles.raw \
/images/sles.vmdk

>ls -l /images/
-rw-r--r-- 1 tux users 4294967296 16. lis 10.50 sles.raw
-rw-r--r-- 1 tux users 2574450688 16. lis 14.18 sles.vmdk

To see a list of options relevant for the selected target image format, run the following command

(replace vmdk with your image format):

Chapter 36. Guest installation

276

❶

❷

>qemu-img convert -O vmdk /images/sles.raw \
/images/sles.vmdk -o ?
Supported options:
size Virtual disk size
backing_file File name of a base image
compat6 VMDK version 6 image
subformat VMDK flat extent format, can be one of {monolithicSparse \
 (default) | monolithicFlat | twoGbMaxExtentSparse | twoGbMaxExtentFlat}
scsi SCSI image

36.2.2.3. qemu-img check

Use qemu-img check to check the existing disk image for errors. Not all disk image formats

support this feature. The command uses the following syntax:

>qemu-img check -f fmt❶ fname❷

The format of the source disk image. It is normally autodetected and can therefore be omitted.

Path to the source disk image to be checked.

If no error is found, the command returns no output. Otherwise, the type and number of errors

found is shown.

>qemu-img check -f qcow2 /images/sles.qcow2
ERROR: invalid cluster offset=0x2af0000
[...]
ERROR: invalid cluster offset=0x34ab0000
378 errors were found on the image.

36.2.2.4. Increasing the size of an existing disk image

When creating a new image, you must specify its maximum size before the image is created (see

the section called “qemu-img create”). After you have installed the VM Guest and have been using

it for certain time, the initial size of the image may no longer be sufficient. In that case, add more

space to it.

To increase the size of an existing disk image by 2 gigabytes, use:

>qemu-img resize /images/sles.raw +2GB

Note

You can resize the disk image using the formats raw and qcow2. To resize an image

in another format, convert it to a supported format with qemu-img convert first.

The image now contains an empty space of 2 GB after the final partition. You can resize the

existing partitions or add new ones.

277

36.2.2.5. Advanced options for the qcow2 file format

qcow2 is the main disk image format used by QEMU. Its size grows on demand, and the disk

space is only allocated when it is needed by the virtual machine.

A qcow2 formatted file is organized in units of constant size. These units are called clusters.

Viewed from the guest side, the virtual disk is also divided into clusters of the same size. QEMU

defaults to 64 kB clusters, but you can specify a different value when creating a new image:

>qemu-img create -f qcow2 -o cluster_size=128K virt_disk.qcow2 4G

A qcow2 image contains a set of tables organized in two levels that are called the L1 and L2

tables. There is just one L1 table per disk image, while there can be many L2 tables depending on

how big the image is.

To read or write data to the virtual disk, QEMU needs to read its corresponding L2 table to find out

the relevant data location. Because reading the table for each I/O operation consumes system

resources, QEMU keeps a cache of L2 tables in memory to speed up disk access.

36.2.2.5.1. Choosing the right cache size

The cache size relates to the amount of allocated space. L2 cache can map the following amount

of virtual disk:

disk_size = l2_cache_size * cluster_size / 8

With the default 64 kB of cluster size, that is

disk_size = l2_cache_size * 8192

Therefore, to have a cache that maps n gigabytes of disk space with the default cluster size, you

need

l2_cache_size = disk_size_GB * 131072

QEMU uses 1 MB (1048576 bytes) of L2 cache by default. Following the above formulas, 1 MB of

L2 cache covers 8 GB (1048576 / 131072) of virtual disk. This means that the performance is fine

with the default L2 cache size if your virtual disk size is up to 8 GB. For larger disks, you can speed

up the disk access by increasing the L2 cache size.

36.2.2.5.2. Configuring the cache size

You can use the -drive option on the QEMU command line to specify the cache sizes.

Alternatively when communicating via QMP, use the blockdev-add command. For more

information on QMP, see the section called “QMP - QEMU machine protocol”.

The following options configure the cache size for the virtual guest:

Chapter 36. Guest installation

278

l2-cache-size

The maximum size of the L2 table cache.

refcount-cache-size

The maximum size of the refcount block cache. For more information on refcount, see

https://raw.githubusercontent.com/qemu/qemu/master/docs/qcow2-cache.txt.

cache-size

The maximum size of both caches combined.

When specifying values for the options above, be aware of the following:

The size of both the L2 and refcount block caches needs to be a multiple of the cluster size.

If you only set one of the options, QEMU automatically adjusts the other options so that the

L2 cache is 4 times bigger than the refcount cache.

The refcount cache is used much less often than the L2 cache, therefore you can keep it small:

#qemu-system-ARCH [...] \
 -drive file=disk_image.qcow2,l2-cache-size=4194304,refcount-cache-size=262144

36.2.2.5.3. Reducing the memory usage

The larger the cache, the more memory it consumes. There is a separate L2 cache for each qcow2

file. When using a lot of big disk images, you may need a considerably large amount of memory.

Memory consumption is even worse if you add backing files (the section called “Manipulate disk

images effectively”) and snapshots (see the section called “Managing snapshots of virtual

machines with qemu-img”) to the guest's setup chain.

This is why QEMU introduced the cache-clean-interval setting. It defines an interval in

seconds after which all cache entries that have not been accessed are removed from memory.

The following example removes all unused cache entries every 10 minutes:

#qemu-system-ARCH [...] -drive file=hd.qcow2,cache-clean-interval=600

If this option is not set, the default value is 0 and it disables this feature.

36.2.3. Managing snapshots of virtual machines with qemu-img

Virtual Machine snapshots are snapshots of the complete environment in which a VM Guest is

running. The snapshot includes the state of the processor (CPU), memory (RAM), devices, and all

writable disks.

•

•

279

https://raw.githubusercontent.com/qemu/qemu/master/docs/qcow2-cache.txt

❶

❷

❸

❹

❺

Snapshots are helpful when you need to save your virtual machine in a particular state. For

example, after you configured network services on a virtualized server and want to quickly start the

virtual machine in the same state you last saved it. Or you can create a snapshot after the virtual

machine has been powered off to create a backup state before you try something experimental

and make VM Guest unstable. This section introduces the latter case, while the former is described

in Chapter 38, Virtual machine administration using QEMU monitor.

To use snapshots, your VM Guest must contain at least one writable hard disk image in qcow2

format. This device is normally the first virtual hard disk.

Virtual Machine snapshots are created with the savevm command in the interactive QEMU

monitor. To make identifying a particular snapshot easier, you can assign it a tag. For more

information on QEMU monitor, see Chapter 38, Virtual machine administration using QEMU

monitor.

Once your qcow2 disk image contains saved snapshots, you can inspect them with the qemu-img

snapshot command.

Shut down the VM Guest

Do not create or delete virtual machine snapshots with the qemu-img snapshot

command while the virtual machine is running. Otherwise, you may damage the disk

image with the state of the virtual machine saved.

36.2.3.1. Listing existing snapshots

Use qemu-img snapshot -lDISK_IMAGE to view a list of all existing snapshots saved in the

disk_image image. You can get the list even while the VM Guest is running.

>qemu-img snapshot -l /images/sles.qcow2
Snapshot list:
ID❶ TAG❷ VM SIZE❸ DATE❹ VM CLOCK❺
1 booting 4.4M 2013-11-22 10:51:10 00:00:20.476
2 booted 184M 2013-11-22 10:53:03 00:02:05.394
3 logged_in 273M 2013-11-22 11:00:25 00:04:34.843
4 ff_and_term_running 372M 2013-11-22 11:12:27 00:08:44.965

Unique auto-incremented identification number of the snapshot.

Unique description string of the snapshot. It is meant as a human-readable version of the ID.

The disk space occupied by the snapshot. The more memory is consumed by running

applications, the bigger the snapshot is.

Time and date the snapshot was created.

The current state of the virtual machine's clock.

Chapter 36. Guest installation

280

36.2.3.2. Creating snapshots of a powered-off virtual machine

Use qemu-img snapshot -cSNAPSHOT_TITLEDISK_IMAGE to create a snapshot of the

current state of a virtual machine that was previously powered off.

>qemu-img snapshot -c backup_snapshot /images/sles.qcow2

>qemu-img snapshot -l /images/sles.qcow2
Snapshot list:
ID TAG VM SIZE DATE VM CLOCK
1 booting 4.4M 2013-11-22 10:51:10 00:00:20.476
2 booted 184M 2013-11-22 10:53:03 00:02:05.394
3 logged_in 273M 2013-11-22 11:00:25 00:04:34.843
4 ff_and_term_running 372M 2013-11-22 11:12:27 00:08:44.965
5 backup_snapshot 0 2013-11-22 14:14:00 00:00:00.000

If something breaks in your VM Guest and you need to restore the state of the saved snapshot (ID

5 in our example), power off your VM Guest and execute the following command:

>qemu-img snapshot -a 5 /images/sles.qcow2

The next time you run the virtual machine with qemu-system-ARCH, it will be in the state of

snapshot number 5.

Note

The qemu-img snapshot -c command is not related to the savevm command of

QEMU monitor (see Chapter 38, Virtual machine administration using QEMU

monitor). For example, you cannot apply a snapshot with qemu-img snapshot -a

on a snapshot created with savevm in QEMU's monitor.

36.2.3.3. Deleting snapshots

Use qemu-img snapshot -dSNAPSHOT_IDDISK_IMAGE to delete old or unneeded snapshots

of a virtual machine. This saves disk space inside the qcow2 disk image as the space occupied by

the snapshot data is restored:

>qemu-img snapshot -d 2 /images/sles.qcow2

36.2.4. Manipulate disk images effectively

Imagine the following real-life situation: you are a server administrator who runs and manages

several virtualized operating systems. One group of these systems is based on one specific

distribution, while another group (or groups) is based on different versions of the distribution or

even on a different (and maybe non-Unix) platform. To make the case even more complex,

individual virtual guest systems based on the same distribution differ according to the department

and deployment. A file server typically uses a different setup and services than a Web server does,

while both may still be based on SUSE® Linux Enterprise Server.

281

With QEMU it is possible to create “base” disk images. You can use them as template virtual

machines. These base images save you plenty of time because you do not need to install the

same operating system more than once.

36.2.4.1. Base and derived images

First, build a disk image as usual and install the target system on it. For more information, see the

section called “Basic installation with qemu-system-ARCH ” and the section called “Creating,

converting, and checking disk images”. Then build a new image while using the first one as a base

image. The base image is also called a backing file. After your new derived image is built, never

boot the base image again, but boot the derived image instead. Several derived images may

depend on one base image at the same time. Therefore, changing the base image can damage

the dependencies. While using your derived image, QEMU writes changes to it and uses the base

image only for reading.

It is a good practice to create a base image from a freshly installed (and, if needed, registered)

operating system with no patches applied and no additional applications installed or removed.

Later on, you can create another base image with the latest patches applied and based on the

original base image.

36.2.4.2. Creating derived images

Note

While you can use the raw format for base images, you cannot use it for derived

images because the raw format does not support the backing_file option. Use,

for example, the qcow2 format for the derived images.

For example, /images/sles_base.raw is the base image holding a freshly installed system.

>qemu-img info /images/sles_base.raw
image: /images/sles_base.raw
file format: raw
virtual size: 4.0G (4294967296 bytes)
disk size: 2.4G

The image's reserved size is 4 GB, the actual size is 2.4 GB, and its format is raw. Create an

image derived from the /images/sles_base.raw base image with:

>qemu-img create -f qcow2 /images/sles_derived.qcow2 \
-o backing_file=/images/sles_base.raw
Formatting '/images/sles_derived.qcow2', fmt=qcow2 size=4294967296 \
backing_file='/images/sles_base.raw' encryption=off cluster_size=0

Look at the derived image details:

Chapter 36. Guest installation

282

>qemu-img info /images/sles_derived.qcow2
image: /images/sles_derived.qcow2
file format: qcow2
virtual size: 4.0G (4294967296 bytes)
disk size: 140K
cluster_size: 65536
backing file: /images/sles_base.raw \
(actual path: /images/sles_base.raw)

Although the reserved size of the derived image is the same as the size of the base image (4 GB),

the actual size is 140 KB only. The reason is that only changes made to the system inside the

derived image are saved. Run the derived virtual machine, register it, if needed, and apply the

latest patches. Do any other changes in the system such as removing unneeded or installing new

software packages. Then shut the VM Guest down and examine its details once more:

>qemu-img info /images/sles_derived.qcow2
image: /images/sles_derived.qcow2
file format: qcow2
virtual size: 4.0G (4294967296 bytes)
disk size: 1.1G
cluster_size: 65536
backing file: /images/sles_base.raw \
(actual path: /images/sles_base.raw)

The disk size value has grown to 1.1 GB, which is the disk space occupied by the changes on

the file system compared to the base image.

36.2.4.3. Rebasing derived images

After you have modified the derived image (applied patches, installed specific applications,

changed environment settings, etc.), it reaches the desired state. At that point, you can merge the

original base image and the derived image to create a new base image.

Your original base image (/images/sles_base.raw) holds a freshly installed system. It can be

a template for new modified base images, while the new one can contain the same system as the

first one plus all security and update patches applied, for example. After you have created this new

base image, you can use it as a template for more specialized derived images as well. The new

base image becomes independent of the original one. The process of creating base images from

derived ones is called rebasing:

>qemu-img convert /images/sles_derived.qcow2 \
-O raw /images/sles_base2.raw

This command created the new base image /images/sles_base2.raw using the raw format.

>qemu-img info /images/sles_base2.raw
image: /images/sles11_base2.raw
file format: raw
virtual size: 4.0G (4294967296 bytes)
disk size: 2.8G

283

❶

❷

The new image is 0.4 gigabytes bigger than the original base image. It uses no backing file, and

you can easily create new derived images based upon it. This lets you create a sophisticated

hierarchy of virtual disk images for your organization, saving a lot of time and work.

36.2.4.4. Mounting an image on a VM Host Server

It can be useful to mount a virtual disk image under the host system. It is strongly recommended to

read Chapter 21, libguestfs and use dedicated tools to access a virtual machine image. However, if

you need to do this manually, follow this guide.

Linux systems can mount an internal partition of a raw disk image using a loopback device. The

first example procedure is more complex but more illustrative, while the second one is

straightforward:

Procedure 36.1. Mounting disk image by calculating partition offset

Set a loop device on the disk image whose partition you want to mount.

>losetup /dev/loop0 /images/sles_base.raw

Find the sector size and the starting sector number of the partition you want to mount.

>fdisk -lu /dev/loop0

Disk /dev/loop0: 4294 MB, 4294967296 bytes
255 heads, 63 sectors/track, 522 cylinders, total 8388608 sectors
Units = sectors of 1 * 512 = 512❶ bytes
Disk identifier: 0x000ceca8

 Device Boot Start End Blocks Id System
/dev/loop0p1 63 1542239 771088+ 82 Linux swap
/dev/loop0p2 * 1542240❷ 8385929 3421845 83 Linux

The disk sector size.

The starting sector of the partition.

Calculate the partition start offset:

sector_size * sector_start = 512 * 1542240 = 789626880

Delete the loop and mount the partition inside the disk image with the calculated offset on a

prepared directory.

>losetup -d /dev/loop0
>mount -o loop,offset=789626880 \
/images/sles_base.raw /mnt/sles/
>ls -l /mnt/sles/
total 112
drwxr-xr-x 2 root root 4096 Nov 16 10:02 bin
drwxr-xr-x 3 root root 4096 Nov 16 10:27 boot
drwxr-xr-x 5 root root 4096 Nov 16 09:11 dev
[...]
drwxrwxrwt 14 root root 4096 Nov 24 09:50 tmp
drwxr-xr-x 12 root root 4096 Nov 16 09:16 usr
drwxr-xr-x 15 root root 4096 Nov 16 09:22 var

1.

2.

3.

4.

Chapter 36. Guest installation

284

Copy one or more files onto the mounted partition and unmount it when finished.

>cp /etc/X11/xorg.conf /mnt/sles/root/tmp
>ls -l /mnt/sles/root/tmp
>umount /mnt/sles/

Do not write to images currently in use

Never mount a partition of an image of a running virtual machine in a read-write

mode. This could corrupt the partition and break the whole VM Guest.

5.

285

❶

❷

Chapter 37. Running virtual machines with qemu-system-ARCH

Once you have a virtual disk image ready (for more information on disk images, see the section

called “Managing disk images with qemu-img ”), it is time to start the related virtual machine. the

section called “Basic installation with qemu-system-ARCH ” introduced simple commands to

install and run a VM Guest. This chapter focuses on a more detailed explanation of qemu-

system-ARCH usage, and shows solutions for more specific tasks. For a complete list of qemu-

system-ARCH's options, see its man page (man 1 qemu).

37.1. Basic qemu-system-ARCH invocation

The qemu-system-ARCH command uses the following syntax:

qemu-system-ARCH OPTIONS❶ -drive file=DISK_IMAGE❷

qemu-system-ARCH understands many options. Most of them define parameters of the

emulated hardware, while others affect more general emulator behavior. If you do not supply

any options, default values are used, and you need to supply the path to a disk image to be run.

Path to the disk image holding the guest system you want to virtualize. qemu-system-ARCH

supports many image formats. Use qemu-img--help to list them.

Chapter 37. Running virtual machines with qemu-system-ARCH

286

AArch64 architecture

KVM support is available only for 64-bit Arm® architecture (AArch64). Running

QEMU on the AArch64 architecture requires you to specify:

A machine type designed for QEMU Arm® virtual machines using the -

machine virt-VERSION_NUMBER option.

A firmware image file using the -bios option.

You can specify the firmware image files alternatively using the -drive

options, for example:

-drive file=/usr/share/edk2/aarch64/QEMU_EFI-
pflash.raw,if=pflash,format=raw
-drive file=/var/lib/libvirt/qemu/nvram/
opensuse_VARS.fd,if=pflash,format=raw

A CPU of the VM Host Server using the -cpu host option (default is

cortex-15).

The same Generic Interrupt Controller (GIC) version as the host using the -

machine gic-version=host option (default is 2).

If a graphic mode is needed, a graphic device of type virtio-gpu-pci.

For example:

>sudo qemu-system-aarch64 [...] \
 -bios /usr/share/qemu/qemu-uefi-aarch64.bin \
 -cpu host \
 -device virtio-gpu-pci \
 -machine virt,accel=kvm,gic-version=host

37.2. General qemu-system-ARCH options

This section introduces general qemu-system-ARCH options and options related to the basic

emulated hardware, such as the virtual machine's processor, memory, model type, or time

processing methods.

-name NAME_OF_GUEST

Specifies the name of the running guest system. The name is displayed in the window

caption and used for the VNC server.

-boot OPTIONS

Specifies the order in which the defined drives are booted. Drives are represented by letters,

where a and b stand for the floppy drives 1 and 2, c stands for the first hard disk, d stands

for the first CD-ROM drive, and n to p stand for Ether-boot network adapters.

•

•

•

•

•

287

For example, qemu-system-ARCH [...] -boot order=ndc first tries to boot from the

network, then from the first CD-ROM drive, and finally from the first hard disk.

-pidfile FILENAME

Stores the QEMU's process identification number (PID) in a file. This is useful if you run

QEMU from a script.

-nodefaults

By default QEMU creates basic virtual devices even if you do not specify them on the

command line. This option turns this feature off, and you must specify every single device

manually, including graphical and network cards, parallel or serial ports, or virtual consoles.

Even QEMU monitor is not attached by default.

-daemonize

“Daemonizes” the QEMU process after it is started. QEMU detaches from the standard input

and standard output after it is ready to receive connections on any of its devices.

SeaBIOS BIOS implementation

SeaBIOS is the default BIOS used. You can boot USB devices, any drive (CD-ROM,

Floppy or a hard disk). It has USB mouse and keyboard support and supports

multiple VGA cards. For more information about SeaBIOS, refer to the SeaBIOS

Website.

37.2.1. Basic virtual hardware

37.2.1.1. Machine type

You can specify the type of the emulated machine. Run qemu-system-ARCH -M help to view a

list of supported machine types.

ISA-PC

The machine type isapc: ISA-only-PC is unsupported.

37.2.1.2. CPU model

To specify the type of the processor (CPU) model, run qemu-system-ARCH -cpuMODEL. Use

qemu-system-ARCH -cpu help to view a list of supported CPU models.

Chapter 37. Running virtual machines with qemu-system-ARCH

288

https://www.seabios.org/SeaBIOS
https://www.seabios.org/SeaBIOS

37.2.1.3. Other basic options

The following is a list of most commonly used options while launching qemu from command line.

To see all options available refer to qemu-doc man page.

-m MEGABYTES

Specifies how many megabytes are used for the virtual RAM size.

-balloon virtio

Specifies a paravirtualized device to dynamically change the amount of virtual RAM

assigned to VM Guest. The top limit is the amount of memory specified with -m.

-smp NUMBER_OF_CPUS

Specifies how many CPUs to emulate. QEMU supports up to 255 CPUs on the PC platform

(up to 64 with KVM acceleration used). This option also takes other CPU-related parameters,

such as number of sockets, number of cores per socket, or number of threads per core.

The following is an example of a working qemu-system-ARCH command line:

>sudo qemu-system-x86_64 \
 -name "SLES 15 SP7" \
 -M pc-i440fx-2.7 -m 512 \
 -machine accel=kvm -cpu kvm64 -smp 2 \
 -drive format=raw,file=/images/sles.raw

Figure 37.1. QEMU window with SLES as VM Guest

289

-no-acpi

Disables ACPI support.

-S

QEMU starts with CPU stopped. To start CPU, enter c in QEMU monitor. For more

information, see Chapter 38, Virtual machine administration using QEMU monitor.

37.2.2. Storing and reading configuration of virtual devices

-readconfig CFG_FILE

Instead of entering the devices configuration options on the command line each time you

want to run VM Guest, qemu-system-ARCH can read it from a file that was either previously

saved with -writeconfig or edited manually.

-writeconfig CFG_FILE

Dumps the current virtual machine's devices configuration to a text file. It can be

consequently re-used with the -readconfig option.

>sudo qemu-system-x86_64 -name "SLES 15 SP7" \
 -machine accel=kvm -M pc-i440fx-2.7 -m 512 -cpu kvm64 \
 -smp 2 /images/sles.raw -writeconfig /images/sles.cfg
(exited)
>cat /images/sles.cfg
qemu config file

[drive]
 index = "0"
 media = "disk"
 file = "/images/sles_base.raw"

This way you can effectively manage the configuration of your virtual machines' devices in a

well-arranged way.

37.2.3. Guest real-time clock

-rtc OPTIONS

Specifies the way the RTC is handled inside a VM Guest. By default, the clock of the guest is

derived from that of the host system. Therefore, it is recommended that the host system

clock is synchronized with an accurate external clock, for example, via NTP service.

If you need to isolate the VM Guest clock from the host one, specify clock=vm instead of

the default clock=host.

You can also specify the initial time of the VM Guest's clock with the base option:

>sudo qemu-system-x86_64 [...] -rtc clock=vm,base=2010-12-03T01:02:00

Chapter 37. Running virtual machines with qemu-system-ARCH

290

Instead of a time stamp, you can specify utc or localtime. The former instructs VM Guest

to start at the current UTC value (Coordinated Universal Time, see https://en.wikipedia.org/

wiki/UTC), while the latter applies the local time setting.

37.3. Using devices in QEMU

QEMU virtual machines emulate all devices needed to run a VM Guest. QEMU supports, for

example, several types of network cards, block devices (hard and removable drives), USB devices,

character devices (serial and parallel ports), or multimedia devices (graphic and sound cards). This

section introduces options to configure multiple types of supported devices.

Tip

If your device, such as -drive, needs a special driver and driver properties to be

set, specify them with the -device option, and identify with drive= suboption. For

example:

>sudo qemu-system-x86_64 [...] -drive if=none,id=drive0,format=raw \
-device virtio-blk-pci,drive=drive0,scsi=off ...

To get help on available drivers and their properties, use -device ? and -device

DRIVER,?.

37.3.1. Block devices

Block devices are vital for virtual machines. These are fixed or removable storage media called

drives. One of the connected hard disks typically holds the guest operating system to be

virtualized.

Virtual Machine drives are defined with -drive. This option has many sub-options, so me of which

are described in this section. For the complete list, see the man page (man 1 qemu).

Sub-options for the -drive option

file=image_fname

Specifies the path to the disk image that to be used with this drive. If not specified, an empty

(removable) drive is assumed.

if=drive_interface

Specifies the type of interface to which the drive is connected. Currently only floppy, scsi,

ide, or virtio are supported by SUSE. virtio defines a paravirtualized disk driver.

Default is ide.

291

https://en.wikipedia.org/wiki/UTC
https://en.wikipedia.org/wiki/UTC

index=index_of_connector

Specifies the index number of a connector on the disk interface (see the if option) where

the drive is connected. If not specified, the index is automatically incremented.

media=type

Specifies the type of media. Can be disk for hard disks, or cdrom for removable CD-ROM

drives.

format=img_fmt

Specifies the format of the connected disk image. If not specified, the format is autodetected.

Currently, SUSE supports raw and qcow2 formats.

cache=method

Specifies the caching method for the drive. Possible values are unsafe, writethrough,

writeback, directsync, or none. To improve performance when using the qcow2 image

format, select writeback. none disables the host page cache and, therefore, is the safest

option. Default for image files is writeback. For more information, see Chapter 19, Disk

cache modes.

Tip

To simplify defining block devices, QEMU understands several shortcuts which you

may find handy when entering the qemu-system-ARCH command line.

You can use

>sudo qemu-system-x86_64 -cdrom /images/cdrom.iso

instead of

>sudo qemu-system-x86_64 -drive format=raw,file=/images/
cdrom.iso,index=2,media=cdrom

and

>sudo qemu-system-x86_64 -hda /images/imagei1.raw -hdb /images/
image2.raw -hdc \
/images/image3.raw -hdd /images/image4.raw

instead of

>sudo qemu-system-x86_64 -drive format=raw,file=/images/
image1.raw,index=0,media=disk \
-drive format=raw,file=/images/image2.raw,index=1,media=disk \
-drive format=raw,file=/images/image3.raw,index=2,media=disk \
-drive format=raw,file=/images/image4.raw,index=3,media=disk

Chapter 37. Running virtual machines with qemu-system-ARCH

292

Using host drives instead of images

As an alternative to using disk images (see the section called “Managing disk images

with qemu-img ”) you can also use existing VM Host Server disks, connect them as

drives, and access them from VM Guest. Use the host disk device directly instead of

disk image file names.

To access the host CD-ROM drive, use

>sudo qemu-system-x86_64 [...] -drive file=/dev/cdrom,media=cdrom

To access the host hard disk, use

>sudo qemu-system-x86_64 [...] -drive file=/dev/hdb,media=disk

A host drive used by a VM Guest must not be accessed concurrently by the VM Host

Server or another VM Guest.

37.3.1.1. Freeing unused guest disk space

A Sparse image file is a type of disk image file that grows in size as the user adds data to it, taking

up only as much disk space as is stored in it. For example, if you copy 1 GB of data inside the

sparse disk image, its size grows by 1 GB. If you then delete, for example, 500 MB of the data, the

image size does not by default decrease as expected.

This is why the discard=on option is introduced on the KVM command line. It tells the hypervisor

to automatically free the “holes” after deleting data from the sparse guest image. This option is

valid only for the if=scsi drive interface:

>sudo qemu-system-x86_64 [...] -drive format=img_format,file=/path/to/file.img,i
f=scsi,discard=on

Support status

if=scsi is not supported. This interface does not map to virtio-scsi, but rather to the

lsi SCSI adapter.

37.3.1.2. IOThreads

IOThreads are dedicated event loop threads for virtio devices to perform I/O requests to improve

scalability, especially on an SMP VM Host Server with SMP VM Guests using many disk devices.

Instead of using QEMU's main event loop for I/O processing, IOThreads allow spreading I/O work

across multiple CPUs and can improve latency when properly configured.

293

IOThreads are enabled by defining IOThread objects. virtio devices can then use the objects for

their I/O event loops. Many virtio devices can use a single IOThread object, or virtio devices and

IOThread objects can be configured in a 1:1 mapping. The following example creates a single

IOThread with ID iothread0 which is then used as the event loop for two virtio-blk devices.

>sudo qemu-system-x86_64 [...] -object iothread,id=iothread0\
-drive if=none,id=drive0,cache=none,aio=native,\
format=raw,file=filename -device virtio-blk-pci,drive=drive0,scsi=off,\
iothread=iothread0 -drive if=none,id=drive1,cache=none,aio=native,\
format=raw,file=filename -device virtio-blk-pci,drive=drive1,scsi=off,\
iothread=iothread0 [...]

The following qemu command line example illustrates a 1:1 virtio device to IOThread mapping:

>sudo qemu-system-x86_64 [...] -object iothread,id=iothread0\
-object iothread,id=iothread1 -drive if=none,id=drive0,cache=none,aio=native,\
format=raw,file=filename -device virtio-blk-pci,drive=drive0,scsi=off,\
iothread=iothread0 -drive if=none,id=drive1,cache=none,aio=native,\
format=raw,file=filename -device virtio-blk-pci,drive=drive1,scsi=off,\
 iothread=iothread1 [...]

37.3.1.3. Bio-based I/O path for virtio-blk

For better performance of I/O-intensive applications, a new I/O path was introduced for the virtio-

blk interface in kernel version 3.7. This bio-based block device driver skips the I/O scheduler, and

thus shortens the I/O path in guest and has lower latency. It is especially useful for high-speed

storage devices, such as SSD disks.

The driver is disabled by default. To use it, do the following:

Append virtio_blk.use_bio=1 to the kernel command line on the guest. You can do so

via YaST > System > Boot Loader.

You can do it also by editing /etc/default/grub, searching for the line that contains

GRUB_CMDLINE_LINUX_DEFAULT=, and adding the kernel parameter at the end. Then run

grub2-mkconfig >/boot/grub2/grub.cfg to update the grub2 boot menu.

Reboot the guest with the new kernel command line active.

Bio-based driver on slow devices

The bio-based virtio-blk driver does not help on slow devices such as spin hard disks.

The reason is that the benefit of scheduling is larger than what the shortened bio path

offers. Do not use the bio-based driver on slow devices.

37.3.1.4. Accessing iSCSI resources directly

QEMU now integrates with libiscsi. This allows QEMU to access iSCSI resources directly and

use them as virtual machine block devices. This feature does not require any host iSCSI initiator

1.

2.

Chapter 37. Running virtual machines with qemu-system-ARCH

294

configuration, as is needed for a libvirt iSCSI target based storage pool setup. Instead it directly

connects guest storage interfaces to an iSCSI target LUN via the user space library libiscsi. iSCSI-

based disk devices can also be specified in the libvirt XML configuration.

RAW image format

This feature is only available using the RAW image format, as the iSCSI protocol has

certain technical limitations.

The following is the QEMU command line interface for iSCSI connectivity.

virt-manager limitation

The use of libiscsi based storage provisioning is not yet exposed by the virt-manager

interface, but instead it would be configured by directly editing the guest xml. This

new way of accessing iSCSI based storage is to be done at the command line.

>sudo qemu-system-x86_64 -machine accel=kvm \
 -drive file=iscsi://192.168.100.1:3260/iqn.2016-08.com.example:314605ab-
a88e-49af-b4eb-664808a3443b/0,\
 format=raw,if=none,id=mydrive,cache=none \
 -device ide-hd,bus=ide.0,unit=0,drive=mydrive ...

Here is an example snippet of guest domain xml which uses the protocol based iSCSI:

<devices>
...
 <disk type='network' device='disk'>
 <driver name='qemu' type='raw'/>
 <source protocol='iscsi' name='iqn.2013-07.com.example:iscsi-nopool/2'>
 <host name='example.com' port='3260'/>
 </source>
 <auth username='myuser'>
 <secret type='iscsi' usage='libvirtiscsi'/>
 </auth>
 <target dev='vda' bus='virtio'/>
 </disk>
</devices>

Contrast that with an example which uses the host based iSCSI initiator which virt-manager sets

up:

<devices>
...
 <disk type='block' device='disk'>
 <driver name='qemu' type='raw' cache='none' io='native'/>
 <source dev='/dev/disk/by-path/scsi-0:0:0:0'/>
 <target dev='hda' bus='ide'/>
 <address type='drive' controller='0' bus='0' target='0' unit='0'/>
 </disk>
 <controller type='ide' index='0'>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x01'
 function='0x1'/>
 </controller>
</devices>

295

37.3.1.5. Using RADOS block devices with QEMU

RADOS Block Devices (RBD) store data in a Ceph cluster. They allow snapshotting, replication

and data consistency. You can use an RBD from your KVM-managed VM Guests similarly to how

you use other block devices.

For more details, refer to the SUSE Enterprise Storage Administration Guide, chapter Ceph as a

Back-end for QEMU KVM Instance.

37.3.2. Graphic devices and display options

This section describes QEMU options affecting the type of the emulated video card and the way

VM Guest graphical output is displayed.

37.3.2.1. Defining video cards

QEMU uses -vga to define a video card used to display VM Guest graphical output. The -vga

option understands the following values:

none

Disables video cards on VM Guest (no video card is emulated). You can still access the

running VM Guest via the serial console.

std

Emulates a standard VESA 2.0 VBE video card. Use it if you intend to use high display

resolution on VM Guest.

qxl

QXL is a paravirtual graphic card. It is VGA compatible (including VESA 2.0 VBE support).

qxl is recommended when using the spice video protocol.

virtio

Paravirtual VGA graphic card.

37.3.2.2. Display options

The following options affect the way VM Guest graphical output is displayed.

-display gtk

Display video output in a GTK window. This interface provides UI elements to configure and

control the VM during runtime.

Chapter 37. Running virtual machines with qemu-system-ARCH

296

https://documentation.suse.com/ses/html/ses-all/cha-ceph-kvm.html
https://documentation.suse.com/ses/html/ses-all/cha-ceph-kvm.html
https://documentation.suse.com/ses/html/ses-all/cha-ceph-kvm.html
https://documentation.suse.com/ses/html/ses-all/cha-ceph-kvm.html
https://documentation.suse.com/ses/html/ses-all/cha-ceph-kvm.html

-display sdl

Display video output via SDL in a separate graphics window. For more information, see the

SDL documentation.

-spice option[,option[,...]]

Enables the spice remote desktop protocol.

-display vnc

Refer to the section called “Viewing a VM Guest with VNC” for more information.

-nographic

Disables QEMU's graphical output. The emulated serial port is redirected to the console.

After starting the virtual machine with -nographic, press Ctrl—AH in the virtual console to

view the list of other useful shortcuts, for example, to toggle between the console and the

QEMU monitor.

>sudo qemu-system-x86_64 -hda /images/sles_base.raw -nographic

C-a h print this help
C-a x exit emulator
C-a s save disk data back to file (if -snapshot)
C-a t toggle console timestamps
C-a b send break (magic sysrq)
C-a c switch between console and monitor
C-a C-a sends C-a
(pressed C-a c)

QEMU 2.3.1 monitor - type 'help' for more information
(qemu)

-no-frame

Disables decorations for the QEMU window. Convenient for dedicated desktop work space.

-full-screen

Starts QEMU graphical output in full screen mode.

-no-quit

Disables the close button of the QEMU window and prevents it from being closed by force.

-alt-grab, -ctrl-grab

By default, the QEMU window releases the “captured” mouse after pressing Ctrl—Alt. You

can change the key combination to either Ctrl—Alt—Shift (-alt-grab), or the right

Ctrl key (-ctrl-grab).

297

37.3.3. USB devices

There are two ways to create USB devices usable by the VM Guest in KVM: you can either

emulate new USB devices inside a VM Guest, or assign an existing host USB device to a VM

Guest. To use USB devices in QEMU you first need to enable the generic USB driver with the -

usb option. Then you can specify individual devices with the -usbdevice option.

37.3.3.1. Emulating USB devices in VM Guest

SUSE currently supports the following types of USB devices: disk, host, serial, braille,

net, mouse, and tablet.

Types of USB devices for the -usbdevice option

disk

Emulates a mass storage device based on file. The optional format option is used rather

than detecting the format.

>sudo qemu-system-x86_64 [...] -usbdevice
 disk:format=raw:/virt/usb_disk.raw

host

Pass through the host device (identified by bus.addr).

serial

Serial converter to a host character device.

braille

Emulates a braille device using BrlAPI to display the braille output.

net

Emulates a network adapter that supports CDC Ethernet and RNDIS protocols.

mouse

Emulates a virtual USB mouse. This option overrides the default PS/2 mouse emulation. The

following example shows the hardware status of a mouse on VM Guest started with qemu-

system-ARCH [...] -usbdevice mouse:

Chapter 37. Running virtual machines with qemu-system-ARCH

298

>sudo hwinfo --mouse
20: USB 00.0: 10503 USB Mouse
[Created at usb.122]
UDI: /org/freedesktop/Hal/devices/usb_device_627_1_1_if0
[...]
Hardware Class: mouse
Model: "Adomax QEMU USB Mouse"
Hotplug: USB
Vendor: usb 0x0627 "Adomax Technology Co., Ltd"
Device: usb 0x0001 "QEMU USB Mouse"
[...]

tablet

Emulates a pointer device that uses absolute coordinates (such as touchscreen). This option

overrides the default PS/2 mouse emulation. The tablet device is useful if you are viewing

VM Guest via the VNC protocol. See the section called “Viewing a VM Guest with VNC” for

more information.

37.3.4. Character devices

Use -chardev to create a new character device. The option uses the following general syntax:

qemu-system-x86_64 [...] -chardev BACKEND_TYPE,id=ID_STRING

where BACKEND_TYPE can be one of null, socket, udp, msmouse, vc, file, pipe,

console, serial, pty, stdio, braille, tty, or parport. All character devices must have a

unique identification string up to 127 characters long. It is used to identify the device in other

related directives. For the complete description of all back-end's sub-options, see the man page

(man 1 qemu). A brief description of the available back-ends follows:

null

Creates an empty device that outputs no data and drops any data it receives.

stdio

Connects to QEMU's process standard input and standard output.

socket

Creates a two-way stream socket. If PATH is specified, a Unix socket is created:

>sudo qemu-system-x86_64 [...] -chardev \
socket,id=unix_socket1,path=/tmp/unix_socket1,server

The SERVER suboption specifies that the socket is a listening socket.

If PORT is specified, a TCP socket is created:

>sudo qemu-system-x86_64 [...] -chardev \
socket,id=tcp_socket1,host=localhost,port=7777,server,nowait

299

The command creates a local listening (server) TCP socket on port 7777. QEMU does not

block waiting for a client to connect to the listening port (nowait).

udp

Sends all network traffic from VM Guest to a remote host over the UDP protocol.

>sudo qemu-system-x86_64 [...] \
-chardev udp,id=udp_fwd,host=mercury.example.com,port=7777

The command binds port 7777 on the remote host mercury.example.com and sends VM

Guest network traffic there.

vc

Creates a new QEMU text console. You can optionally specify the dimensions of the virtual

console:

>sudo qemu-system-x86_64 [...] -chardev vc,id=vc1,width=640,height=480 \
-mon chardev=vc1

The command creates a new virtual console called vc1 of the specified size, and connects

the QEMU monitor to it.

file

Logs all traffic from VM Guest to a file on VM Host Server. The path is required and is

automatically created if it does not exist.

>sudo qemu-system-x86_64 [...] \
-chardev file,id=qemu_log1,path=/var/log/qemu/guest1.log

By default QEMU creates a set of character devices for serial and parallel ports, and a special

console for QEMU monitor. However, you can create your own character devices and use them for

the mentioned purposes. The following options may help you:

-serial CHAR_DEV

Redirects the VM Guest's virtual serial port to a character device CHAR_DEV on VM Host

Server. By default, it is a virtual console (vc) in graphical mode, and stdio in non-graphical

mode. The -serial understands many sub-options. See the man page man 1 qemu for a

complete list of them.

You can emulate up to four serial ports. Use -serial none to disable all serial ports.

-parallel DEVICE

Redirects the VM Guest's parallel port to a DEVICE. This option supports the same devices

as -serial.

Chapter 37. Running virtual machines with qemu-system-ARCH

300

Tip

With SUSE Linux Enterprise Server as a VM Host Server, you can directly use

the hardware parallel port devices /dev/parportN where N is the number of

the port.

You can emulate up to three parallel ports. Use -parallel none to disable all parallel

ports.

-monitor CHAR_DEV

Redirects the QEMU monitor to a character device CHAR_DEV on VM Host Server. This

option supports the same devices as -serial. By default, it is a virtual console (vc) in a

graphical mode, and stdio in non-graphical mode.

For a complete list of available character devices back-ends, see the man page (man 1 qemu).

37.4. Networking in QEMU

Use the -netdev option in combination with -device to define a specific type of networking and

a network interface card for your VM Guest. The syntax for the -netdev option is

-netdev type[,prop[=value][,...]]

Currently, SUSE supports the following network types: user, bridge, and tap. For a complete

list of -netdev sub-options, see the man page (man 1 qemu).

Supported -netdev sub-options

bridge

Uses a specified network helper to configure the TAP interface and attach it to a specified

bridge. For more information, see the section called “Bridged networking”.

user

Specifies user-mode networking. For more information, see the section called “User-mode

networking”.

tap

Specifies bridged or routed networking. For more information, see the section called

“Bridged networking”.

301

❶

❷

❸

❹

37.4.1. Defining a network interface card

Use -netdev together with the related -device option to add a new emulated network card:

>sudo qemu-system-x86_64 [...] \
-netdev tap❶,id=hostnet0 \
-device virtio-net-pci❷,netdev=hostnet0,vlan=1❸,\
macaddr=00:16:35:AF:94:4B❹,name=ncard1

Specifies the network device type.

Specifies the model of the network card. Use qemu-system-ARCH -device help and

search for the Network devices:section to get the list of all network card models supported

by QEMU on your platform.

Currently, SUSE supports the models rtl8139, e1000 and its variants e1000-82540em,

e1000-82544gc and e1000-82545em, and virtio-net-pci. To view a list of options for a

specific driver, add help as a driver option:

>sudo qemu-system-x86_64 -device e1000,help
e1000.mac=macaddr
e1000.vlan=vlan
e1000.netdev=netdev
e1000.bootindex=int32
e1000.autonegotiation=on/off
e1000.mitigation=on/off
e1000.addr=pci-devfn
e1000.romfile=str
e1000.rombar=uint32
e1000.multifunction=on/off
e1000.command_serr_enable=on/off

Connects the network interface to VLAN number 1. You can specify your own number—it is

mainly useful for identification purpose. If you omit this suboption, QEMU uses the default 0.

Specifies the Media Access Control (MAC) address for the network card. It is a unique identifier

and you are advised to always specify it. If not, QEMU supplies its own default MAC address

and creates a possible MAC address conflict within the related VLAN.

37.4.2. User-mode networking

The -netdev user option instructs QEMU to use user-mode networking. This is the default if no

networking mode is selected. Therefore, these command lines are equivalent:

>sudo qemu-system-x86_64 -hda /images/sles_base.raw

>sudo qemu-system-x86_64 -hda /images/sles_base.raw -netdev user,id=hostnet0

This mode is useful to allow the VM Guest to access the external network resources, such as the

Internet. By default, no incoming traffic is permitted and therefore, the VM Guest is not visible to

other machines on the network. No administrator privileges are required in this networking mode.

Chapter 37. Running virtual machines with qemu-system-ARCH

302

❶

❷

❸

❹

❶

❷

❸

❹

The user-mode is also useful for doing a network boot on your VM Guest from a local directory on

VM Host Server.

The VM Guest allocates an IP address from a virtual DHCP server. VM Host Server (the DHCP

server) is reachable at 10.0.2.2, while the IP address range for allocation starts from 10.0.2.15. You

can use ssh to connect to VM Host Server at 10.0.2.2, and scp to copy files back and forth.

37.4.2.1. Command line examples

This section shows several examples on how to set up user-mode networking with QEMU.

Example 37.1. Restricted user-mode networking

>sudo qemu-system-x86_64 [...] \
-netdev user❶,id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,vlan=1❷,name=user_net1❸,restrict=yes❹

Specifies user-mode networking.

Connects to VLAN number 1. If omitted, defaults to 0.

Specifies a human-readable name of the network stack. Useful when identifying it in the QEMU

monitor.

Isolates VM Guest. It then cannot communicate with VM Host Server and no network packets

are routed to the external network.

Example 37.2. User-mode networking with custom IP range

>sudo qemu-system-x86_64 [...] \
-netdev user,id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,net=10.2.0.0/8❶,host=10.2.0.6❷,\
dhcpstart=10.2.0.20❸,hostname=tux_kvm_guest❹

Specifies the IP address of the network that VM Guest sees and optionally the netmask. Default

is 10.0.2.0/8.

Specifies the VM Host Server IP address that VM Guest sees. Default is 10.0.2.2.

Specifies the first of the 16 IP addresses that the built-in DHCP server can assign to VM Guest.

Default is 10.0.2.15.

Specifies the host name that the built-in DHCP server assigns to VM Guest.

Example 37.3. User-mode networking with network-boot and TFTP

>sudo qemu-system-x86_64 [...] \
-netdev user,id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,tftp=/images/tftp_dir❶,\
bootfile=/images/boot/pxelinux.0❷

303

❶

❷

Activates a built-in TFTP (a file transfer protocol with the functionality of a basic FTP) server.

The files in the specified directory are visible to a VM Guest as the root of a TFTP server.

Broadcasts the specified file as a BOOTP (a network protocol that offers an IP address and a

network location of a boot image, often used in diskless workstations) file. When used together

with tftp, the VM Guest can boot via the network from the local directory on the host.

Example 37.4. User-mode networking with host port forwarding

>sudo qemu-system-x86_64 [...] \
-netdev user,id=hostnet0 \
-device virtio-net-pci,netdev=hostnet0,hostfwd=tcp::2222-:22

Forwards incoming TCP connections to the port 2222 on the host to the port 22 (SSH) on VM

Guest. If sshd is running on VM Guest, enter

>ssh qemu_host -p 2222

where qemu_host is the host name or IP address of the host system, to get a SSH prompt from

VM Guest.

37.4.3. Bridged networking

With the -netdev tap option, QEMU creates a network bridge by connecting the host TAP

network device to a specified VLAN of VM Guest. Its network interface is then visible to the rest of

the network. This method does not work by default and needs to be explicitly specified.

First, create a network bridge and add a VM Host Server physical network interface to it, such as

eth0:

Start YaST Control Center and select System > Network Settings.

Click Add and select Bridge from the Device Type drop-down box in the Hardware Dialog

window. Click Next.

Choose whether you need a dynamically or statically assigned IP address, and fill the related

network settings if applicable.

In the Bridged Devices pane, select the Ethernet device to add to the bridge.

Click Next. When asked about adapting an already configured device, click Continue.

Click OK to apply the changes. Check if the bridge is created:

>bridge link
2: eth0 state UP : <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master br0 \
 state forwarding priority 32 cost 100

1.

2.

3.

4.

5.

Chapter 37. Running virtual machines with qemu-system-ARCH

304

❶

❷

❸

❹

❺

❻

❼

❽

37.4.3.1. Connecting to a bridge manually

Use the following example script to connect VM Guest to the newly created bridge interface br0.

Several commands in the script are run via the sudo mechanism because they require root

privileges.

Required software

To manage a network bridge, you need to have the tunctl package installed.

#!/bin/bash
bridge=br0❶
tap=$(sudo tunctl -u $(whoami) -b)❷
sudo ip link set $tap up❸
sleep 1s❹
sudo ip link add name $bridge type bridge
sudo ip link set $bridge up
sudo ip link set $tap master $bridge❺
qemu-system-x86_64 -machine accel=kvm -m 512 -hda /images/sles_base.raw \
 -netdev tap,id=hostnet0 \
 -device virtio-net-pci,netdev=hostnet0,vlan=0,macaddr=00:16:35:AF:94:4B,\
 ifname=$tap❻,script=no❼,downscript=no
sudo ip link set $tap nomaster❽
sudo ip link set $tap down❾
sudo tunctl -d $tap❿

Name of the bridge device.

Prepare a new TAP device and assign it to the user who runs the script. TAP devices are virtual

network devices often used for virtualization and emulation setups.

Bring up the newly created TAP network interface.

Make a 1-second pause to make sure the new TAP network interface is really up.

Add the new TAP device to the network bridge br0.

The ifname= suboption specifies the name of the TAP network interface used for bridging.

Before qemu-system-ARCH connects to a network bridge, it checks the script and

downscript values. If it finds the specified scripts on the VM Host Server file system, it runs

the script before it connects to the network bridge and downscript after it exits the network

environment. You can use these scripts to set up and tear down the bridged interfaces. By

default, /etc/qemu-ifup and /etc/qemu-ifdown are examined. If script=no and

downscript=no are specified, the script execution is disabled and you need to take care of it

manually.

Deletes the TAP interface from a network bridge br0.

305

❾

❿

Sets the state of the TAP device to down.

Tear down the TAP device.

37.4.3.2. Connecting to a bridge with qemu-bridge-helper

Another way to connect VM Guest to a network through a network bridge is via the qemu-

bridge-helper helper program. It configures the TAP interface for you, and attaches it to the

specified bridge. The default helper executable is /usr/lib/qemu-bridge-helper. The helper

executable is setuid root, which is only executable by the members of the virtualization group

(kvm). Therefore the qemu-system-ARCH command itself does not need to be run under root

privileges.

The helper is automatically called when you specify a network bridge:

qemu-system-x86_64 [...] \
 -netdev bridge,id=hostnet0,vlan=0,br=br0 \
 -device virtio-net-pci,netdev=hostnet0

You can specify your own custom helper script that takes care of the TAP device (de)configuration,

with the helper=/path/to/your/helper option:

qemu-system-x86_64 [...] \
 -netdev bridge,id=hostnet0,vlan=0,br=br0,helper=/path/to/bridge-helper \
 -device virtio-net-pci,netdev=hostnet0

Tip

To define access privileges to qemu-bridge-helper, inspect the /etc/qemu/

bridge.conf file. For example, the following directive

allow br0

allows the qemu-system-ARCH command to connect its VM Guest to the network

bridge br0.

37.5. Viewing a VM Guest with VNC

By default QEMU uses a GTK (a cross-platform toolkit library) window to display the graphical

output of a VM Guest. With the -vnc option specified, you can make QEMU listen on a specified

VNC display and redirect its graphical output to the VNC session.

Chapter 37. Running virtual machines with qemu-system-ARCH

306

Tip

When working with QEMU's virtual machine via VNC session, it is useful to work with

the -usbdevice tablet option.

Moreover, if you need to use another keyboard layout than the default en-us, specify

it with the -k option.

The first suboption of -vnc must be a display value. The -vnc option understands the following

display specifications:

host:display

Only connections from host on the display number display are accepted. The TCP port

on which the VNC session is then running is normally a 5900 + display number. If you do

not specify host, connections are accepted from any host.

unix:path

The VNC server listens for connections on Unix domain sockets. The path option specifies

the location of the related Unix socket.

none

The VNC server functionality is initialized, but the server itself is not started. You can start

the VNC server later with the QEMU monitor. For more information, see Chapter 38, Virtual

machine administration using QEMU monitor.

Following the display value there may be one or more option flags separated by commas. Valid

options are:

reverse

Connect to a listening VNC client via a reverse connection.

websocket

Opens an additional TCP listening port dedicated to VNC Websocket connections. By

definition the Websocket port is 5700+display.

password

Require that password-based authentication is used for client connections.

307

tls

Require that clients use TLS when communicating with the VNC server.

x509=/path/to/certificate/dir

Valid if TLS is specified. Require that x509 credentials are used for negotiating the TLS

session.

x509verify=/path/to/certificate/dir

Valid if TLS is specified. Require that x509 credentials are used for negotiating the TLS

session.

sasl

Require that the client uses SASL to authenticate with the VNC server.

acl

Turn on access control lists for checking of the x509 client certificate and SASL party.

lossy

Enable lossy compression methods (gradient, JPEG, ...).

non-adaptive

Disable adaptive encodings. Adaptive encodings are enabled by default.

share=[allow-exclusive|force-shared|ignore]

Set display sharing policy.

Note

For more details about the display options, see the qemu-doc man page.

An example VNC usage:

tux >sudo qemu-system-x86_64 [...] -vnc :5
(on the client:)
wilber >vncviewer venus:5 &

Chapter 37. Running virtual machines with qemu-system-ARCH

308

Figure 37.2. QEMU VNC session

37.5.1. Secure VNC connections

The default VNC server setup does not use any form of authentication. In the previous example,

any user can connect and view the QEMU VNC session from any host on the network.

There are several levels of security that you can apply to your VNC client/server connection. You

can either protect your connection with a password, use x509 certificates, use SASL

authentication, or even combine several authentication methods in one QEMU command.

For more information about configuring x509 certificates on a VM Host Server and the client, see

the section called “Remote TLS/SSL connection with x509 certificate (qemu+tls or xen+tls)”

and the section called “Configuring the client and testing the setup”.

The Remmina VNC viewer supports advanced authentication mechanisms. For this example, let

us assume that the server x509 certificates ca-cert.pem, server-cert.pem, and server-

key.pem are located in the /etc/pki/qemu directory on the host. The client certificates can be

placed in any custom directory, as Remmina asks for their path on the connection start-up.

Example 37.5. Password authentication

qemu-system-x86_64 [...] -vnc :5,password -monitor stdio

Starts the VM Guest graphical output on VNC display number 5 which corresponds to port 5905.

The password suboption initializes a simple password-based authentication method. There is no

password set by default and you need to set one with the change vnc password command in

QEMU monitor:

309

QEMU 2.3.1 monitor - type 'help' for more information
(qemu) change vnc password
Password: ****

You need the -monitor stdio option here, because you would not be able to manage the

QEMU monitor without redirecting its input/output.

Figure 37.3. Authentication dialog in Remmina

Example 37.6. x509 certificate authentication

The QEMU VNC server can use TLS encryption for the session and x509 certificates for

authentication. The server asks the client for a certificate and validates it against the CA certificate.

Use this authentication type if your company provides an internal certificate authority.

qemu-system-x86_64 [...] -vnc :5,tls,x509verify=/etc/pki/qemu

Example 37.7. x509 certificate and password authentication

You can combine the password authentication with TLS encryption and x509 certificate

authentication to create a two-layer authentication model for clients. Remember to set the

password in the QEMU monitor after you run the following command:

qemu-system-x86_64 [...] -vnc :5,password,tls,x509verify=/etc/pki/qemu \
-monitor stdio

Example 37.8. SASL authentication

Simple Authentication and Security Layer (SASL) is a framework for authentication and data

security in Internet protocols. It integrates several authentication mechanisms, like PAM, Kerberos,

LDAP and more. SASL keeps its own user database, so the connecting user accounts do not need

to exist on VM Host Server.

For security reasons, you are advised to combine SASL authentication with TLS encryption and

x509 certificates:

Chapter 37. Running virtual machines with qemu-system-ARCH

310

qemu-system-x86_64 [...] -vnc :5,tls,x509,sasl -monitor stdio

311

Chapter 38. Virtual machine administration using QEMU monitor

When a virtual machine is invoked by the qemu-system-ARCH command, for example qemu-

system-x86_64, a monitor console is provided for performing interaction with the user. Using the

commands available in the monitor console, it is possible to inspect the running operating system,

change removable media, take screenshots or audio grabs and control other aspects of the virtual

machine.

Note

The following sections list selected useful QEMU monitor commands and their

purpose. To get the full list, enter help in the QEMU monitor command line.

38.1. Accessing monitor console

No monitor console for libvirt

You can access the monitor console only if you started the virtual machine directly

with the qemu-system-ARCH command and are viewing its graphical output in a

built-in QEMU window.

If you started the virtual machine with libvirt, for example, using virt-manager,

and are viewing its output via VNC or Spice sessions, you cannot access the monitor

console directly. You can, however, send the monitor command to the virtual machine

via virsh:

#virsh qemu-monitor-command COMMAND

The way you access the monitor console depends on which display device you use to view the

output of a virtual machine. Find more details about displays in the section called “Display options”.

For example, to view the monitor while the -display gtk option is in use, press Ctrl—Alt—2.

Similarly, when the -nographic option is in use, you can switch to the monitor console by

pressing the following key combination: Ctrl—AC.

To get help while using the console, use help or ?. To get help for a specific command, use

helpCOMMAND.

38.2. Getting information about the guest system

To get information about the guest system, use info. If used without any option, the list of

possible options is printed. Options determine which part of the system is analyzed:

Chapter 38. Virtual machine administration using QEMU monitor

312

info version

Shows the version of QEMU.

info commands

Lists available QMP commands.

info network

Shows the network state.

info chardev

Shows the character devices.

info block

Information about block devices, such as hard disks, floppy drives, or CD-ROMs.

info blockstats

Read and write statistics on block devices.

info registers

Shows the CPU registers.

info cpus

Shows information about available CPUs.

info history

Shows the command line history.

info irq

Shows the interrupt statistics.

info pic

Shows the i8259 (PIC) state.

info pci

Shows the PCI information.

313

info tlb

Shows virtual to physical memory mappings.

info mem

Shows the active virtual memory mappings.

info jit

Shows dynamic compiler information.

info kvm

Shows the KVM information.

info numa

Shows the NUMA information.

info usb

Shows the guest USB devices.

info usbhost

Shows the host USB devices.

info profile

Shows the profiling information.

info capture

Shows the capture (audio grab) information.

info snapshots

Shows the currently saved virtual machine snapshots.

info status

Shows the current virtual machine status.

info mice

Shows which guest mice are receiving events.

Chapter 38. Virtual machine administration using QEMU monitor

314

info vnc

Shows the VNC server status.

info name

Shows the current virtual machine name.

info uuid

Shows the current virtual machine UUID.

info usernet

Shows the user network stack connection states.

info migrate

Shows the migration status.

info balloon

Shows the balloon device information.

info qtree

Shows the device tree.

info qdm

Shows the qdev device model list.

info roms

Shows the ROMs.

info migrate_cache_size

Shows the current migration xbzrle (“Xor Based Zero Run Length Encoding”) cache size.

info migrate_capabilities

Shows the status of the multiple migration capabilities, such as xbzrle compression.

info mtree

Shows the VM Guest memory hierarchy.

315

info trace-events

Shows available trace-events and their status.

38.3. Changing VNC password

To change the VNC password, use the change vnc password command and enter the new

password:

(qemu) change vnc password
Password: ********
(qemu)

38.4. Managing devices

To add a new disk while the guest is running (hotplug), use the drive_add and device_add

commands. First define a new drive to be added as a device to bus 0:

(qemu) drive_add 0 if=none,file=/tmp/test.img,format=raw,id=disk1
OK

You can confirm your new device by querying the block subsystem:

(qemu) info block
[...]
disk1: removable=1 locked=0 tray-open=0 file=/tmp/test.img ro=0 drv=raw \
encrypted=0 bps=0 bps_rd=0 bps_wr=0 iops=0 iops_rd=0 iops_wr=0

After the new drive is defined, it needs to be connected to a device so that the guest can see it.

The typical device would be a virtio-blk-pci or scsi-disk. To get the full list of available

values, run:

(qemu) device_add ?
name "VGA", bus PCI
name "usb-storage", bus usb-bus
[...]
name "virtio-blk-pci", bus virtio-bus

Now add the device

(qemu) device_add virtio-blk-pci,drive=disk1,id=myvirtio1

and confirm with

(qemu) info pci
[...]
Bus 0, device 4, function 0:
 SCSI controller: PCI device 1af4:1001
 IRQ 0.
 BAR0: I/O at 0xffffffffffffffff [0x003e].
 BAR1: 32 bit memory at 0xffffffffffffffff [0x00000ffe].
 id "myvirtio1"

Chapter 38. Virtual machine administration using QEMU monitor

316

Tip

Devices added with the device_add command can be removed from the guest with

device_del. Enter help device_del on the QEMU monitor command line for

more information.

To release the device or file connected to the removable media device, use the ejectDEVICE

command. Use the optional -f to force ejection.

To change removable media (like CD-ROMs), use the changeDEVICE command. The name of

the removable media can be determined using the info block command:

(qemu)info block
ide1-cd0: type=cdrom removable=1 locked=0 file=/dev/sr0 ro=1 drv=host_device
(qemu)change ide1-cd0 /path/to/image

38.5. Controlling keyboard and mouse

It is possible to use the monitor console to emulate keyboard and mouse input if necessary. For

example, if your graphical user interface intercepts certain key combinations at low level (such as

Ctrl—Alt—F1 in X Window Syustem), you can still enter them using the sendkeyKEYS:

sendkey ctrl-alt-f1

To list the key names used in the KEYS option, enter sendkey and press Tab.

To control the mouse, the following commands can be used:

mouse_move DX dy [DZ]

Move the active mouse pointer to the specified coordinates dx, dy with the optional scroll

axis dz.

mouse_button VAL

Change the state of the mouse buttons (1=left, 2=middle, 4=right).

mouse_set INDEX

Set which mouse device receives events. Device index numbers can be obtained with the

info mice command.

38.6. Changing available memory

If the virtual machine was started with the -balloon virtio option (the paravirtualized balloon

device is therefore enabled), you can change the available memory dynamically. For more

317

information about enabling the balloon device, see the section called “Basic installation with qemu-

system-ARCH ”.

To get information about the balloon device in the monitor console and to determine whether the

device is enabled, use the info balloon command:

(qemu) info balloon

If the balloon device is enabled, use the balloonMEMORY_IN_MB command to set the

requested amount of memory:

(qemu) balloon 400

38.7. Dumping virtual machine memory

To save the content of the virtual machine memory to a disk or console output, use the following

commands:

memsave ADDR SIZE FILENAME

Saves virtual memory dump starting at ADDR of size SIZE to file FILENAME

pmemsave ADDR SIZE FILENAME

Saves physical memory dump starting at ADDR of size SIZE to file FILENAME-

x /FMT ADDR

Makes a virtual memory dump starting at address ADDR and formatted according to the

FMT string. The FMT string consists of three parameters COUNTFORMATSIZE:

The COUNT parameter is the number of items to be dumped.

The FORMAT can be x (hex), d (signed decimal), u (unsigned decimal), o (octal), c (char) or

i (assembly instruction).

The SIZE parameter can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86, h or w

can be specified with the i format to respectively select 16 or 32-bit code instruction size.

xp /FMT ADDR

Makes a physical memory dump starting at address ADDR and formatted according to the

FMT string. The FMT string consists of three parameters COUNTFORMATSIZE:

The COUNT parameter is the number of the items to be dumped.

The FORMAT can be x (hex), d (signed decimal), u (unsigned decimal), o (octal), c (char) or

i (asm instruction).

Chapter 38. Virtual machine administration using QEMU monitor

318

❶

❷

The SIZE parameter can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86, h or w

can be specified with thei format to respectively select 16 or 32-bit code instruction size.

38.8. Managing virtual machine snapshots

Managing snapshots in QEMU monitor is not supported by SUSE yet. The information found in this

section may be helpful in specific cases.

Virtual Machine snapshots are snapshots of the complete virtual machine including the state of

CPU, RAM and the content of all writable disks. To use virtual machine snapshots, you must have

at least one non-removable and writable block device using the qcow2 disk image format.

Snapshots are helpful when you need to save your virtual machine in a particular state. For

example, after you have configured network services on a virtualized server and want to quickly

start the virtual machine in the same state that was saved last. You can also create a snapshot

after the virtual machine has been powered off to create a backup state before you try something

experimental and make VM Guest unstable. This section introduces the former case, while the

latter is described in the section called “Managing snapshots of virtual machines with qemu-img”.

The following commands are available for managing snapshots in QEMU monitor:

savevm NAME

Creates a new virtual machine snapshot under the tag NAME or replaces an existing

snapshot.

loadvm NAME

Loads a virtual machine snapshot tagged NAME.

delvm

Deletes a virtual machine snapshot.

info snapshots

Prints information about available snapshots.

(qemu) info snapshots
Snapshot list:
ID❶ TAG❷ VM SIZE❸ DATE❹ VM CLOCK❺
1 booting 4.4M 2013-11-22 10:51:10 00:00:20.476
2 booted 184M 2013-11-22 10:53:03 00:02:05.394
3 logged_in 273M 2013-11-22 11:00:25 00:04:34.843
4 ff_and_term_running 372M 2013-11-22 11:12:27 00:08:44.965

Unique auto-incremented identification number of the snapshot.

319

❸

❹

❺

Unique description string of the snapshot. It is meant as a human readable version of the

ID.

The disk space occupied by the snapshot. The more memory is consumed by running

applications, the bigger the snapshot is.

Time and date the snapshot was created.

The current state of the virtual machine's clock.

38.9. Suspending and resuming virtual machine execution

The following commands are available for suspending and resuming virtual machines:

stop

Suspends the execution of the virtual machine.

cont

Resumes the execution of the virtual machine.

system_reset

Resets the virtual machine. The effect is similar to the reset button on a physical machine.

This may leave the file system in an unclean state.

system_powerdown

Sends an ACPI shutdown request to the machine. The effect is similar to the power button

on a physical machine.

q or quit

Terminates QEMU immediately.

38.10. Live migration

The live migration process allows to transmit any virtual machine from one host system to another

host system without any interruption in availability. It is possible to change hosts permanently or

only during maintenance.

The requirements for live migration:

All requirements from the section called “Migration requirements” are applicable.

Live migration is only possible between VM Host Servers with the same CPU features.

AHCI interface, VirtFS feature, and the -mem-path command line option are not compatible

with migration.

•

•

•

Chapter 38. Virtual machine administration using QEMU monitor

320

The guest on the source and destination hosts must be started in the same way.

-snapshot qemu command line option should not be used for migration (and this qemu

command line option is not supported).

Support status

The postcopy mode is not yet supported in SUSE Linux Enterprise Server. It is

released as a technology preview only. For more information about postcopy, see

https://wiki.qemu.org/Features/PostCopyLiveMigration.

More recommendations can be found at the following Web site: https://www.linux-kvm.org/page/

Migration

The live migration process has the following steps:

The virtual machine instance is running on the source host.

The virtual machine is started on the destination host in the frozen listening mode. The

parameters used are the same as on the source host plus the -incoming tcp:IP:PORT

parameter, where IP specifies the IP address and PORT specifies the port for listening to the

incoming migration. If 0 is set as IP address, the virtual machine listens on all interfaces.

On the source host, switch to the monitor console and use the migrate -d

tcp:DESTINATION_IP:PORT command to initiate the migration.

To determine the state of the migration, use the info migrate command in the monitor

console on the source host.

To cancel the migration, use the migrate_cancel command in the monitor console on the

source host.

To set the maximum tolerable downtime for migration in seconds, use the

migrate_set_downtimeNUMBER_OF_SECONDS command.

To set the maximum speed for migration in bytes per second, use the

migrate_set_speedBYTES_PER_SECOND command.

38.11. QMP - QEMU machine protocol

QMP is a JSON-based protocol that allows applications—such as libvirt—to communicate with

a running QEMU instance. There are several ways you can access the QEMU monitor using QMP

commands.

38.11.1. Access QMP via standard input/output

The most flexible way to use QMP is by specifying the -mon option. The following example creates

a QMP instance using standard input/output. In the following examples, -> marks lines with

•

•

1.

2.

3.

4.

5.

6.

7.

321

https://wiki.qemu.org/Features/PostCopyLiveMigration
https://www.linux-kvm.org/page/Migration
https://www.linux-kvm.org/page/Migration

commands sent from client to the running QEMU instance, while <- marks lines with the output

returned from QEMU.

>sudo qemu-system-x86_64 [...] \
-chardev stdio,id=mon0 \
-mon chardev=mon0,mode=control,pretty=on

<- {
 "QMP": {
 "version": {
 "qemu": {
 "micro": 0,
 "minor": 0,
 "major": 2
 },
 "package": ""
 },
 "capabilities": [
]
 }
}

When a new QMP connection is established, QMP sends its greeting message and enters

capabilities negotiation mode. In this mode, only the qmp_capabilities command works. To

exit capabilities negotiation mode and enter command mode, the qmp_capabilities command

must be issued first:

-> { "execute": "qmp_capabilities" }
<- {
 "return": {
 }
}

"return": {} is a QMP's success response.

QMP's commands can have arguments. For example, to eject a CD-ROM drive, enter the

following:

->{ "execute": "eject", "arguments": { "device": "ide1-cd0" } }
<- {
 "timestamp": {
 "seconds": 1410353381,
 "microseconds": 763480
 },
 "event": "DEVICE_TRAY_MOVED",
 "data": {
 "device": "ide1-cd0",
 "tray-open": true
 }
}
{
 "return": {
 }
}

38.11.2. Access QMP via telnet

Instead of the standard input/output, you can connect the QMP interface to a network socket and

communicate with it via a specified port:

Chapter 38. Virtual machine administration using QEMU monitor

322

>sudo qemu-system-x86_64 [...] \
-chardev socket,id=mon0,host=localhost,port=4444,server,nowait \
-mon chardev=mon0,mode=control,pretty=on

And then run telnet to connect to port 4444:

>telnet localhost 4444
Trying ::1...
Connected to localhost.
Escape character is '^]'.
<- {
 "QMP": {
 "version": {
 "qemu": {
 "micro": 0,
 "minor": 0,
 "major": 2
 },
 "package": ""
 },
 "capabilities": [
]
 }
}

You can create several monitor interfaces at the same time. The following example creates one

HMP instance—human monitor which understands “normal” QEMU monitor's commands—on the

standard input/output, and one QMP instance on localhost port 4444:

>sudo qemu-system-x86_64 [...] \
-chardev stdio,id=mon0 -mon chardev=mon0,mode=readline \
-chardev socket,id=mon1,host=localhost,port=4444,server,nowait \
 -mon chardev=mon1,mode=control,pretty=on

38.11.3. Access QMP via Unix socket

Invoke QEMU using the -qmp option, and create a Unix socket:

>sudo qemu-system-x86_64 [...] \
-qmp unix:/tmp/qmp-sock,server --monitor stdio

QEMU waiting for connection on: unix:./qmp-sock,server

To communicate with the QEMU instance via the /tmp/qmp-sock socket, use nc (see man 1 nc

for more information) from another terminal on the same host:

>sudo nc -U /tmp/qmp-sock
<- {"QMP": {"version": {"qemu": {"micro": 0, "minor": 0, "major": 2} [...]

38.11.4. Access QMP via libvirt's virsh command

If you run your virtual machines under libvirt (see Part II, “Managing virtual machines with

libvirt ”), you can communicate with its running guests by running the virsh qemu-

monitor-command:

323

>sudo virsh qemu-monitor-command vm_guest1 \
--pretty '{"execute":"query-kvm"}'
<- {
 "return": {
 "enabled": true,
 "present": true
 },
 "id": "libvirt-8"
}

In the above example, we ran the simple command query-kvm which checks if the host is

capable of running KVM and if KVM is enabled.

Generating human-readable output

To use the standard human-readable output format of QEMU instead of the JSON

format, use the --hmp option:

>sudo virsh qemu-monitor-command vm_guest1 --hmp "query-kvm"

Chapter 38. Virtual machine administration using QEMU monitor

324

Part VI. Troubleshooting

39 Integrated help and package documentation
326

40 Gathering system information and logs 327

325

Chapter 39. Integrated help and package documentation

Virtualization packages provide commands for managing many aspects of a virtualization host. It is

not possible or expected to remember all options supported by these commands. A basic

installation of a Xen or KVM host includes manual pages and integrated help for shell commands.

The documentation sub-packages provide additional content beyond what is provided by the basic

installation.

Manual pages for shell commands

Most commands include a man page that provides detailed information about the command,

describes any options, and in certain cases gives example command usage. For example, to

see the manual for the virt-install command type:

>man virt-install

Integrated help for shell commands

Commands also include integrated help, providing more compact and topic-driven

documentation. For example, to see a brief description of the virt-install command

type:

>virt-install --help

Integrated help can also be used to see the details of a specific option. For example, to see

the sub-options supported by the disk option type:

>virt-install --disk help

Documentation sub-packages

Many of the virtualization packages provide additional content in their documentation sub-

package. As an example, the libvirt-doc package contains all the documentation

available at https://libvirt.org, plus sample code demonstrating the use of the libvirt C API.

Use the rpm command to view the contents of a documentation sub-package. For example,

to see the contents of libvirt-doc:

rpm -ql libvirt-doc

Chapter 39. Integrated help and package documentation

326

https://libvirt.org

Chapter 40. Gathering system information and logs

When a virtualization host encounters a problem, it is often necessary to collect a detailed system

report, which can be done with the help of the supportconfig tool. See Chapter 48, Gathering

system information for support in “Administration Guide” for more information about

supportconfig.

In certain cases, the information gathered by supportconfig is insufficient, and logs generated

from a custom logging or debugging configuration may be required to determine the cause of a

problem.

40.1. libvirt log controls

libvirt provides logging facilities for both the library and the daemon. The behavior of the

logging facility is controlled by adjusting the log level, filter and output settings.

Log level

libvirt log messages are classified into four priority levels: DEBUG, INFO, WARNING

and ERROR. The DEBUG level is verbose and capable of generating gigabytes of

information in a short time. The volume of log messages progressively decreases with the

INFO, WARNING and ERROR log levels. ERROR is the default log level.

Log filters

Log filters provide a way to log only messages matching a specific component and log level.

Log filters allow collecting the verbose DEBUG log messages of specific components, but

only ERROR level log messages from the rest of the system. By default, no log filters are

defined.

Log outputs

Log outputs allow specifying where the filtered log messages are sent. Messages can be

sent to a file, the standard error stream of the process, or journald. By default, filtered log

messages are sent to journald.

See https://libvirt.org/logging.html for more details on libvirt's log controls.

A default libvirt installation has the log level set to ERROR, no log filters defined, and log

outputs set to journald. Log messages from the libvirt daemon can be viewed with the

journalctl command:

#journalctl --unit libvirtd

The default log facility settings are fine for normal operations and provide useful messages for

applications and users of libvirt, but internal issues often require DEBUG level messages. As

327

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf
https://libvirt.org/logging.html

an example, consider a potential bug in the interaction between libvirt and the QEMU monitor.

In this case, we only need to see the debug messages of the communication between libvirt

and QEMU. The following example creates a log filter to select debug messages from the QEMU

driver and send them to a file named /tmp/libvirtd.log

 log_filters="1:qemu.qemu_monitor_json"
 log_outputs="1:file:/tmp/libvirtd.log"

Log controls for the libvirt daemon can be found in /etc/libvirt/libvirtd.conf. The

daemon must be restarted after making any changes to the configuration file.

#systemctl restart libvirtd.service

Chapter 40. Gathering system information and logs

328

Glossary

General

Create Virtual Machine Wizard

A software program available in YaST and Virtual Machine Manager that provides a

graphical interface to guide you through the steps to create virtual machines. It can also be

run in text mode by entering virt-install at a command prompt in the host environment.

Dom0

The term is used in Xen environments, and refers to a virtual machine. The host operating

system is a virtual machine running in a privileged domain and can be called Dom0. All other

virtual machines on the host run in unprivileged domains and can be called domain U's.

hardware-assisted

Intel* and AMD* provide virtualization hardware-assisted technology. This reduces the

frequency of VM IN/OUT (fewer VM traps), because software is a major source of overhead,

and increases the efficiency (the execution is done by the hardware). Moreover, this reduces

the memory footprint, provides better resource control, and allows secure assignment of

specific I/O devices.

Host Environment

The desktop or command line environment that allows interaction with the host computer's

environment. It provides a command line environment and can also include a graphical

desktop, such as GNOME or IceWM. The host environment runs as a special type of virtual

machine that has privileges to control and manage other virtual machines. Other commonly

used terms include Dom0, privileged domain, and host operating system.

Hypervisor

The software that coordinates the low-level interaction between virtual machines and the

underlying physical computer hardware.

KVM

See Chapter 4, Introduction to KVM virtualization

Paravirtualized Frame Buffer

The video output device that drives a video display from a memory buffer containing a

complete frame of data for virtual machine displays running in paravirtual mode.

329

VHS

Virtualization Host Server

The physical computer running a SUSE virtualization platform software. The virtualization

environment consists of the hypervisor, the host environment, virtual machines and

associated tools, commands and configuration files. Other commonly used terms include

host, Host Computer, Host Machine (HM), Virtual Server (VS), Virtual Machine Host (VMH),

and VM Host Server (VHS).

VirtFS

VirtFS is a new paravirtualized file system interface designed for improving pass-through

technologies in the KVM environment. It is based on the VirtIO framework.

Virtual Machine

A virtualized PC environment (VM) capable of hosting a guest operating system and

associated applications. Could be also called a VM Guest.

Virtual Machine Manager

A software program that provides a graphical user interface for creating and managing virtual

machines.

Virtualized

A guest operating system or application running on a virtual machine.

Xen

See Chapter 3, Introduction to Xen virtualization

xl

A set of commands for Xen that lets administrators manage virtual machines from a

command prompt on the host computer. It replaced the deprecated xm tool stack.

CPU

CPU capping

Virtual CPU capping allows you to set vCPU capacity to 1–100 percent of the physical CPU

capacity.

Glossary

330

CPU hotplugging

CPU hotplugging is used to describe the functions of replacing/adding/removing a CPU

without shutting down the system.

CPU over-commitment

Virtual CPU over-commitment is the ability to assign more virtual CPUs to VMs than the

actual number of physical CPUs present in the physical system. This procedure does not

increase the overall performance of the system, but may be useful for testing purposes.

CPU pinning

Processor affinity, or CPU pinning enables the binding and unbinding of a process or a

thread to a central processing unit (CPU) or a range of CPUs.

Network

Bridged Networking

A type of network connection that lets a virtual machine be identified on an external network

as a unique identity that is separate from and unrelated to its host computer.

Empty Bridge

A type of network bridge that has no physical network device or virtual network device

provided by the host. This lets virtual machines communicate with other virtual machines on

the same host but not with the host or on an external network.

External Network

The network outside a host's internal network environment.

Internal Network

A type of network configuration that restricts virtual machines to their host environment.

Local Bridge

A type of network bridge that has a virtual network device but no physical network device

provided by the host. This lets virtual machines communicate with the host and other virtual

machines on the host. Virtual machines can communicate on an external network through

the host.

Network Address Translation (NAT)

A type of network connection that lets a virtual machine use the IP address and MAC

address of the host.

331

No Host Bridge

A type of network bridge that has a physical network device but no virtual network device

provided by the host. This lets virtual machines communicate on an external network but not

with the host. This lets you separate virtual machine network communications from the host

environment.

Traditional Bridge

A type of network bridge that has both a physical network device and a virtual network

device provided by the host.

Storage

AHCI

The Advanced Host Controller Interface (AHCI) is a technical standard defined by Intel* that

specifies the operation of Serial ATA (SATA) host bus adapters in a non-implementation-

specific manner.

Block Device

Data storage devices, such as CD-ROM drives or disk drives, that move data in the form of

blocks. Partitions and volumes are also considered block devices.

File-Backed Virtual Disk

A virtual disk based on a file, also called a disk image file.

Raw Disk

A method of accessing data on a disk at the individual byte level instead of through its file

system.

Sparse image file

A disk image file that does not reserve its entire amount of disk space but expands as data is

written to it.

xvda

The drive designation given to the first virtual disk on a paravirtual machine.

Glossary

332

Acronyms

ACPI

Advanced Configuration and Power Interface (ACPI) specification provides an open

standard for device configuration and power management by the operating system.

AER

Advanced Error Reporting

AER is a capability provided by the PCI Express specification which allows for reporting of

PCI errors and recovery from some of them.

APIC

Advanced Programmable Interrupt Controller (APIC) is a family of interrupt controllers.

BDF

Bus:Device:Function

Notation used to succinctly describe PCI and PCIe devices.

CG

Control Groups

Feature to limit, account and isolate resource usage (CPU, memory, disk I/O, etc.).

EDF

Earliest Deadline First

This scheduler provides weighted CPU sharing in an intuitive way and uses real-time

algorithms to ensure time guarantees.

EPT

Extended Page Tables

Performance in a virtualized environment is close to that in a native environment.

Virtualization does create some overheads, however. These come from the virtualization of

the CPU, the MMU, and the I/O devices. In some recent x86 processors AMD and Intel have

begun to provide hardware extensions to help bridge this performance gap. In 2006, both

vendors introduced their first generation hardware support for x86 virtualization with AMD-

Virtualization (AMD-V) and Intel® VT-x technologies. Recently Intel introduced its second

generation of hardware support that incorporates MMU-virtualization, called Extended Page

333

Tables (EPT). EPT-enabled systems can improve performance compared to using shadow

paging for MMU virtualization. EPT increases memory access latencies for a few workloads.

This cost can be reduced by effectively using large pages in the guest and the hypervisor.

FLASK

Flux Advanced Security Kernel

Xen implements a type of mandatory access control via a security architecture called FLASK

using a module of the same name.

HAP

High Assurance Platform

HAP combines hardware and software technologies to improve workstation and network

security.

HVM

Hardware Virtual Machine (commonly called like this by Xen).

IOMMU

Input/Output Memory Management Unit

IOMMU (AMD* technology) is a memory management unit (MMU) that connects a direct

memory access-capable (DMA-capable) I/O bus to the main memory.

KSM

Kernel Same Page Merging

KSM allows for automatic sharing of identical memory pages between guests to save host

memory. KVM is optimized to use KSM if enabled on the VM Host Server.

MMU

Memory Management Unit

is a computer hardware component responsible for handling accesses to memory requested

by the CPU. Its functions include translation of virtual addresses to physical addresses (that

is, virtual memory management), memory protection, cache control, bus arbitration and in

simpler computer architectures (especially 8-bit systems) bank switching.

PAE

Physical Address Extension

Glossary

334

32-bit x86 operating systems use Physical Address Extension (PAE) mode to enable

addressing of more than 4 GB of physical memory. In PAE mode, page table entries (PTEs)

are 64 bits in size.

PCID

Process-context identifiers

These are a facility by which a logical processor may cache information for multiple linear-

address spaces so that the processor may retain cached information when software

switches to a different linear address space. INVPCID instruction is used for fine-grained

TLB flush, which is benefit for kernel.

PCIe

Peripheral Component Interconnect Express

PCIe was designed to replace older PCI, PCI-X and AGP bus standards. PCIe has

numerous improvements including a higher maximum system bus throughput, a lower I/O

pin count and smaller physical footprint. Moreover it also has a more detailed error detection

and reporting mechanism (AER), and a native hotplug functionality. It is also backward

compatible with PCI.

PSE and PSE36

Page Size Extended

PSE refers to a feature of x86 processors that allows for pages larger than the traditional 4

KiB size. PSE-36 capability offers 4 more bits, in addition to the normal 10 bits, which are

used inside a page directory entry pointing to a large page. This allows a large page to be

located in 36-bit address space.

PT

Page Table

A page table is the data structure used by a virtual memory system in a computer operating

system to store the mapping between virtual addresses and physical addresses. Virtual

addresses are those unique to the accessing process. Physical addresses are those unique

to the hardware (RAM).

QXL

QXL is a cirrus VGA framebuffer (8M) driver for virtualized environment.

335

RVI or NPT

Rapid Virtualization Indexing, Nested Page Tables

An AMD second generation hardware-assisted virtualization technology for the processor

memory management unit (MMU).

SATA

Serial ATA

SATA is a computer bus interface that connects host bus adapters to mass storage devices

such as hard disks and optical drives.

Seccomp2-based sandboxing

Sandboxed environment where only predetermined system calls are permitted for added

protection against malicious behavior.

SMEP

Supervisor Mode Execution Protection

This prevents the execution of user-mode pages by the Xen hypervisor, making many

application-to-hypervisor exploits much harder.

SPICE

Simple Protocol for Independent Computing Environments

SXP

An SXP file is a Xen Configuration File.

TCG

Tiny Code Generator

Instructions are emulated rather than executed by the CPU.

THP

Transparent Huge Pages

This allows CPUs to address memory using pages larger than the default 4 KB. This helps

reduce memory consumption and CPU cache usage. KVM is optimized to use THP (via

madvise and opportunistic methods) if enabled on the VM Host Server.

Glossary

336

TLB

Translation Lookaside Buffer

TLB is a cache that memory management hardware uses to improve virtual address

translation speed. All current desktop, notebook, and server processors use a TLB to map

virtual and physical address spaces, and it is nearly always present in any hardware that

uses virtual memory.

VCPU

A scheduling entity, containing each state for virtualized CPU.

VDI

Virtual Desktop Infrastructure

VFIO

Since kernel v3.6; a new method of accessing PCI devices from user space called VFIO.

VHS

Virtualization Host Server

VM root

VMM will run in VMX root operation and guest software will run in VMX non-root operation.

Transitions between VMX root operation and VMX non-root operation are called VMX

transitions.

VMCS

Virtual Machine Control Structure

VMX non-root operation and VMX transitions are controlled by a data structure called a

virtual-machine control structure (VMCS). Access to the VMCS is managed through a

component of processor state called the VMCS pointer (one per logical processor). The

value of the VMCS pointer is the 64-bit address of the VMCS. The VMCS pointer is read and

written using the instructions VMPTRST and VMPTRLD. The VMM configures a VMCS

using the VMREAD, VMWRITE, and VMCLEAR instructions. A VMM could use a different

VMCS for each virtual machine that it supports. For a virtual machine with multiple logical

processors (virtual processors), the VMM could use a different VMCS for each virtual

processor.

337

VMDq

Virtual Machine Device Queue

Multi-queue network adapters exist which support multiple VMs at the hardware level, having

separate packet queues associated to the different hosted VMs (by means of the IP

addresses of the VMs).

VMM

Virtual Machine Monitor (Hypervisor)

When the processor encounters an instruction or event of interest to the Hypervisor (VMM),

it exits from guest mode back to the VMM. The VMM emulates the instruction or other event,

at a fraction of native speed, and then returns to guest mode. The transitions from guest

mode to the VMM and back again are high-latency operations, during which guest execution

is completely stalled.

VMX

Virtual Machine eXtensions

VPID

New support for software control of TLB (VPID improves TLB performance with small VMM

development effort).

VT-d

Virtualization Technology for Directed I/O

Like IOMMU for Intel*.

vTPM

Component to establish end-to-end integrity for guests via Trusted Computing.

Glossary

338

https://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices

Appendix A. Virtual machine drivers

Virtualization allows the consolidation of workloads on newer, more powerful, energy-efficient

hardware. Paravirtualized operating systems such as SUSE® Linux Enterprise Server and other

Linux distributions are aware of the underlying virtualization platform, and can therefore interact

efficiently with it. Unmodified operating systems such as Microsoft Windows* are unaware of the

virtualization platform and expect to interact directly with the hardware. Because this is not possible

when consolidating servers, the hardware must be emulated for the operating system. Emulation

can be slow, but it is especially troubling for high-throughput disk and network subsystems. Most

performance loss occurs in this area.

The SUSE Linux Enterprise Virtual Machine Driver Pack (VMDP) contains 32-bit and 64-bit

paravirtualized network, bus and block drivers for several Microsoft Windows operating systems.

These drivers bring many of the performance advantages of paravirtualized operating systems to

unmodified operating systems: only the paravirtualized device driver (not the rest of the operating

system) is aware of the virtualization platform. For example, a paravirtualized disk device driver

appears as a normal, physical disk to the operating system. However, the device driver interacts

directly with the virtualization platform (with no emulation). This helps to efficiently deliver disk

access, allowing the disk and network subsystems to operate at near native speeds in a virtualized

environment, without requiring changes to existing operating systems.

The SUSE® Linux Enterprise Virtual Machine Driver Pack is available as an add-on product for

SUSE Linux Enterprise Server. For detailed information refer to https://www.suse.com/products/

vmdriverpack/.

For more information, refer to the Official VMDP Installation Guide.

339

https://www.suse.com/products/vmdriverpack/
https://www.suse.com/products/vmdriverpack/
https://documentation.suse.com/sle-vmdp/2.5/html/vmdp/index.html
https://documentation.suse.com/sle-vmdp/2.5/html/vmdp/index.html

Appendix B. Configuring GPU Pass-Through for NVIDIA cards

B.1. Introduction

This article describes how to assign an NVIDIA GPU graphics card on the host machine to a

virtualized guest.

B.2. Prerequisites

GPU pass-through is supported on the AMD64/Intel 64 architecture only.

The host operating system needs to be SLES 12 SP3 or newer.

This article deals with a set of instructions based on V100/T1000 NVIDIA cards, and is

meant for GPU computation purposes only.

Verify that you are using an NVIDIA Tesla product—Maxwell, Pascal, or Volta.

To manage the host system, you need an additional display card on the host that you can

use when configuring the GPU pass-through, or a functional SSH environment.

B.3. Configuring the host

B.3.1. Verify the host environment

Verify that the host operating system is SLES 12 SP3 or newer:

>cat /etc/issue
Welcome to SUSE Linux Enterprise Server 15 (x86_64) - Kernel \r (\l).

Verify that the host supports VT-d technology and that it is already enabled in the firmware

settings:

>dmesg | grep -e "Directed I/O"
[12.819760] DMAR: Intel(R) Virtualization Technology for Directed I/O

If VT-d is not enabled in the firmware, enable it and reboot the host.

Verify that the host has an extra GPU or VGA card:

>lspci | grep -i "vga"
07:00.0 VGA compatible controller: Matrox Electronics Systems Ltd. \
 MGA G200e [Pilot] ServerEngines (SEP1) (rev 05)

With a Tesla V100 card:

>lspci | grep -i nvidia
03:00.0 3D controller: NVIDIA Corporation GV100 [Tesla V100 PCIe] (rev a1)

With a T1000 Mobile (available on Dell 5540):

>lspci | grep -i nvidia
01:00.0 3D controller: NVIDIA Corporation TU117GLM [Quadro T1000 Mobile]
(rev a1)

•

•

•

•

•

1.

2.

3.

Appendix B. Configuring GPU Pass-Through for NVIDIA cards

340

B.3.2. Enable IOMMU

IOMMU is disabled by default. You need to enable it at boot time in the /etc/default/grub

configuration file.

For Intel-based hosts:

GRUB_CMDLINE_LINUX="intel_iommu=on iommu=pt rd.driver.pre=vfio-pci"

For AMD-based hosts:

GRUB_CMDLINE_LINUX="iommu=pt amd_iommu=on rd.driver.pre=vfio-pci"

When you save the modified /etc/default/grub file, re-generate the main GRUB 2

configuration file /boot/grub2/grub.cfg:

>sudo grub2-mkconfig -o /boot/grub2/grub.cfg

Reboot the host and verify that IOMMU is enabled:

>dmesg | grep -e DMAR -e IOMMU

B.3.3. Blacklist the Nouveau driver

To assign the NVIDIA card to a VM guest, we need to prevent the host OS from loading the built-in

nouveau driver for NVIDIA GPUs. Create the file /etc/modprobe.d/60-blacklist-

nouveau.conf with the following content:

blacklist nouveau

B.3.4. Configure VFIO and isolate the GPU used for pass-through

Find the card vendor and model IDs. Use the bus number identified in the section called

“Verify the host environment”, for example, 03:00.0:

>lspci -nn | grep 03:00.0
03:00.0 3D controller [0302]: NVIDIA Corporation GV100 [Tesla V100 PCIe]
[10de:1db4] (rev a1)

Create the file /etc/modprobe.d/vfio.conf with the following content:

options vfio-pci ids=10de:1db4

Note

Verify that your card does not need an extra ids= parameter. For certain

cards, you must specify the audio device too, therefore device's ID must also

be added to the list, otherwise you cannot use the card.

B.3.5. Load the VFIO driver

There are three ways you can load the VFIO driver.

1.

2.

3.

1.

2.

341

B.3.5.1. Including the driver in the initrd file

Create the file /etc/dracut.conf.d/gpu-passthrough.conf and add the following

content (mind the leading whitespace):

add_drivers+=" vfio vfio_iommu_type1 vfio_pci vfio_virqfd"

Re-generate the initrd file:

>sudo dracut --force /boot/initrd $(uname -r)

B.3.5.2. Adding the driver to the list of auto-loaded modules

Create the file /etc/modules-load.d/vfio-pci.conf and add the following content:

vfio
vfio_iommu_type1
vfio_pci
kvm
kvm_intel

B.3.5.3. Loading the driver manually

To load the driver manually at runtime, execute the following command:

>sudo modprobe vfio-pci

B.3.6. Disable MSR for Microsoft Windows guests

For Microsoft Windows guests, we recommend disabling MSR (model-specific register) to avoid

the guest crashing. Create the file /etc/modprobe.d/kvm.conf and add the following content:

options kvm ignore_msrs=1

B.3.7. Install UEFI firmware

For proper GPU pass-through functionality, the host needs to boot using UEFI firmware (that is, not

using a legacy-style BIOS boot sequence). Install the qemu-ovmf package if not already installed:

>sudo zypper install qemu-ovmf

B.3.8. Reboot the host machine

For most of the changes in the above steps to take effect, you need to reboot the host machine:

>sudo shutdown -r now

1.

2.

Appendix B. Configuring GPU Pass-Through for NVIDIA cards

342

B.4. Configuring the guest

This section describes how to configure the guest virtual machine so that it can use the host's

NVIDIA GPU. Use Virtual Machine Manager or virt-install to install the guest VM. Find more

details in Chapter 10, Guest installation.

B.4.1. Requirements for the guest configuration

During the guest VM installation, select Customize configuration before install and configure the

following devices:

Use Q35 chipset if possible.

Install the guest VM using UEFI firmware.

Add the following emulated devices:

Graphic: Spice or VNC

Device: qxl, VGA or Virtio

Find more information in the section called “Video”.

Add the host PCI device (03:00.0 in our example) to the guest. Find more information in

the section called “Assigning a host PCI device to a VM Guest”.

For the best performance, we recommend using virtio drivers for the network card and

storage.

B.4.2. Install the graphic card driver

B.4.2.1. Linux guest

Procedure B.1. RPM-based distributions

Download the driver RPM package from https://www.nvidia.com/download/

driverResults.aspx/131159/en-us.

Install the downloaded RPM package:

>sudo rpm -i nvidia-diag-driver-local-repo-sles123-390.30-1.0-1.x86_64.rpm

Refresh repositories and install cuda-drivers. This step is different for non-SUSE

distributions:

>sudo zypper refresh && zypper install cuda-drivers

Reboot the guest VM:

>sudo shutdown -r now

•

•

•

•

•

1.

2.

3.

4.

343

https://www.nvidia.com/download/driverResults.aspx/131159/en-us
https://www.nvidia.com/download/driverResults.aspx/131159/en-us

Procedure B.2. Generic installer

Because the installer needs to compile the NVIDIA driver modules, install the gcc-c++ and

kernel-devel packages.

Disable Secure Boot on the guest, because NVIDIA's driver modules are unsigned. On

SUSE distributions, you can use the YaST GRUB 2 module to disable Secure Boot. Find

more information in the section called “Implementation on SUSE Linux Enterprise Server ” in

“Administration Guide”.

Download the driver installation script from https://www.nvidia.com/Download/index.aspx?

lang=en-us, make it executable and run it to complete the driver installation:

>chmod +x NVIDIA-Linux-x86_64-460.73.01.run
>sudo ./NVIDIA-Linux-x86_64-460.73.01.run

Download CUDA drivers from https://developer.nvidia.com/cuda-downloads?

target_os=Linux&target_arch=x86_64&target_distro=SLES&target_version=15&target_type=rpmlocal

and install following the on-screen instructions.

Display issues

After you have installed the NVIDIA drivers, the Virtual Machine Manager display

loses its connection to the guest OS. To access the guest VM, you must either login

via ssh, change to the console interface, or install a dedicated VNC server in the

guest. To avoid a flickering screen, stop and disable the display manager:

>sudo systemctl stop display-manager && systemctl disable display-
manager

Procedure B.3. Testing the Linux driver installation

Change the directory to the CUDA sample templates:

>cd /usr/local/cuda-9.1/samples/0_Simple/simpleTemplates

Compile and run the simpleTemplates file:

>make && ./simpleTemplates
runTest<float,32>
GPU Device 0: "Tesla V100-PCIE-16GB" with compute capability 7.0
CUDA device [Tesla V100-PCIE-16GB] has 80 Multi-Processors
Processing time: 495.006000 (ms)
Compare OK
runTest<int,64>
GPU Device 0: "Tesla V100-PCIE-16GB" with compute capability 7.0
CUDA device [Tesla V100-PCIE-16GB] has 80 Multi-Processors
Processing time: 0.203000 (ms)
Compare OK
[simpleTemplates] -> Test Results: 0 Failures

1.

2.

3.

4.

1.

2.

Appendix B. Configuring GPU Pass-Through for NVIDIA cards

344

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf
https://www.nvidia.com/Download/index.aspx?lang=en-us
https://www.nvidia.com/Download/index.aspx?lang=en-us
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=SLES&target_version=15&target_type=rpmlocal
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=SLES&target_version=15&target_type=rpmlocal

B.4.2.2. Microsoft Windows guest

Important

Before you install the NVIDIA drivers, you need to hide the hypervisor from the

drivers by using the <hidden state='on'/> directive in the guest's libvirt

definition, for example:

<features>
 <acpi/>
 <apic/>
 <kvm>
 <hidden state='on'/>
 </kvm>
</features>

Download and install the NVIDIA driver from https://www.nvidia.com/Download/index.aspx.

Download and install the CUDA toolkit from https://developer.nvidia.com/cuda-downloads?

target_os=Windows&target_arch=x86_64.

Find several NVIDIA demo samples in the directory Program Files\Nvidia GPU

Computing Toolkit\CUDA\v10.2\extras\demo_suite on the guest.

1.

2.

3.

345

https://www.nvidia.com/Download/index.aspx
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64

Appendix C. XM, XL toolstacks, and the libvirt framework

C.1. Xen toolstacks

Since the early Xen 2.x releases, xend has been the de facto toolstack for managing Xen

installations. In Xen 4.1, a new toolstack called libxenlight (also known as libxl) was introduced with

technology preview status. libxl is a small, low-level library written in C. It has been designed to

provide a simple API for all client toolstacks (XAPI, libvirt, xl). In Xen 4.2, libxl was promoted to

supported status and xend was marked deprecated. xend has been included in the Xen 4.3 and

4.4 series to give users enough time to convert their tooling to libxl. It has been removed from the

upstream Xen project and is no longer provided starting with the Xen 4.5 series and SUSE Linux

Enterprise Server 12 SP1.

Although SLES 11 SP3 contains Xen 4.2, SUSE retained the xend toolstack since making such an

invasive change in a service pack would be too disruptive for SUSE Linux Enterprise customers.

However, SLES 12 provides a suitable opportunity to move to the new libxl toolstack and remove

the deprecated, unmaintained xend stack. Starting with SUSE Linux Enterprise Server 12 SP1,

xend is no longer supported.

One of the major differences between xend and libxl is that the former is stateful, while the latter is

stateless. With xend, all client applications such as xm and libvirt see the same system state.

xend maintains the state for the entire Xen host. In libxl, client applications such as xl or

libvirt must maintain state. Thus domains created with xl are not visible or known to other libxl

applications such as libvirt. Generally, it is discouraged to mix and match libxl applications and

is preferred that a single libxl application be used to manage a Xen host. In SUSE Linux Enterprise

Server, we recommend using libvirt to manage Xen hosts. This allows management of the Xen

system through libvirt applications such as virt-manager, virt-install, virt-viewer,

libguestfs, etc. If xl is used to manage the Xen host, any virtual machines under its management

are not accessible to libvirt. Hence, they are not accessible to any of the libvirt

applications.

C.1.1. Upgrading from xend/xm to xl/libxl

The xl application, along with its configuration format (see man xl.cfg), was designed to be

backward-compatible with the xm application and its configuration format (see man xm.cfg).

Existing xm configuration should be usable with xl. Since libxl is stateless, and xl does not

support the notion of managed domains, SUSE recommends using libvirt to manage Xen

hosts. SUSE has provided a tool called xen2libvirt, which provides a simple mechanism to

import domains previously managed by xend into libvirt. See the section called “Import Xen

domain configuration into libvirt ” for more information on xen2libvirt.

Appendix C. XM, XL toolstacks, and the libvirt framework

346

https://wiki.xen.org/wiki/XAPI

C.1.2. XL design

The basic structure of every xl command is:

xl subcommandOPTIONSDOMAIN

DOMAIN is the numeric domain ID, or the domain name (which is internally translated to the

domain ID), and OPTIONS are subcommand specific options.

Although xl/libxl was designed to be backward-compatible with xm/xend, there are a few

differences that should be noted:

Managed or persistent domains. libvirt now provides this functionality.

xl/libxl does not support Python code in the domain configuration files.

xl/libxl does not support creating domains from SXP format configuration files (xmcreate -

F).

xl/libxl does not support sharing storage across DomU's via w! in domain configuration files.

xl/libxl is new and under heavy development, hence a few features are still missing with regard to

the xm/xend toolstack:

SCSI LUN/Host pass-through (PVSCSI)

USB pass-through (PVUSB)

Direct Kernel Boot for fully virtualized Linux guests for Xen

C.1.3. Checklist before upgrade

Before upgrading a SLES 11 SP4 Xen host to SLES 15:

You must remove any Python code from your xm domain configuration files.

It is recommended to capture the libvirt domain XML from all existing virtual machines using

virshdumpxmlDOMAIN_NAMEDOMAIN_NAME.xml.

It is recommended to do a backup of /etc/xen/xend-config.sxp and /boot/grub/

menu.lst files to keep references of previous parameters used for Xen.

Note

Currently, live migrating virtual machines running on a SLES 11 SP4 Xen host to a

SLES 15 Xen host is not supported. The xend and libxl toolstacks are not runtime-

compatible. Virtual machine downtime is required to move the virtual machines.

•

•

•

•

•

•

•

•

•

•

347

C.2. Import Xen domain configuration into libvirt

xen2libvirt is a command line tool to import legacy Xen domain configuration into the

libvirt virtualization library (see The Virtualization book for more information on libvirt).

xen2libvirt provides an easy way to import domains managed by the deprecated xm/xend tool stack

into the new libvirt/libxl tool stack. Several domains can be imported at once using its --

recursive mode

xen2libvirt is included in the xen-tools package. If needed, install it with

>sudo zypper install xen-tools

xen2libvirt general syntax is

xen2libvirt <options> /path/to/domain/config

where options can be:

-h, --help

Prints short information about xen2libvirt usage.

-c, --convert-only

Converts the domain configuration to the libvirt XML format, but does not do the import

to libvirt.

-r, --recursive

Converts and/or imports all domains configuration recursively, starting at the specified path.

-f, --format

Specifies the format of the source domain configuration. Can be either xm, or sexpr (S-

expression format).

-v, --verbose

Prints more detailed information about the import process.

Example C.1. Converting Xen domain configuration to libvirt

Suppose you have a Xen domain managed with xm with the following configuration saved in /

etc/xen/sle12.xm:

kernel = "/boot/vmlinuz-2.6-xenU"
 memory = 128
 name = "SLE12"
 root = "/dev/hda1 ro"
 disk = ["file:/var/xen/sle12.img,hda1,w"]

Appendix C. XM, XL toolstacks, and the libvirt framework

348

Convert it to libvirt XML without importing it, and look at its content:

>sudo xen2libvirt -f xm -c /etc/xen/sle12.xm > /etc/libvirt/qemu/sles12.xml
 # cat /etc/libvirt/qemu/sles12.xml
 <domain type='xen'>
 <name>SLE12</name>
 <uuid>43e1863c-8116-469c-a253-83d8be09aa1d</uuid>
 <memory unit='KiB'>131072</memory>
 <currentMemory unit='KiB'>131072</currentMemory>
 <vcpu placement='static'>1</vcpu>
 <os>
 <type arch='x86_64' machine='xenpv'>linux</type>
 <kernel>/boot/vmlinuz-2.6-xenU</kernel>
 </os>
 <clock offset='utc' adjustment='reset'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>restart</on_crash>
 <devices>
 <disk type='file' device='disk'>
 <driver name='file'/>
 <source file='/var/xen/sle12.img'/>
 <target dev='hda1' bus='xen'/>
 </disk>
 <console type='pty'>
 <target type='xen' port='0'/>
 </console>
 </devices>
 </domain>

To import the domain into libvirt, you can either run the same xen2libvirt command without

the -c option, or use the exported file /etc/libvirt/qemu/sles12.xml and define a new Xen

domain using virsh:

>sudo virsh define /etc/libvirt/qemu/sles12.xml

C.3. Differences between the xm and xl applications

The purpose of this chapter is to list all differences between xm and xl applications. Generally, xl

is designed to be compatible with xm. Replacing xm with xl in custom scripts or tools is usually

sufficient.

You can also use the libvirt framework using the virsh command. In this documentation only

the first OPTION for virsh will be shown. To get more help on this option do a:

virshhelpOPTION

C.3.1. Notation conventions

To easily understand the difference between xl and xm commands, the following notation is used

in this section:

349

Table C.1. Notation conventions

Notation Meaning

(-) minus Option exists in xm, but xl does not include it.

(+) plus Option exists in xl, but xm does not include it.

C.3.2. New global options

Table C.2. New global options

Options Task

(+) -v Verbose, increase the verbosity of the output

(+) -N Dry run, do not actually execute the command

(+) -f

Force execution. xl will refuse to run some

commands if it detects that xend is also

running, this option will force the execution of

those commands, even though it is unsafe

C.3.3. Unchanged options

List of common options of xl and xm, and their libvirt equivalents.

Table C.3. Common options

Options Task libvirt equivalent

destroy DOMAIN
Immediately terminate

the domain.
virshdestroy

domid DOMAIN_NAME
Convert a domain name

to a DOMAIN_ID.
virshdomid

domname DOMAIN_ID
Convert a DOMAIN_ID to

a DOMAIN_NAME.
virshdomname

help

Display the short help

message (that is,

common commands).

virshhelp

Appendix C. XM, XL toolstacks, and the libvirt framework

350

Options Task libvirt equivalent

pause DOMAIN_ID

Pause a domain. When

in a paused state, the

domain will still consume

allocated resources such

as memory, but will not

be eligible for scheduling

by the Xen hypervisor.

virshsuspend

unpause DOMAIN_ID

Move a domain out of the

paused state. This will

allow a previously

paused domain to be

eligible for scheduling by

the Xen hypervisor.

virshresume

rename

DOMAIN_IDNEW_DOMAIN_NAME

Change the domain

name of DOMAIN_ID to

NEW_DOMAIN_NAME.

>virsh dumpxml DOMA
INNAME >

DOMXML

modify the domain's

name in DOMXML

>virsh undefine DOM
AINNAME

>virsh define DOMAI
NNAME

sysrq DOMAIN <letter>

Send a Magic System

Request to the domain,

each type of request is

represented by a different

letter. It can be used to

send SysRq requests to

Linux guests, see https://

www.kernel.org/doc/html/

latest/admin-guide/

sysrq.html for more

information. It requires

PV drivers to be installed

in your guest OS.

virshsend-keys can send

Magic Sys Req only for KVM

1.

2.

3.

4.

351

https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html

Options Task libvirt equivalent

vncviewer OPTIONSDOMAIN

Attach to domain's VNC

server, forking a

vncviewer process.

virt-viewerDOMAIN_ID

virshVNCDISPLAY

vcpu-setDOMAIN_IDVCPUS

Set the number of virtual

CPUs for the domain in

question. Like mem-set,

this command can only

allocate up to the

maximum virtual CPU

count configured at boot

for the domain.

virshsetvcpus

vcpu-list DOMAIN_ID

List VCPU information for

a specific domain. If no

domain is specified,

VCPU information for all

domains will be provided.

virshvcpuinfo

vcpu-pin DOMAIN_ID <VCPU|all> <CPUs|

all>

Pin the VCPU to only run

on the specific CPUs.

The keyword all can be

used to apply the CPU

list to all VCPUs in the

domain.

virshvcpupin

dmesg [-c]

Read the Xen message

buffer, similar to dmesg

on a Linux system. The

buffer contains

informational, warning,

and error messages

created during Xen's boot

process.

top

Execute the xentop

command, which

provides real time

monitoring of domains.

xentop is a curses

interface.

virshnodecpustats

virshnodememstats

Appendix C. XM, XL toolstacks, and the libvirt framework

352

Options Task libvirt equivalent

uptime [-s] DOMAIN

Print the current uptime

of the domains running.

With the xl command,

the DOMAIN argument is

mandatory.

debug-keysKEYS

Send debug keys to Xen.

It is the same as pressing

the Xen conswitch (Ctrl-A

by default) three times

and then pressing "keys".

cpupool-migrateDOMAINCPU_POOL

Move a domain specified

by DOMAIN_ID or

DOMAIN into a

CPU_POOL.

cpupool-destroyCPU_POOL

Deactivate a cpu pool.

This is possible only if no

domain is active in the

cpu-pool.

block-detachDOMAIN_IDDevId

Detach a domain's virtual

block device. devid may

be the symbolic name or

the numeric device id

given to the device by

Dom0. You will need to

run xlblock-list to

determine that number.

virshdetach-disk

network-

attachDOMAIN_IDNETWORK_DEVICE

Create a new network

device in the domain

specified by DOMAIN_ID.

network-device describes

the device to attach,

using the same format as

the vif string in the

domain configuration file

virshattach-interface

virshattach-device

353

Options Task libvirt equivalent

pci-attachDOMAIN <BDF> [Virtual Slot]

Hotplug a new pass-

through PCI device to the

specified domain. BDF is

the PCI Bus/Device/

Function of the physical

device to be passed

through.

virshattach-device

pci-listDOMAIN_ID
List pass-through PCI

devices for a domain

getenforce

Determine if the FLASK

security module is loaded

and enforcing its policy.

setenforce<1|0|Enforcing|

Permissive>

Enable or disable

enforcing of the FLASK

access controls. The

default is permissive and

can be changed using

the flask_enforcing option

on the hypervisor's

command line.

C.3.4. Removed options

List of xmoptions which are no more available with the XL tool stack and a replacement solution

if available.

C.3.4.1. Domain management

The list of Domain management removed command and their replacement.

Appendix C. XM, XL toolstacks, and the libvirt framework

354

Table C.4. Domain management removed options

Domain Management Removed Options

Options Task Equivalent

(-) log Print the Xend log.
This log file can be found in /

var/log/xend.log

(-) delete

Remove a domain from Xend

domain management. The

list option shows the

domain names

virshundefine

(-) new
Adds a domain to Xend

domain management
virshdefine

(-) start

Start a Xend managed

domain that was added using

the xmnew command

virshstart

(-) dryrun

Dry run - prints the resulting

configuration in SXP but does

not create the domain

xl-N

(-) reset Reset a domain virshreset

(-) domstate Show domain state virshdomstate

(-) serve
Proxy Xend XMLRPC over

stdio

(-) resumeDOMAINOPTIONS

Moves a domain out of the

suspended state and back

into memory

virshresume

(-) suspendDOMAIN

Suspend a domain to a state

file so that it can be later

resumed using the resume

subcommand. Similar to the

save subcommand although

the state file may not be

specified

virshmanagedsave

virshsuspend

355

C.3.4.2. USB devices

USB options are not available with xl/libxl tool stack. virsh has the attach-device and

detach-device options but it does not work yet with USB.

Table C.5. USB devices management removed options

USB Devices Management Removed Options

Options Task

(-) usb-add Add a new USB physical bus to a domain

(-) usb-del Delete a USB physical bus from a domain

(-) usb-attach Attach a new USB physical bus to domain's virtual port

(-) usb-detach Detach a USB physical bus from domain's virtual port

(-) usb-list List domain's attachment state of all virtual port

(-) usb-list-assignable-

devices
List all the assignable USB devices

(-) usb-hc-create Create a domain's new virtual USB host controller

(-) usb-hc-destroy Destroy a domain's virtual USB host controller

C.3.4.3. CPU management

CPU management options has changed. New options are available, see: the section called “ xl

cpupool-* ”

Table C.6. CPU management removed options

CPU Management Removed Options

Options Task

(-) cpupool-new Adds a CPU pool to Xend CPU pool management

(-) cpupool-start Starts a Xend CPU pool

(-) cpupool-delete Removes a CPU pool from Xend management

Appendix C. XM, XL toolstacks, and the libvirt framework

356

C.3.4.4. Other options

Table C.7. Other options

Other Removed Options

Options Task

(-) shell Launch an interactive shell

(-) change-vnc-passwd Change vnc password

(-) vtpm-list List virtual TPM devices

(-) block-configure Change block device configuration

C.3.5. Changed options

C.3.5.1. create

xlcreateCONFIG_FILEOPTIONSVARS

libvirt equivalent:

virshcreate

Table C.8. xl create Changed options

create Changed Options

Options Task

(*) -f=FILE, --defconfig=FILE Use the given configuration file

Table C.9. xm create Removed options

create Removed Options

Options Task

(-) -s, --skipdtd Skip DTD checking - skips checks on XML before creating

357

create Removed Options

Options Task

(-) -x, --xmldryrun XML dry run

(-) -F=FILE, --

config=FILE
Use the given SXP formatted configuration script

(-) --path Search path for configuration scripts

(-) --help_config
Print the available configuration variables (vars) for the

configuration script

(-) -n, --dryrun
Dry run — prints the configuration in SXP but does not create

the domain

(-) -c, --

console_autoconnect
Connect to the console after the domain is created

(-) -q, --quiet Quiet mode

(-) -p, --paused Leave the domain paused after it is created

Table C.10. xl create Added options

create Added Options

Options Task

(+) -V, --vncviewer Attach to domain's VNC server, forking a vncviewer process

(+) -A, --vncviewer-

autopass
Pass VNC password to vncviewer via stdin

C.3.5.2. console

xlconsoleOPTIONSDOMAIN

libvirt equivalent

virshconsole

Appendix C. XM, XL toolstacks, and the libvirt framework

358

Table C.11. xl console Added options

console Added Option

Option Task

(+) -t [pv|serial]

Connect to a PV console or connect to an emulated serial console. PV

consoles are the only consoles available for PV domains while HVM

domains can have both

C.3.5.3. info

xlinfo

Table C.12. xm info Removed options

info Removed Options

Options Task

(-) -n, --numa Numa info

(-) -c, --config List Xend configuration parameters

C.3.5.4. dump-core

xldump-coreDOMAINFILENAME

libvirt equivalent

virshdump

Table C.13. xm dump-core Removed options

dump-core Removed Options

Options Task

(-) -L, --live Dump core without pausing the domain

(-) -C, --crash Crash domain after dumping core

359

dump-core Removed Options

Options Task

(-) -R, --reset Reset domain after dumping core

C.3.5.5. list

xl listoptionsDOMAIN

libvirt equivalent

virshlist --all

Table C.14. xm list Removed options

list Removed Options

Options Task

(-) -l, --long The output for xmlist presents the data in SXP format

(-) --state==STATE Output information for VMs in the specified state

Table C.15. xl list Added options

list Added Options

Options Task

(+) -Z, --context Also prints the security labels

(+) -v, --verbose
Also prints the domain UUIDs, the shutdown reason and

security labels

Appendix C. XM, XL toolstacks, and the libvirt framework

360

C.3.5.6. mem-*

libvirt equivalent

virshsetmem

virshsetmaxmem

Table C.16. xl mem-* Changed options

mem-* Changed Options

Options Task

mem-maxDOMAIN_IDMEM

Appending t for terabytes, g for gigabytes, m for megabytes,k

for kilobytes and b for bytes. Specify the maximum amount of

memory the domain can use.

mem-setDOMAIN_IDMEM Set the domain's used memory using the balloon driver

C.3.5.7. migrate

xlmigrateOPTIONSDOMAINHOST

libvirt equivalent

virsh migrate --live hvm-sles11-qcow2 xen+CONNECTOR://

USER@IP_ADDRESS/

Table C.17. xm migrate Removed options

migrate Removed Options

Options Task

(-) -l, --live
Use live migration. This will migrate the domain between

hosts without shutting down the domain

(-) -r, --resourceMbs Set maximum Mbs allowed for migrating the domain

(-) -c, --change_home_server Change home server for managed domains

361

migrate Removed Options

Options Task

(-) --max_iters=MAX_ITERS Number of iterations before final suspend (default:30)

(-) --max_factor=MAX_FACTOR
Max amount of memory to transfer before final suspend

(default: 3*RAM).

(-) --

min_remaining=MIN_REMAINING
Number of dirty pages before final suspend (default:50)

(-) --abort_if_busy Abort migration instead of doing final suspend

(-) --log_progress Log progress of migration to xend.log

(-) -s, --ssl Use ssl connection for migration

Table C.18. xl migrate Added options

migrate Added Options

Options Task

(+) -sSSHCOMMAND Use <sshcommand> instead of ssh

(+) -e
On the new host, do not wait in the background (on <host>) for

the death of the domain

(+) -CCONFIG
Send <config> instead of the configuration file used when

creating the domain

C.3.5.8. Domain management

xlrebootOPTIONSDOMAIN

libvirt equivalent

virshreboot

Appendix C. XM, XL toolstacks, and the libvirt framework

362

Table C.19. xm reboot Removed options

reboot Removed Options

Options Task

(-) -a, --all Reboot all domains

(-) -w, --wait

Wait for reboot to complete before returning. This may take a

while, as all services in the domain need to be shut down

cleanly

Table C.20. xl reboot Added options

reboot Added Options

Option Task

(+) -F
Fallback to ACPI reset event for HVM guests with no PV

drivers

xlsaveOPTIONSDOMAINCHECK_POINT_FILECONFIG_FILE

libvirt equivalent

virshsave

Table C.21. xl save Added options

save Added Options

Option Task

(+) -c Leave domain running after creating the snapshot

xlrestoreOPTIONSCONFIG_FILECHECK_POINT_FILE

libvirt equivalent

virshrestore

363

Table C.22. xl restore Added options

restore Added Options

Options Task

(+) -p Do not unpause domain after restoring it

(+) -e
Do not wait in the background for the death of the domain on

the new host

(+) -d Enable debug messages

(+) -V, --vncviewer Attach to domain's VNC server, forking a vncviewer process

(+) -A, --vncviewer-

autopass
Pass VNC password to vncviewer via stdin

xlshutdownOPTIONSDOMAIN

libvirt equivalent

virshshutdown

Table C.23. xm shutdown Removed options

shutdown Removed Options

Options Task

(-) -w, --wait Wait for the domain to complete shutdown before returning

(-) -a Shutdown all guest domains

(-) -R

(-) -H

Appendix C. XM, XL toolstacks, and the libvirt framework

364

Table C.24. xl shutdown Added options

shutdown Added Options

Option Task

(+) -F
If the guest does not support PV shutdown control then

fallback to sending an ACPI power event

Table C.25. xl trigger Changed options

trigger Changed Options

Option Task

triggerDOMAIN <nmi|reset|

init|power|sleep|s3resume>

VCPU

Send a trigger to a domain. Only available for HVM domains

C.3.5.9. xl sched-*

xlsched-creditOPTIONS

libvirt equivalent

virshschedinfo

Table C.26. xm sched-credit Removed options

sched-credit Removed Options

Options Task

-dDOMAIN, --

domain=DOMAIN
Domain

-wWEIGHT, --

weight=WEIGHT

A domain with a weight of 512 will get twice as much CPU as a

domain with a weight of 256 on a contended host. Legal

weights range from 1 to 65535 and the default is 256

365

sched-credit Removed Options

Options Task

-cCAP, --cap=CAP
The CAP optionally fixes the maximum amount of CPU a

domain can consume

Table C.27. xl sched-credit Added options

sched-credit Added Options

Options Task

(+) -pCPUPOOL, --

cpupool=CPUPOOL
Restrict output to domains in the specified cpupool

(+) -s, --schedparam Specify to list or set pool-wide scheduler parameters

(+) -tTSLICE, --

tslice_ms=TSLICE

Timeslice tells the scheduler how long to allow VMs to run

before pre-empting

(+) -rRLIMIT, --

ratelimit_us=RLIMIT
Ratelimit attempts to limit the number of schedules per second

xlsched-credit2OPTIONS

libvirt status

virsh only supports credit scheduler, not credit2 scheduler

Table C.28. xm sched-credit2 Removed options

sched-credit2 Removed Options

Options Task

-dDOMAIN, --

domain=DOMAIN
Domain

-wWEIGHT, --

weight=WEIGHT
Legal weights range from 1 to 65535 and the default is 256

Appendix C. XM, XL toolstacks, and the libvirt framework

366

Table C.29. xl sched-credit2 Added options

sched-credit2 Added Options

Option Task

(+) -pCPUPOOL, --

cpupool=CPUPOOL
Restrict output to domains in the specified cpupool

xlsched-sedfOPTIONS

Table C.30. xm sched-sedf removed options

sched-sedf Removed Options

Options Task

-pPERIOD, --

period=PERIOD
The normal EDF scheduling usage in milliseconds

-sSLICE, --slice=SLICE The normal EDF scheduling usage in milliseconds

-lLATENCY, --

latency=LATENCY
Scaled period if domain is doing heavy I/O

-eEXTRA, --extra=EXTRA Flag for allowing domain to run in extra time (0 or 1)

-wWEIGHT, --

weight=WEIGHT
Another way of setting CPU slice

Table C.31. xl sched-sedf added options

sched-sedf Added Options

Options Task

(+) -cCPUPOOL, --

cpupool=CPUPOOL
Restrict output to domains in the specified cpupool

(+) -dDOMAIN, --

domain=DOMAIN
Domain

367

C.3.5.10. xl cpupool-*

xlcpupool-cpu-removeCPU_POOL <CPU nr>|node:<node nr>

xlcpupool-list [-c|--cpus] CPU_POOL

Table C.32. xm cpupool-list removed options

cpupool-* Removed Options

Option Task

(-) -l, --long Output all CPU pool details in SXP format

xlcpupool-cpu-addCPU_POOL cpu-nr|node:node-nr

xlcpupool-createOPTIONSCONFIG_FILE [Variable=Value ...]

Table C.33. xm cpupool-create removed options

cpupool-create Removed Options

Options Task

(-) -fFILE, --defconfig=FILE
Use the given Python configuration script. The configuration

script is loaded after arguments have been processed

(-) -n, --dryrun
Dry run - prints the resulting configuration in SXP but does not

create the CPU pool

(-) --help_config
Print the available configuration variables (vars) for the

configuration script

(-) --path=PATH
Search path for configuration scripts. The value of PATH is a

colon-separated directory list

(-) -F=FILE, --config=FILE CPU pool configuration to use (SXP)

C.3.5.11. PCI and block devices

xlpci-detach [-f] DOMAIN_ID <BDF>

Appendix C. XM, XL toolstacks, and the libvirt framework

368

libvirt equivalent

virshdetach-device

Table C.34. xl pci-detach added options

pci-detach Added Options

Option Task

(+) -f
If -f is specified, xl is going to forcefully remove the device

even without guest's collaboration

Table C.35. xm block-list removed options

block-list Removed Options

Option Task

(-) -l, --long List virtual block devices for a domain

Table C.36. Other options

Option libvirt equivalent

xlblock-attachDOMAIN

<disk-spec-component(s)>
virshattach-disk/attach-device

xlblock-listDOMAIN_ID virshdomblklist

C.3.5.12. Network

Table C.37. Network options

Option libvirt equivalent

xlnetwork-listDOMAIN(s) virshdomiflist

xlnetwork-

detachDOMAIN_ID devid|

mac

virshdetach-interface

369

Option libvirt equivalent

xlnetwork-

attachDOMAIN(s)
virshattach-interface/attach-device

Table C.38. xl network-attach removed options

Removed Options

Option Task

(-) -l, --long

C.3.6. New options

Table C.39. New options

Options Task

config-

updateDOMAINCONFIG_FILEOPTIONSVARS

Update the saved configuration for a running

domain. This has no immediate effect but will

be applied when the guest is next restarted.

This command is useful to ensure that

runtime modifications made to the guest will

be preserved when the guest is restarted

migrate-receive

sharingDOMAIN
List count of shared pages.List specifically for

that domain. Otherwise, list for all domains

vm-list

Prints information about guests. This list

excludes information about service or

auxiliary domains such as Dom0 and

stubdoms

cpupool-renameCPU_POOLNEWNAME Renames a cpu-pool to newname

cpupool-numa-split
Splits up the machine into one cpu-pool per

numa node

cd-insert DOMAIN <VirtualDevice> <type:path>

Insert a CD-ROM into a guest domain's

existing virtual CD drive. The virtual drive

must already exist but can be current empty

Appendix C. XM, XL toolstacks, and the libvirt framework

370

Options Task

cd-ejectDOMAIN <VirtualDevice>
Eject a CD-ROM from a guest's virtual CD

drive. Only works with HVM domains

pci-assignable-list

List all the assignable PCI devices. These are

devices in the system which are configured to

be available for pass-through and are bound

to a suitable PCI back-end driver in Dom0

rather than a real driver

pci-assignable-add <BDF>

Make the device at PCI Bus/Device/Function

BDF assignable to guests.This will bind the

device to the pciback driver

pci-assignable-removeOPTIONS <BDF>

Make the device at PCI Bus/Device/Function

BDF assignable to guests. This will at least

unbind the device from pciback

loadpolicyPOLICY_FILE

Load FLASK policy from the given policy file.

The initial policy is provided to the hypervisor

as a multiboot module; this command allows

runtime updates to the policy. Loading new

security policy will reset runtime changes to

device labels

C.4. External links

For more information on Xen tool stacks refer to the following online resources:

XL in Xen

XL in Xen 4.2

xl command

XL command line.

xl.cfg

xl.cfg domain configuration file syntax.

xl disk

xl disk configuration option.

371

https://wiki.xenproject.org/wiki/XL_in_Xen_4.2
https://xenbits.xen.org/docs/unstable/man/xl.1.html
https://xenbits.xen.org/docs/unstable/man/xl.cfg.5.html
https://xenbits.xen.org/docs/4.3-testing/misc/xl-disk-configuration.txt

XL vs Xend

XL vs Xend feature comparison.

BDF doc

BDF documentation.

libvirt

virsh command.

C.5. Saving a Xen guest configuration in an xm compatible format

Although xl is now the current toolkit for managing Xen guests (apart from the preferred

libvirt), you may need to export the guest configuration to the previously used xm format. To do

this, follow these steps:

First export the guest configuration to a file:

>virsh dumpxml guest_id > guest_cfg.xml

Then convert the configuration to the xm format:

>virsh domxml-to-native xen-xm guest_cfg.xml > guest_xm_cfg

1.

2.

Appendix C. XM, XL toolstacks, and the libvirt framework

372

https://wiki.xenproject.org/wiki/XL_vs_Xend_Feature_Comparison
https://wiki.xen.org/wiki/Bus:Device.Function_%28BDF%29_Notation
https://libvirt.org/sources/virshcmdref/html/

Appendix D. GNU licenses

This appendix contains the GNU Free Documentation License version 1.2.

D.1. GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,

MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful

document "free" in the sense of freedom: to assure everyone the effective freedom to copy and

redistribute it, with or without modifying it, either commercially or non-commercially. Secondarily,

this License preserves for the author and publisher a way to get credit for their work, while not

being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must

themselves be free in the same sense. It complements the GNU General Public License, which is

a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software

needs free documentation: a free program should come with manuals providing the same

freedoms that the software does. But this License is not limited to software manuals; it can be used

for any textual work, regardless of subject matter or whether it is published as a printed book. We

recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by

the copyright holder saying it can be distributed under the terms of this License. Such a notice

grants a world-wide, royalty-free license, unlimited in duration, to use that work under the

conditions stated herein. The "Document", below, refers to any such manual or work. Any member

of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or

distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,

either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals

exclusively with the relationship of the publishers or authors of the Document to the Document's

overall subject (or to related matters) and contains nothing that could fall directly within that overall

373

subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not

explain any mathematics.) The relationship could be a matter of historical connection with the

subject or with related matters, or of legal, commercial, philosophical, ethical or political position

regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being

those of Invariant Sections, in the notice that says that the Document is released under this

License. If a section does not fit the above definition of Secondary then it is not allowed to be

designated as Invariant. The Document may contain zero Invariant Sections. If the Document does

not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-

Cover Texts, in the notice that says that the Document is released under this License. A Front-

Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format

whose specification is available to the general public, that is suitable for revising the document

straightforwardly with generic text editors or (for images composed of pixels) generic paint

programs or (for drawings) some widely available drawing editor, and that is suitable for input to

text formatters or for automatic translation to a variety of formats suitable for input to text

formatters. A copy made in an otherwise Transparent file format whose markup, or absence of

markup, has been arranged to thwart or discourage subsequent modification by readers is not

Transparent. An image format is not Transparent if used for any substantial amount of text. A copy

that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo

input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-

conforming simple HTML, PostScript or PDF designed for human modification. Examples of

transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary

formats that can be read and edited only by proprietary word processors, SGML or XML for which

the DTD and/or processing tools are not generally available, and the machine-generated HTML,

PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are

needed to hold, legibly, the material this License requires to appear in the title page. For works in

formats which do not have any title page as such, "Title Page" means the text near the most

prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely

XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here

XYZ stands for a specific section name mentioned below, such as "Acknowledgements",

"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you

modify the Document means that it remains a section "Entitled XYZ" according to this definition.

Appendix D. GNU licenses

374

The Document may include Warranty Disclaimers next to the notice which states that this License

applies to the Document. These Warranty Disclaimers are considered to be included by reference

in this License, but only as regards disclaiming warranties: any other implication that these

Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-

commercially, provided that this License, the copyright notices, and the license notice saying this

License applies to the Document are reproduced in all copies, and that you add no other

conditions whatsoever to those of this License. You may not use technical measures to obstruct or

control the reading or further copying of the copies you make or distribute. However, you may

accept compensation in exchange for copies. If you distribute a large enough number of copies

you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display

copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the

Document, numbering more than 100, and the Document's license notice requires Cover Texts,

you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-

Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also

clearly and legibly identify you as the publisher of these copies. The front cover must present the

full title with all words of the title equally prominent and visible. You may add other material on the

covers in addition. Copying with changes limited to the covers, as long as they preserve the title of

the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones

listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must

either include a machine-readable Transparent copy along with each Opaque copy, or state in or

with each Opaque copy a computer-network location from which the general network-using public

has access to download using public-standard network protocols a complete Transparent copy of

the Document, free of added material. If you use the latter option, you must take reasonably

prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this

Transparent copy will remain thus accessible at the stated location until at least one year after the

last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition

to the public.

375

It is requested, but not required, that you contact the authors of the Document well before

redistributing any large number of copies, to give them a chance to provide you with an updated

version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections

2 and 3 above, provided that you release the Modified Version under precisely this License, with

the Modified Version filling the role of the Document, thus licensing distribution and modification of

the Modified Version to whoever possesses a copy of it. In addition, you must do these things in

the Modified Version:

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,

and from those of previous versions (which should, if there were any, be listed in the History

section of the Document). You may use the same title as a previous version if the original

publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for authorship

of the modifications in the Modified Version, together with at least five of the principal authors

of the Document (all of its principal authors, if it has fewer than five), unless they release you

from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.

Include, immediately after the copyright notices, a license notice giving the public permission

to use the Modified Version under the terms of this License, in the form shown in the

Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document's license notice.

Include an unaltered copy of this License.

Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the Title

Page. If there is no section Entitled "History" in the Document, create one stating the title,

year, authors, and publisher of the Document as given on its Title Page, then add an item

describing the Modified Version as stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to a

Transparent copy of the Document, and likewise the network locations given in the

Document for previous versions it was based on. These may be placed in the "History"

section. You may omit a network location for a work that was published at least four years

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Appendix D. GNU licenses

376

before the Document itself, or if the original publisher of the version it refers to gives

permission.

For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the

section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.

Section numbers or the equivalent are not considered part of the section titles.

Delete any section Entitled "Endorsements". Such a section may not be included in the

Modified Version.

Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any

Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary

Sections and contain no material copied from the Document, you may at your option designate

some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections

in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of

your Modified Version by various parties--for example, statements of peer review or that the text

has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25

words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one

passage of Front-Cover Text and one of Back-Cover Text may be added by (or through

arrangements made by) any one entity. If the Document already includes a cover text for the same

cover, previously added by you or by arrangement made by the same entity you are acting on

behalf of, you may not add another; but you may replace the old one, on explicit permission from

the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their

names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the

terms defined in section 4 above for modified versions, provided that you include in the

combination all of the Invariant Sections of all of the original documents, unmodified, and list them

all as Invariant Sections of your combined work in its license notice, and that you preserve all their

Warranty Disclaimers.

11.

12.

13.

14.

15.

377

The combined work need only contain one copy of this License, and multiple identical Invariant

Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same

name but different contents, make the title of each such section unique by adding at the end of it,

in parentheses, the name of the original author or publisher of that section if known, or else a

unique number. Make the same adjustment to the section titles in the list of Invariant Sections in

the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original

documents, forming one section Entitled "History"; likewise combine any sections Entitled

"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled

"Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this

License, and replace the individual copies of this License in the various documents with a single

copy that is included in the collection, provided that you follow the rules of this License for verbatim

copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this

License, provided you insert a copy of this License into the extracted document, and follow this

License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents

or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the

copyright resulting from the compilation is not used to limit the legal rights of the compilation's

users beyond what the individual works permit. When the Document is included in an aggregate,

this License does not apply to the other works in the aggregate which are not themselves

derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the

Document is less than one half of the entire aggregate, the Document's Cover Texts may be

placed on covers that bracket the Document within the aggregate, or the electronic equivalent of

covers if the Document is in electronic form. Otherwise they must appear on printed covers that

bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document

under the terms of section 4. Replacing Invariant Sections with translations requires special

Appendix D. GNU licenses

378

permission from their copyright holders, but you may include translations of some or all Invariant

Sections in addition to the original versions of these Invariant Sections. You may include a

translation of this License, and all the license notices in the Document, and any Warranty

Disclaimers, provided that you also include the original English version of this License and the

original versions of those notices and disclaimers. In case of a disagreement between the

translation and the original version of this License or a notice or disclaimer, the original version will

prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the

requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual

title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for

under this License. Any other attempt to copy, modify, sublicense or distribute the Document is

void, and will automatically terminate your rights under this License. However, parties who have

received copies, or rights, from you under this License will not have their licenses terminated so

long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation

License from time to time. Such new versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies

that a particular numbered version of this License "or any later version" applies to it, you have the

option of following the terms and conditions either of that specified version or of any later version

that has been published (not as a draft) by the Free Software Foundation. If the Document does

not specify a version number of this License, you may choose any version ever published (not as a

draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”

line with this:

379

https://www.gnu.org/copyleft/

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge

those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these

examples in parallel under your choice of free software license, such as the GNU General Public

License, to permit their use in free software.

Appendix D. GNU licenses

380

	Contents
	Preface
	Available documentation
	Improving the documentation
	Documentation conventions
	Support
	Support statement for SUSE Linux Enterprise Server
	Technology previews

	Part I. Introduction
	Chapter 1. Virtualization technology
	1.1. Overview
	1.2. Virtualization benefits
	1.3. Virtualization modes
	1.4. I/O virtualization

	Chapter 2. Virtualization scenarios
	2.1. Server consolidation
	2.2. Isolation
	2.3. Disaster recovery
	2.4. Dynamic load balancing

	Chapter 3. Introduction to Xen virtualization
	3.1. Basic components
	3.2. Xen virtualization architecture

	Chapter 4. Introduction to KVM virtualization
	4.1. Basic components
	4.2. KVM virtualization architecture

	Chapter 5. Virtualization tools
	5.1. Virtualization console tools
	5.2. Virtualization GUI tools

	Chapter 6. Installation of virtualization components
	6.1. Introduction
	6.2. Installing virtualization components
	6.2.1. Specifying a system role
	6.2.2. Running the YaST Virtualization module
	6.2.3. Installing specific installation patterns

	6.3. Enable nested virtualization in KVM
	6.3.1. VMware ESX as a guest hypervisor

	Chapter 7. Virtualization limits and support
	7.1. Architecture support
	7.1.1. KVM hardware requirements
	7.1.2. Xen hardware requirements

	7.2. Hypervisor limits
	7.2.1. KVM limits
	7.2.2. Xen limits

	7.3. Supported host environments (hypervisors)
	7.4. Supported guest operating systems
	7.4.1. Availability of paravirtualized drivers

	7.5. Supported VM migration scenarios
	7.5.1. Offline migration scenarios
	7.5.2. Live migration scenarios

	7.6. Feature support
	7.6.1. Xen host (Dom0)
	7.6.2. Guest feature support

	Part II. Managing virtual machines with libvirt
	Chapter 8. libvirt daemons
	8.1. Starting and stopping the modular daemons
	8.2. Starting and stopping the monolithic daemon
	8.3. Switching to the monolithic daemon

	Chapter 9. Preparing the VM Host Server
	9.1. Configuring networks
	9.1.1. Network bridge
	9.1.1.1. Managing network bridges with YaST
	9.1.1.1.1. Adding a network bridge
	9.1.1.1.2. Deleting a network bridge

	9.1.1.2. Managing network bridges from the command line
	9.1.1.2.1. Adding a network bridge
	9.1.1.2.2. Deleting a network bridge

	9.1.1.3. Adding a network bridge with nmcli
	9.1.1.4. Using VLAN interfaces
	9.1.2. Virtual networks
	9.1.2.1. Managing virtual networks with Virtual Machine Manager
	9.1.2.1.1. Defining virtual networks
	9.1.2.1.2. Starting virtual networks
	9.1.2.1.3. Stopping virtual networks
	9.1.2.1.4. Deleting virtual networks
	9.1.2.1.5. Obtaining IP addresses with nsswitch for NAT networks (in KVM)

	9.1.2.2. Managing virtual networks with virsh
	9.1.2.2.1. Creating a network
	9.1.2.2.2. Listing networks
	9.1.2.2.3. Getting details about a network
	9.1.2.2.4. Starting a network
	9.1.2.2.5. Stopping a network
	9.1.2.2.6. Removing a network

	9.2. Configuring a storage pool
	9.2.1. Managing storage with virsh
	9.2.1.1. Listing pools and volumes
	9.2.1.2. Starting, stopping, and deleting pools
	9.2.1.3. Adding volumes to a storage pool
	9.2.1.3.1. Cloning existing volumes

	9.2.1.4. Deleting volumes from a storage pool
	9.2.1.5. Attaching volumes to a VM Guest
	9.2.1.5.1. Hotplug or persistent change

	9.2.1.6. Detaching volumes from a VM Guest
	9.2.2. Managing storage with Virtual Machine Manager
	9.2.2.1. Adding a storage pool
	9.2.2.2. Managing storage pools
	9.2.2.2.1. Starting, stopping, and deleting pools
	9.2.2.2.2. Adding volumes to a storage pool
	9.2.2.2.3. Deleting volumes from a storage pool

	Chapter 10. Guest installation
	10.1. GUI-based guest installation
	10.1.1. Configuring the virtual machine for PXE boot

	10.2. Installing from the command line with virt-install
	10.3. Advanced guest installation scenarios
	10.3.1. Advanced UEFI configuration
	10.3.2. Memory ballooning with Windows guests
	10.3.3. Including add-on products in the installation

	Chapter 11. Basic VM Guest management
	11.1. Listing VM Guests
	11.1.1. Listing VM Guests with Virtual Machine Manager
	11.1.2. Listing VM Guests with virsh

	11.2. Accessing the VM Guest via console
	11.2.1. Opening a graphical console
	11.2.1.1. Opening a graphical console with Virtual Machine Manager
	11.2.1.2. Opening a graphical console with virt-viewer
	11.2.2. Opening a serial console

	11.3. Changing a VM Guest's state: start, stop, pause
	11.3.1. Changing a VM Guest's state with Virtual Machine Manager
	11.3.1.1. Automatically starting a VM Guest
	11.3.2. Changing a VM Guest's state with virsh

	11.4. Saving and restoring the state of a VM Guest
	11.4.1. Saving/restoring with Virtual Machine Manager
	11.4.2. Saving and restoring with virsh

	11.5. Creating and managing snapshots
	11.5.1. Terminology
	11.5.2. Creating and managing snapshots with Virtual Machine Manager
	11.5.2.1. Creating a snapshot
	11.5.2.2. Deleting a snapshot
	11.5.2.3. Starting a snapshot
	11.5.3. Creating and managing snapshots with virsh
	11.5.3.1. Creating internal snapshots
	11.5.3.2. Creating external snapshots
	11.5.3.3. Deleting a snapshot
	11.5.3.4. Starting a snapshot

	11.6. Deleting a VM Guest
	11.6.1. Deleting a VM Guest with Virtual Machine Manager
	11.6.2. Deleting a VM Guest with virsh

	11.7. Monitoring
	11.7.1. Monitoring with Virtual Machine Manager
	11.7.2. Monitoring with virt-top
	11.7.3. Monitoring with kvm_stat

	Chapter 12. Connecting and authorizing
	12.1. Authentication
	12.1.1. libvirtd authentication
	12.1.1.1. Access control for Unix sockets with permissions and group ownership
	12.1.1.2. Local access control for Unix sockets with Polkit
	12.1.1.3. User name and password authentication with SASL
	12.1.2. VNC authentication
	12.1.2.1. User name and password authentication with SASL
	12.1.2.2. Single password authentication

	12.2. Connecting to a VM Host Server
	12.2.1. system access for non-privileged users
	12.2.2. Managing connections with Virtual Machine Manager

	12.3. Configuring remote connections
	12.3.1. Remote tunnel over SSH (qemu+ssh or xen+ssh)
	12.3.2. Remote TLS/SSL connection with x509 certificate (qemu+tls or xen+tls)
	12.3.2.1. Basic concept
	12.3.2.2. Configuring the VM Host Server
	12.3.2.3. Configuring the client and testing the setup
	12.3.2.4. Enabling VNC for TLS/SSL connections
	12.3.2.4.1. VNC over TLS/SSL: VM Host Server configuration
	12.3.2.4.2. VNC over TLS/SSL: client configuration

	12.3.2.5. Restricting access (security considerations)
	12.3.2.5.1. Restricting access from the server side

	12.3.2.6. Central user authentication with SASL for TLS sockets
	12.3.2.7. Troubleshooting
	12.3.2.7.1. Virtual Machine Manager/virsh cannot connect to server
	12.3.2.7.2. VNC connection fails

	Chapter 13. Advanced storage topics
	13.1. Locking disk files and block devices with virtlockd
	13.1.1. Enable locking
	13.1.2. Configure locking
	13.1.2.1. Enabling an indirect lockspace
	13.1.2.2. Enable locking on LVM or iSCSI volumes

	13.2. Online resizing of guest block devices
	13.3. Sharing directories between host and guests (file system pass-through)
	13.4. Using RADOS block devices with libvirt

	Chapter 14. Configuring virtual machines with Virtual Machine Manager
	14.1. Machine setup
	14.1.1. Overview
	14.1.2. Performance
	14.1.3. Processor
	14.1.4. Memory
	14.1.5. Boot options

	14.2. Storage
	14.3. Controllers
	14.4. Networking
	14.5. Input devices
	14.6. Video
	14.7. USB redirectors
	14.8. Miscellaneous
	14.9. Adding a CD/DVD-ROM device with Virtual Machine Manager
	14.10. Adding a floppy device with Virtual Machine Manager
	14.11. Ejecting and changing floppy or CD/DVD-ROM media with Virtual Machine Manager
	14.12. Assigning a host PCI device to a VM Guest
	14.12.1. Adding a PCI device with Virtual Machine Manager

	14.13. Assigning a host USB device to a VM Guest
	14.13.1. Adding a USB device with Virtual Machine Manager

	Chapter 15. Configuring virtual machines with virsh
	15.1. Editing the VM configuration
	15.2. Changing the machine type
	15.3. Configuring hypervisor features
	15.4. Configuring CPU
	15.4.1. Configuring the number of CPUs
	15.4.2. Configuring the CPU model

	15.5. Changing boot options
	15.5.1. Changing boot order
	15.5.2. Using direct kernel boot

	15.6. Configuring memory allocation
	15.7. Adding a PCI device
	15.7.1. PCI Pass-Through for IBM Z

	15.8. Adding a USB device
	15.9. Adding SR-IOV devices
	15.9.1. Requirements
	15.9.2. Loading and configuring the SR-IOV host drivers
	15.9.3. Adding a VF network device to a VM Guest
	15.9.4. Dynamic allocation of VFs from a pool
	15.9.4.1. Defining network with pool of VFs on VM Host Server
	15.9.4.2. Configuring VM Guests to use VF from the pool

	15.10. Listing attached devices
	15.11. Configuring storage devices
	15.12. Configuring controller devices
	15.13. Configuring video devices
	15.13.1. Changing the amount of allocated VRAM
	15.13.2. Changing the state of 2D/3D acceleration

	15.14. Configuring network devices
	15.14.1. Scaling network performance with multiqueue virtio-net

	15.15. Using macvtap to share VM Host Server network interfaces
	15.16. Disabling a memory balloon device
	15.17. Configuring multiple monitors (dual head)
	15.18. Crypto adapter pass-through to KVM guests on IBM Z
	15.18.1. Introduction
	15.18.2. What is covered
	15.18.3. Requirements
	15.18.4. Dedicate a crypto adapter to a KVM host
	15.18.5. Further reading

	Chapter 16. Enhancing virtual machine security with AMD SEV-SNP
	16.1. Supported hardware
	16.2. Enabling confidential compute module
	16.3. Installing packages and setting up the base system
	16.4. Verifying setup
	16.5. Launching an AMD SEV-SNP virtual machine
	16.6. Verifying the AMD SEV-SNP virtual machine

	Chapter 17. Migrating VM Guests
	17.1. Types of migration
	17.2. Migration requirements
	17.3. Live-migrating with Virtual Machine Manager
	17.4. Migrating with virsh
	17.5. Step-by-step example
	17.5.1. Exporting the storage
	17.5.2. Defining the pool on the target hosts
	17.5.3. Creating the volume
	17.5.4. Creating the VM Guest
	17.5.5. Migrate the VM Guest

	Chapter 18. Xen to KVM migration guide
	18.1. Migration to KVM using virt-v2v
	18.1.1. Introduction to virt-v2v
	18.1.2. Installing virt-v2v
	18.1.3. Converting virtual machines to run under KVM managed by libvirt
	18.1.3.1. Conversion based on the libvirt XML description file
	18.1.3.2. Conversion based on the libvirt domain name
	18.1.3.3. Converting a remote Xen virtual machine
	18.1.4. Running converted virtual machines

	18.2. Xen to KVM manual migration
	18.2.1. General outline
	18.2.2. Back up the Xen VM Guest
	18.2.3. Changes specific to paravirtualized guests
	18.2.3.1. Install the default kernel
	18.2.3.2. Update the guest for boot under KVM
	18.2.4. Update the Xen VM Guest configuration
	18.2.4.1. Export the Xen VM Guest configuration
	18.2.4.2. General changes to the guest configuration
	18.2.4.3. The target KVM guest configuration
	18.2.5. Migrate the VM Guest

	18.3. More information

	Part III. Hypervisor-independent features
	Chapter 19. Disk cache modes
	19.1. What is a disk cache?
	19.2. How does a disk cache work?
	19.3. Benefits of disk caching
	19.4. Virtual disk cache modes
	19.5. Cache modes and data integrity
	19.6. Cache modes and live migration

	Chapter 20. VM Guest clock settings
	20.1. KVM: using kvm_clock
	20.1.1. Other timekeeping methods

	20.2. Xen virtual machine clock settings

	Chapter 21. libguestfs
	21.1. VM Guest manipulation overview
	21.1.1. VM Guest manipulation risk
	21.1.2. libguestfs design

	21.2. Package installation
	21.3. Guestfs tools
	21.3.1. Modifying virtual machines
	21.3.2. Supported file systems and disk images
	21.3.3. virt-rescue
	21.3.4. virt-resize
	21.3.5. Other virt-* tools
	21.3.5.1. virt-filesystems
	21.3.5.2. virt-ls
	21.3.5.3. virt-cat
	21.3.5.4. virt-df
	21.3.5.5. virt-edit
	21.3.5.6. virt-tar-in/out
	21.3.5.7. virt-copy-in/out
	21.3.5.8. virt-log
	21.3.6. guestfish
	21.3.7. Converting a physical machine into a KVM guest

	21.4. Troubleshooting
	21.4.1. Btrfs-related problems
	21.4.2. Environment
	21.4.3. libguestfs-test-tool

	21.5. More information

	Chapter 22. QEMU guest agent
	22.1. Running QEMU GA commands
	22.2. virsh commands that require QEMU GA
	22.3. Enhancing libvirt commands
	22.4. More information

	Chapter 23. Software TPM emulator
	23.1. Introduction
	23.2. Prerequisites
	23.3. Installation
	23.4. Using swtpm with QEMU
	23.5. Using swtpm with libvirt
	23.6. TPM measurement with OVMF firmware
	23.7. Resources

	Chapter 24. Creating crash dumps of a VM Guest
	24.1. Introduction
	24.2. Creating crash dumps for fully virtualized machines
	24.3. Creating crash dumps for paravirtualized machines
	24.4. Additional information

	Part IV. Managing virtual machines with Xen
	Chapter 25. Setting up a virtual machine host
	25.1. Best practices and suggestions
	25.2. Managing Dom0 memory
	25.2.1. Setting Dom0 memory allocation

	25.3. Network card in fully virtualized guests
	25.4. Starting the virtual machine host
	25.5. PCI Pass-Through
	25.5.1. Configuring the hypervisor for PCI Pass-Through
	25.5.1.1. Dynamic assignment with xl
	25.5.2. Assigning PCI devices to VM Guest systems
	25.5.3. VGA Pass-Through
	25.5.4. Troubleshooting
	25.5.5. More information

	25.6. USB pass-through
	25.6.1. Identify the USB device
	25.6.2. Emulated USB device
	25.6.3. Paravirtualized PVUSB

	Chapter 26. Virtual networking
	26.1. Network devices for guest systems
	26.2. Host-based routing in Xen
	26.3. Creating a masqueraded network setup
	26.4. Special configurations
	26.4.1. Bandwidth throttling in virtual networks
	26.4.2. Monitoring the network traffic

	Chapter 27. Managing a virtualization environment
	27.1. XL—Xen management tool
	27.1.1. Guest domain configuration file

	27.2. Automatic start of guest domains
	27.3. Event actions
	27.4. Time Stamp Counter
	27.5. Saving virtual machines
	27.6. Restoring virtual machines
	27.7. Virtual machine states

	Chapter 28. Block devices in Xen
	28.1. Mapping physical storage to virtual disks
	28.2. Mapping network storage to virtual disk
	28.3. File-backed virtual disks and loopback devices
	28.4. Resizing block devices
	28.5. Scripts for managing advanced storage scenarios

	Chapter 29. Virtualization: configuration options and settings
	29.1. Virtual CD readers
	29.1.1. Virtual CD readers on paravirtual machines
	29.1.2. Virtual CD readers on fully virtual machines
	29.1.3. Adding virtual CD readers
	29.1.4. Removing virtual CD readers

	29.2. Remote access methods
	29.3. VNC viewer
	29.3.1. Assigning VNC viewer port numbers to virtual machines
	29.3.2. Using SDL instead of a VNC viewer

	29.4. Virtual keyboards
	29.5. Dedicating CPU resources
	29.5.1. Dom0
	29.5.2. VM Guests

	29.6. HVM features
	29.6.1. Specify boot device on boot
	29.6.2. Changing CPUIDs for guests
	29.6.3. Increasing the number of PCI-IRQs

	29.7. Virtual CPU scheduling

	Chapter 30. Administrative tasks
	30.1. The boot loader program
	30.2. Sparse image files and disk space
	30.3. Migrating Xen VM Guest systems
	30.3.1. Detecting CPU features
	30.3.1.1. More information
	30.3.2. Preparing block devices for migrations
	30.3.3. Migrating VM Guest systems

	30.4. Monitoring Xen
	30.4.1. Monitor Xen with xentop
	30.4.2. Additional tools

	30.5. Providing host information for VM Guest systems

	Chapter 31. XenStore: configuration database shared between domains
	31.1. Introduction
	31.2. File system interface
	31.2.1. XenStore commands
	31.2.2. /vm
	31.2.3. /local/domain/<domid>

	Chapter 32. Xen as a high-availability virtualization host
	32.1. Xen HA with remote storage
	32.2. Xen HA with local storage
	32.3. Xen HA and private bridges

	Chapter 33. Xen: converting a paravirtual (PV) guest into a fully virtual (FV/HVM) guest

	Part V. Managing virtual machines with QEMU
	Chapter 34. QEMU overview
	Chapter 35. Setting up a KVM VM Host Server
	35.1. CPU support for virtualization
	35.2. Required software
	35.3. KVM host-specific features
	35.3.1. Using the host storage with virtio-scsi
	35.3.1.1. virtio-scsi usage
	35.3.2. Accelerated networking with vhost-net
	35.3.3. Scaling network performance with multiqueue virtio-net
	35.3.4. VFIO: secure direct access to devices
	35.3.5. VirtFS: sharing directories between host and guests
	35.3.5.1. Implementation
	35.3.6. KSM: sharing memory pages between guests

	Chapter 36. Guest installation
	36.1. Basic installation with qemu-system-ARCH
	36.2. Managing disk images with qemu-img
	36.2.1. General information on qemu-img invocation
	36.2.2. Creating, converting, and checking disk images
	36.2.2.1. qemu-img create
	36.2.2.2. qemu-img convert
	36.2.2.3. qemu-img check
	36.2.2.4. Increasing the size of an existing disk image
	36.2.2.5. Advanced options for the qcow2 file format
	36.2.2.5.1. Choosing the right cache size
	36.2.2.5.2. Configuring the cache size
	36.2.2.5.3. Reducing the memory usage

	36.2.3. Managing snapshots of virtual machines with qemu-img
	36.2.3.1. Listing existing snapshots
	36.2.3.2. Creating snapshots of a powered-off virtual machine
	36.2.3.3. Deleting snapshots
	36.2.4. Manipulate disk images effectively
	36.2.4.1. Base and derived images
	36.2.4.2. Creating derived images
	36.2.4.3. Rebasing derived images
	36.2.4.4. Mounting an image on a VM Host Server

	Chapter 37. Running virtual machines with qemu-system-ARCH
	37.1. Basic qemu-system-ARCH invocation
	37.2. General qemu-system-ARCH options
	37.2.1. Basic virtual hardware
	37.2.1.1. Machine type
	37.2.1.2. CPU model
	37.2.1.3. Other basic options
	37.2.2. Storing and reading configuration of virtual devices
	37.2.3. Guest real-time clock

	37.3. Using devices in QEMU
	37.3.1. Block devices
	37.3.1.1. Freeing unused guest disk space
	37.3.1.2. IOThreads
	37.3.1.3. Bio-based I/O path for virtio-blk
	37.3.1.4. Accessing iSCSI resources directly
	37.3.1.5. Using RADOS block devices with QEMU
	37.3.2. Graphic devices and display options
	37.3.2.1. Defining video cards
	37.3.2.2. Display options
	37.3.3. USB devices
	37.3.3.1. Emulating USB devices in VM Guest
	37.3.4. Character devices

	37.4. Networking in QEMU
	37.4.1. Defining a network interface card
	37.4.2. User-mode networking
	37.4.2.1. Command line examples
	37.4.3. Bridged networking
	37.4.3.1. Connecting to a bridge manually
	37.4.3.2. Connecting to a bridge with qemu-bridge-helper

	37.5. Viewing a VM Guest with VNC
	37.5.1. Secure VNC connections

	Chapter 38. Virtual machine administration using QEMU monitor
	38.1. Accessing monitor console
	38.2. Getting information about the guest system
	38.3. Changing VNC password
	38.4. Managing devices
	38.5. Controlling keyboard and mouse
	38.6. Changing available memory
	38.7. Dumping virtual machine memory
	38.8. Managing virtual machine snapshots
	38.9. Suspending and resuming virtual machine execution
	38.10. Live migration
	38.11. QMP - QEMU machine protocol
	38.11.1. Access QMP via standard input/output
	38.11.2. Access QMP via telnet
	38.11.3. Access QMP via Unix socket
	38.11.4. Access QMP via libvirt's virsh command

	Part VI. Troubleshooting
	Chapter 39. Integrated help and package documentation
	Chapter 40. Gathering system information and logs
	40.1. libvirt log controls

	Glossary
	Appendix A. Virtual machine drivers
	Appendix B. Configuring GPU Pass-Through for NVIDIA cards
	B.1. Introduction
	B.2. Prerequisites
	B.3. Configuring the host
	B.3.1. Verify the host environment
	B.3.2. Enable IOMMU
	B.3.3. Blacklist the Nouveau driver
	B.3.4. Configure VFIO and isolate the GPU used for pass-through
	B.3.5. Load the VFIO driver
	B.3.5.1. Including the driver in the initrd file
	B.3.5.2. Adding the driver to the list of auto-loaded modules
	B.3.5.3. Loading the driver manually

	B.3.6. Disable MSR for Microsoft Windows guests
	B.3.7. Install UEFI firmware
	B.3.8. Reboot the host machine

	B.4. Configuring the guest
	B.4.1. Requirements for the guest configuration
	B.4.2. Install the graphic card driver
	B.4.2.1. Linux guest
	B.4.2.2. Microsoft Windows guest

	Appendix C. XM, XL toolstacks, and the libvirt framework
	C.1. Xen toolstacks
	C.1.1. Upgrading from xend/xm to xl/libxl
	C.1.2. XL design
	C.1.3. Checklist before upgrade

	C.2. Import Xen domain configuration into libvirt
	C.3. Differences between the xm and xl applications
	C.3.1. Notation conventions
	C.3.2. New global options
	C.3.3. Unchanged options
	C.3.4. Removed options
	C.3.4.1. Domain management
	C.3.4.2. USB devices
	C.3.4.3. CPU management
	C.3.4.4. Other options

	C.3.5. Changed options
	C.3.5.1. create
	C.3.5.2. console
	C.3.5.3. info
	C.3.5.4. dump-core
	C.3.5.5. list
	C.3.5.6. mem-*
	C.3.5.7. migrate
	C.3.5.8. Domain management
	C.3.5.9. xl sched-*
	C.3.5.10. xl cpupool-*
	C.3.5.11. PCI and block devices
	C.3.5.12. Network

	C.3.6. New options

	C.4. External links
	C.5. Saving a Xen guest configuration in an xm compatible format

	Appendix D. GNU licenses
	D.1. GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

