
Experimental version for
testing purpose only!

My private, inofficial Version of:

SUSE Linux Enterprise Server 15 SP7

AutoYaST Guide

AutoYaST Guide

SUSE Linux Enterprise Server 15 SP7

AutoYaST is a system for unattended mass deployment of SUSE Linux Enterprise
Server systems. It uses an AutoYaST profile that contains installation and configu‐
ration data. The book guides you through the basic steps of auto-installation: prepa‐
ration, installation, and configuration.

File generated at 2025-11-17 15:09

This is my own, experimental version of a Document from SUSE company. The only purpose of this

document is the test of an alternative publishing mechanism. Errors in the publishing mechanism

may lead to wrong content.You can find the original version of this document at documenta‐

tion.suse.com.

The books and articles exist as XML sources, conformant to the DocBook standard. SUSE publishes

them with the DocBook XSLT 1.0 Stylesheets, which generate XSL-FO, and Apache FOP, which in turn

generates PDF.

This version is based on the same DocBook sources, but published with the new xslTNG Stylesheets,

which produce XHTML+CSS, and an rendering engine like Antenna House or Weasyprint to generate

PDF. The only purpose of this version is a "real life test" of the new publishing mechanism, together with

an "DocBook TNG Framework" that i wrote. It helps me to use and customize the xslTNG Stylesheets.

— Frank Steimke, Bremen, Gemany

https://documentation.suse.com
https://documentation.suse.com
https://xsltng.docbook.org/

Contents

1 Preface 7

1 Available documentation 7

2 Improving the documentation 7

3 Documentation conventions 8

4 Support 10

Support statement for SUSE Linux Enterprise Server 10 • Technology previews 11

1 Introduction to AutoYaST 1

1 . 1 Motivation 1

1 . 2 Overview and concept 1

I Understanding and creating the AutoYaST control file 3

2 The AutoYaST control file 4

2 . 1 Introduction 4

2 . 2 Format 4

2 . 3 Structure 5

Resources and properties 6 • Nested resources 6 • Attributes 7

3 Creating an AutoYaST control file 8

3 . 1 Collecting information 8

3 . 2 Using the configuration management system (CMS) 8

Creating a new control file 9

3 . 3 Creating/editing a control file manually 9

3 . 4 Creating a control file via script with XSLT 11

3 . 5 Checking a control file 12

Basic checks 12 • Running pre-scripts 13 • Importing the profile 13

II AutoYaST configuration examples 14

4 Configuration and installation options 15

i

4 . 1 General options 15

The mode section 16 • Configuring the installation settings screen 19 • The self-update section

19 • The semi-automatic section 20 • The signature handling section 20 • The wait section

22 • Ignoring unused devices on IBM Z 23 • Examples for the general section 23

4 . 2 Reporting 26

4 . 3 System registration and extension selection 27

Extensions 30

4 . 4 The GRUB 2 boot loader 33

Loader type 34 • Globals 34 • Device map 39

4 . 5 The Systemd boot loader 39

Loader type 40 • Globals 40

4 . 6 Partitioning 40

Automatic partitioning 41 • Guided partitioning 41 • Expert partitioning 42 • Advanced

partitioning features 56 • Logical volume manager (LVM) 61 • Software RAID 62 • Multipath

support 68 • bcache configuration 69 • Multi-device Btrfs configuration 72 • NFS

configuration 73 • tmpfs configuration 74 • IBM Z specific configuration 74

4 . 7 iSCSI initiator overview 76

4 . 8 Fibre channel over Ethernet configuration (FCoE) 77

4 . 9 Country settings 79

4 . 10 Software 80

Product selection 80 • Package selection with patterns and packages sections 81 • Installing

additional/customized packages or products 82 • Kernel packages 87 • Removing automatically

selected packages 87 • Installing recommended packages and patterns 88 • Installing packages in

stage 2 89 • Installing patterns in stage 2 89 • Online update in stage 2 89

4 . 11 Upgrade 90

4 . 12 Services and targets 91

4 . 13 Network configuration 92

Configuration Workflow 92 • The Network Resource 94 • Interfaces 96 • Assigning multiple IP

addresses 101 • Persistent names of network interfaces 102 • Domain name system 103 • Routing

104 • s390 options 105

4 . 14 Proxy 106

4 . 15 NIS client and server 106

ii

4 . 16 NIS server 107

4 . 17 Hosts definition 109

4 . 18 Windows domain membership 110

4 . 19 Samba server 111

4 . 20 Authentication client 112

4 . 21 NFS client and server 112

4 . 22 NTP client 113

4 . 23 Mail server configuration 114

4 . 24 Apache HTTP server configuration 117

4 . 25 Squid server 125

4 . 26 FTP server 131

4 . 27 TFTP server 136

4 . 28 Firstboot workflow 136

4 . 29 Security settings 137

Password settings options 137 • Boot settings 138 • Login settings 138 • New user settings

(useradd settings) 138 • Linux Security Module (LSM) settings 138 • Using OpenSCAP security

policies 138

4 . 30 Linux audit framework (LAF) 140

4 . 31 Users and groups 142

Users 142 • User defaults 146 • Groups 148 • Login settings 148

4 . 32 Custom user scripts 149

Pre-scripts 149 • Postpartitioning scripts 150 • Chroot environment scripts 150 • Post-scripts

151 • Init scripts 151 • Script XML representation 152 • Script example 156

4 . 33 System variables (sysconfig) 159

4 . 34 Adding complete configurations 160

4 . 35 Ask the user for values during installation 161

Default value scripts 166 • Scripts 167

4 . 36 Kernel dumps 171

Memory reservation 172 • Dump saving 174 • E-mail notification 175 • Kdump kernel settings

176 • Expert settings 177

iii

4 . 37 DNS server 178

4 . 38 DHCP server 180

4 . 39 Firewall configuration 183

General firewall configuration 183 • Firewall zones configuration 184 • Installation stages when

the firewalld profile is applied 185 • A full example 185

4 . 40 Miscellaneous hardware and system components 186

Printer 186 • Sound devices 187

4 . 41 Importing SSH keys and configuration 188

4 . 42 Configuration management 188

Connecting to a configuration management server 189 • Running in stand-alone mode

190 • SUSE Multi-Linux Manager Salt formulas support 191

III Managing mass installations with dynamic profiles 192

5 Supported approaches to dynamic profiles 193

6 Rules and classes 194

6 . 1 Rule-based automatic installation 194

Rules file explained 195 • Custom rules 197 • Match types for rules 198 • Combine attributes

198 • Rules file structure 199 • Predefined system attributes 199 • Rules with dialogs 201

6 . 2 Classes 204

6 . 3 Mixing rules and classes 206

6 . 4 Merging of rules and classes 206

7 ERB templates 208

7 . 1 What is ERB? 208

7 . 2 Template helpers 209

boot_efi? 209 • disks 209 • network_cards 210 • os_release 210 • hardware

211

7 . 3 Running ERB helpers 211

7 . 4 Rendering ERB profiles 212

7 . 5 Debugging ERB profiles 212

7 . 6 ERB compared to rules and classes 213

iv

8 Combining ERB templates and scripts 215

8 . 1 Embedding ERB in your scripts 215

8 . 2 Accessing ERB helpers from Ruby scripts 215

IV Understanding the auto-installation process 217

9 The auto-installation process 218

9 . 1 Introduction 218

X11 interface (graphical) 218 • Serial console 218 • Text-based YaST installation 218

9 . 2 Choosing the right boot medium 218

Booting from a flash disk (for example, a USB stick) 219 • Booting from the SUSE Linux

Enterprise installation medium 220 • Booting via PXE over the network 220

9 . 3 Invoking the auto-installation process 220

Command line options 221 • Auto-installing a single system 227 • Combining the linuxrc

info file with the AutoYaST control file 227

9 . 4 System configuration 228

Post-install and system configuration 228 • System customization 228

V Uses for AutoYaST on installed systems 230

10 Running AutoYaST in an installed system 231

VI Appendixes 233

A Handling rules 234

B AutoYaST FAQ—frequently asked questions 235

C Advanced linuxrc options 239

C . 1 Passing parameters to linuxrc 239

C . 2 info file format 240

C . 3 Advanced network setup 242

D Differences between AutoYaST profiles in SLE 12 and 15 243

D . 1 Product selection 243

v

D . 2 Software 243

Adding modules or extensions using the registration server 243 • Adding modules or extensions

using the SLE-15-SP7-Full-ARCH-GM-media1.iso image 244 • Renamed software patterns 245

D . 3 Registration of module and extension dependencies 246

D . 4 Partitioning 246

GPT becomes the default partition type on AMD64/Intel 64 246 • Setting partition numbers

246 • Forcing primary partitions 246 • Btrfs: Default subvolume name 247 • Btrfs: Disabling

subvolumes 247 • Reading an existing /etc/fstab is no longer supported 247 • Setting for

aligning partitions has been dropped 247 • Using the type to define a volume group 248

D . 5 Firewall configuration 248

Assigning interfaces to zones 249 • Opening ports 251 • Opening firewalld services

252 • More information 253

D . 6 NTP configuration 253

D . 7 AutoYaST packages are needed for the second stage 253

D . 8 The CA management module has been dropped 254

D . 9 Upgrade 254

Software 254 • Registration 254

E GNU licenses 255

E . 1 GNU Free Documentation License 255

vi

Preface

Available documentation

Online documentation

Our documentation is available online at https://documentation.suse.com. Browse or down‐

load the documentation in various formats.

Latest updates

The latest updates are usually available in the English-language version of this

documentation.

SUSE Knowledgebase

If you run into an issue, check out the Technical Information Documents (TIDs) that are avail‐

able online at https://www.suse.com/support/kb/. Search the SUSE Knowledgebase for

known solutions driven by customer need.

Release notes

For release notes, see https://www.suse.com/releasenotes/.

In your system

For offline use, the release notes are also available under /usr/share/doc/release-

notes on your system. The documentation for individual packages is available at /usr/

share/doc/packages.

Many commands are also described in their manual pages. To view them, run man, followed

by a specific command name. If the man command is not installed on your system, install it

with sudo zypper install man.

Improving the documentation

Your feedback and contributions to this documentation are welcome. The following channels for

giving feedback are available:

Service requests and support

For services and support options available for your product, see https://www.suse.com/sup‐

port/.

vii

https://documentation.suse.com
https://www.suse.com/support/kb/
https://www.suse.com/releasenotes/
https://www.suse.com/support/
https://www.suse.com/support/

To open a service request, you need a SUSE subscription registered at SUSE Customer

Center. Go to https://scc.suse.com/support/requests, log in, and click Create New.

Bug reports

Report issues with the documentation at https://bugzilla.suse.com/.

To simplify this process, click the Report an issue icon next to a headline in the HTML ver‐

sion of this document. This preselects the right product and category in Bugzilla and adds a

link to the current section. You can start typing your bug report right away.

A Bugzilla account is required.

Contributions

To contribute to this documentation, click the Edit source document icon next to a headline in

the HTML version of this document. This will take you to the source code on GitHub, where

you can open a pull request.

A GitHub account is required.

Edit source document only available for English

The Edit source document icons are only available for the English version of

each document. For all other languages, use the Report an issue icons in‐

stead.

For more information about the documentation environment used for this documentation, see

the repository's README.

Mail

You can also report errors and send feedback concerning the documentation to doc-

team@suse.com. Include the document title, the product version, and the publication date

of the document. Additionally, include the relevant section number and title (or provide the

URL) and provide a concise description of the problem.

Documentation conventions

The following notices and typographic conventions are used in this document:

/etc/passwd: Directory names and file names

PLACEHOLDER: Replace PLACEHOLDER with the actual value

PATH: An environment variable

•

•

•

viii

https://scc.suse.com/support/requests
https://bugzilla.suse.com/

ls, --help: Commands, options, and parameters

user: The name of a user or group

package_name: The name of a software package

Alt, Alt—F1: A key to press or a key combination. Keys are shown in uppercase as on a

keyboard.

File, File > Save As: menu items, buttons

x86_64 ▶This paragraph is only relevant for the AMD64/Intel 64 architectures. The arrows

mark the beginning and the end of the text block.◀

zseries;power ▶This paragraph is only relevant for the architectures IBM Z and POWER. The

arrows mark the beginning and the end of the text block.◀

Chapter 1, “Example chapter”: A cross-reference to another chapter in this guide.

Commands that must be run with root privileges. You can also prefix these commands with

the sudo command to run them as a non-privileged user:

#command>sudocommand

Commands that can be run by non-privileged users:

>command

Commands can be split into two or multiple lines by a backslash character (\) at the end of a

line. The backslash informs the shell that the command invocation will continue after the end

of the line:

>echo a b \
c d

A code block that shows both the command (preceded by a prompt) and the respective out‐

put returned by the shell:

>command
output

Notices

Warning notice

Vital information you must be aware of before proceeding. Warns you about se‐

curity issues, potential loss of data, damage to hardware, or physical hazards.

Important notice

Important information you should be aware of before proceeding.

•

•

•

•

•

•

•

•

•

•

•

•

ix

Note notice

Additional information, for example about differences in software versions.

Tip notice

Helpful information, like a guideline or a piece of practical advice.

Compact Notices

Note

Additional information, for example about differences in software versions.

Tip

Helpful information, like a guideline or a piece of practical advice.

Support

Find the support statement for SUSE Linux Enterprise Server and general information about tech‐

nology previews below. For details about the product lifecycle, see https://www.suse.com/lifecycle.

If you are entitled to support, find details on how to collect information for a support ticket at https://

documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html.

Support statement for SUSE Linux Enterprise Server

To receive support, you need an appropriate subscription with SUSE. To view the specific support

offers available to you, go to https://www.suse.com/support/ and select your product.

The support levels are defined as follows:

L1

Problem determination, which means technical support designed to provide compatibility in‐

formation, usage support, ongoing maintenance, information gathering and basic trou‐

bleshooting using available documentation.

L2

Problem isolation, which means technical support designed to analyze data, reproduce cus‐

tomer problems, isolate a problem area and provide a resolution for problems not resolved

by Level 1 or prepare for Level 3.

•

x

https://www.suse.com/lifecycle
https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html
https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html
https://www.suse.com/support/

L3

Problem resolution, which means technical support designed to resolve problems by engag‐

ing engineering to resolve product defects which have been identified by Level 2 Support.

For contracted customers and partners, SUSE Linux Enterprise Server is delivered with L3 support

for all packages, except for the following:

Technology previews.

Sound, graphics, fonts, and artwork.

Packages that require an additional customer contract.

Some packages shipped as part of the module Workstation Extension are L2-supported only.

Packages with names ending in -devel (containing header files and similar developer re‐

sources) will only be supported together with their main packages.

SUSE will only support the usage of original packages. That is, packages that are unchanged and

not recompiled.

Technology previews

Technology previews are packages, stacks, or features delivered by SUSE to provide glimpses into

upcoming innovations. Technology previews are included for your convenience to give you a

chance to test new technologies within your environment. We would appreciate your feedback. If

you test a technology preview, please contact your SUSE representative and let them know about

your experience and use cases. Your input is helpful for future development.

Technology previews have the following limitations:

Technology previews are still in development. Therefore, they may be functionally incom‐

plete, unstable, or otherwise not suitable for production use.

Technology previews are not supported.

Technology previews may only be available for specific hardware architectures.

Details and functionality of technology previews are subject to change. As a result, upgrad‐

ing to subsequent releases of a technology preview may be impossible and require a fresh

installation.

SUSE may discover that a preview does not meet customer or market needs, or does not

comply with enterprise standards. Technology previews can be removed from a product at

any time. SUSE does not commit to providing a supported version of such technologies in

the future.

For an overview of technology previews shipped with your product, see the release notes at https://

www.suse.com/releasenotes.

•

•

•

•

•

•

•

•

•

•

xi

https://www.suse.com/releasenotes
https://www.suse.com/releasenotes

Chapter 1. Introduction to AutoYaST

1.1. Motivation

Standard installations of SUSE Linux Enterprise Server are based on a wizard workflow. This is

user-friendly and efficient when installing on few machines. However, it becomes repetitive and

time-consuming when installing on many machines.

To avoid this, you could do mass deployments by copying the hard disk of the first successful

installation. Unfortunately, that leads to the issue that even minute configuration changes between

each machine need to later be dealt with individually. For example, when using static IP addresses,

these IP addresses would need to be reset for each machine.

A regular installation of SUSE Linux Enterprise Server is semi-automated by default. The user is

prompted to select the necessary information at the beginning of the installation (usually language

only). YaST then generates a proposal for the underlying system depending on different factors

and system parameters. Usually—and especially for new systems—such a proposal can be used

to install the system and provides a usable installation. The steps following the proposal are fully

automated.

AutoYaST can be used where no user intervention is required or where customization is required.

Using an AutoYaST profile, YaST prepares the system for a custom installation and does not

interact with the user, unless specified in the file controlling the installation.

AutoYaST is not an automated GUI system. This means that usually many screens will be skipped

—you will never see the language selection interface, for example. AutoYaST will simply pass the

language parameter to the sub-system without displaying any language related interface.

1.2. Overview and concept

Using AutoYaST, multiple systems can easily be installed in parallel and quickly. They need to

share the same environment and similar, but not necessarily identical, hardware. The installation is

defined by an XML configuration file (usually named autoinst.xml) called the “AutoYaST

profile”. You can create this using existing configuration resources, and easily tailor it for any

specific environment.

AutoYaST is fully integrated and provides various options for installing and configuring a system.

The main advantage over other auto-installation systems is the ability to configure a computer by

using existing modules, and avoid using custom scripts which are normally executed at the end of

the installation.

Chapter 1. Introduction to AutoYaST

1

This document will guide you through the three steps of auto-installation:

Preparation: All relevant information about the target system is collected and turned into the

appropriate directives in the profile. The profile is transferred onto the target system where

its directives will be parsed and fed into YaST.

Installation: YaST performs the installation and basic configuration (for example, partitioning,

networking, firewall) of the target system using the data from the AutoYaST profile.

Post-configuration: After the installation and configuration of the basic system, the system

can run a second stage to perform any additional configurations that require the target

system to be already running, such as post-installation scripts, third party modules, or some

YaST modules.

Second stage

A regular installation of SUSE Linux Enterprise Server15 SP7 is performed in a single

stage. The auto-installation process, however, is divided into two stages. After the

installation and main configuration of the basic system, it is booted into a second

stage to perform any post-installation configuration steps.

The packages autoyast2 and autoyast2-installation need to be installed to

run the second stage in the installed system correctly. Otherwise an error will be

shown before booting into the installed system.

The second stage runs only if it is strictly necessary, and the second stage can be

turned off completely with the second_stage parameter:

<general>
 <mode>
 <confirm config:type="boolean">false</confirm>
 <second_stage config:type="boolean">false</second_stage>
 </mode>
</general>

•

•

•

2

Part I. Understanding and creating the AutoYaST
control file

2 The AutoYaST control file 4

3 Creating an AutoYaST control file
8

Part I. Understanding and creating the AutoYaST control file

3

Chapter 2. The AutoYaST control file

2.1. Introduction

A control file, also known as a profile, is a configuration description for a single system. It consists

of sets of resources with properties including support for complex structures such as lists, records,

trees and large embedded or referenced objects.

2.2. Format

The XML configuration format provides a consistent file structure, which is easy to learn and to

remember when attempting to configure a new system.

The AutoYaST control file uses XML to describe the system installation and configuration. XML is a

commonly used markup, and many users are familiar with the concepts of the language and the

tools used to process XML files. If you edit an existing control file, or create a new control file, it is

strongly recommended to validate the control file. This can be done using a validating XML parser

such as xmllint or jing, for example (see the section called “Creating/editing a control file

manually”).

The following example shows a control file in XML format:

4

Example 2.1. AutoYaST control file (profile)

<?xml version="1.0"?>
<!DOCTYPE profile>
<profile
 xmlns="http://www.suse.com/1.0/yast2ns"
 xmlns:config="http://www.suse.com/1.0/configns">
 <partitioning config:type="list">
 <drive>
 <device>/dev/sda</device>
 <partitions config:type="list">
 <partition>
 <filesystem config:type="symbol">btrfs</filesystem>
 <size>10G</size>
 <mount>/</mount>
 </partition>
 <partition>
 <filesystem config:type="symbol">xfs</filesystem>
 <size>120G</size>
 <mount>/data</mount>
 </partition>
 </partitions>
 </drive>
 </partitioning>
 <scripts>
 <pre-scripts>
 <script>
 <interpreter>shell</interpreter>
 <filename>start.sh</filename>
 <source>
 <![CDATA[
#!/bin/sh
echo "Starting installation"
exit 0

]]>

 </source>
 </script>
 </pre-scripts>
 </scripts>
</profile>

2.3. Structure

Below is an example of a basic control file container, the actual content of which is explained later

on in this chapter.

Example 2.2. Control file container

<?xml version="1.0"?>
<!DOCTYPE profile>
<profile
 xmlns="http://www.suse.com/1.0/yast2ns"
 xmlns:config="http://www.suse.com/1.0/configns">
 <!-- RESOURCES -->
</profile>

The <profile> element (root node) contains one or more distinct resource elements. The

permissible resource elements are specified in the schema files

Chapter 2. The AutoYaST control file

5

2.3.1. Resources and properties

A resource element either contains multiple and distinct property and resource elements, or

multiple instances of the same resource element, or it is empty. The permissible content of a

resource element is specified in the schema files.

A property element is either empty or contains a literal value. The permissible property elements

and values in each resource element are specified in the schema files

An element can be either a container of other elements (a resource) or it has a literal value (a

property); it can never be both. This restriction is specified in the schema files. A configuration

component with more than one value must either be represented as an embedded list in a property

value or as a nested resource.

An empty element, such as <foo></foo> or <bar/>, will not be in the parsed data model.

Usually this is interpreted as wanting a sensible default value. In cases where you need an

explicitly empty string instead, use a CDATA section: <foo><![CDATA[]]></foo>.

2.3.2. Nested resources

Nested resource elements allow a tree-like structure of configuration components to be built to any

level.

There are two kinds of nested resources: maps and lists. Maps, also known as associative arrays,

hashes, or dictionaries, contain mixed contents, identified by their tag names. Lists, or arrays, have

all items of the same type.

Example 2.3. Nested resources

...
<drive>
 <device>/dev/sda</device>
 <partitions config:type="list">
 <partition>
 <size>10G</size>
 <mount>/</mount>
 </partition>
 <partition>
 <size>1G</size>
 <mount>/tmp</mount>
 </partition>
 </partitions>
</drive>
....

In the example above, the drive resource is a map consisting of a device property and a

partitions resource. The partitions resource is a list containing multiple instances of the

partition resource. Each partition resource is a map containing a size and mount

property.

6

The default type of a nested resource is map, although you can specify it as you want. Lists must

be marked as such using the config:type="list" attribute.

Using shorter type annotations

Starting with SUSE Linux Enterprise Server 15 SP3, it is possible to use the attribute

t instead of config:type to specify the element type.

<mode t="boolean">true</mode>

2.3.3. Attributes

Global attributes are used to define metadata on resources and properties. Attributes are used to

define context switching. They are also used for naming and typing properties as shown in the

previous sections. Attributes are in a separate namespace so they do not need to be treated as

reserved words in the default namespace.

The config:type attribute determines the type of the resource or property in the parsed data

model. For resources, lists need a list type whereas a map is the default type that does not need

an attribute. There is one exception. When the map is empty, it needs to be marked as a map so it

does not get confused with a simple string value.

Example 2.4. An empty map

<general t="map" />

For properties, boolean, symbol, and integer can be used, the default being a string.

Except for map and string values, as explained before, attributes are not optional. It may appear

that attributes are optional, because various parts of the schema are not very consistent in their

usage of data types. In some places an enumeration is represented by a symbol, elsewhere a

string is required. One resource needs config:type="integer", another will parse the number

from a string property. Some resources use config:type="boolean", others want yes or even

1. If in doubt, consult the schema file.

Chapter 2. The AutoYaST control file

7

Chapter 3. Creating an AutoYaST control file

3.1. Collecting information

To create the control file, you need to collect information about the systems you are going to install.

This includes hardware data and network information among other things. Make sure you have the

following information about the machines you want to install:

Hard disk types and sizes

Graphical interface and attached monitor, if any

Network interface and MAC address if known (for example, when using DHCP)

Also verify that both autoyast2-installation and autoyast2 are installed.

3.2. Using the configuration management system (CMS)

To create the control file for one or more computers, a configuration interface based on YaST is

provided. This system depends on existing modules which are usually used to configure a

computer in regular operation mode, for example, after SUSE Linux Enterprise Server is installed.

The configuration management system lets you easily create control files and manage a repository

of configurations for use in a networked environment with multiple clients.

Figure 3.1. Configuration system

•

•

•

8

3.2.1. Creating a new control file

The easiest way to create an AutoYaST profile is to use an existing SUSE Linux Enterprise Server

system as a template. On an already installed system, launch YaST > Miscellaneous >

Autoinstallation Configuration. Then select Tools > Create Reference Profile from the menu.

Choose the system components you want to include in the profile. Alternatively, create a profile

containing the complete system configuration by launching YaST > Miscellaneous >

Autoinstallation Cloning System or running sudo yast clone_system from the command line.

Both methods will create the file /root/autoinst.xml. The cloned profile can be used to set up

an identical clone of the system it was created from. However, you will usually want to adjust the

file to allow for installing multiple machines that are very similar, but not identical. This can be done

by adjusting the profile with your favorite text/XML editor.

Sensitive data in profiles

Be aware that the profile might contain sensitive information such as password

hashes and registration keys.

Carefully review the exported profiles and make sure to keep file permissions

restrictive.

With some exceptions, almost all resources of the control file can be configured using the

configuration management system. The system offers flexibility and the configuration of some

resources is identical to the one available in the YaST control center. In addition to the existing and

familiar modules new interfaces were created for special and complex configurations, for example

for partitioning, general options and software.

Furthermore, using a CMS guarantees the validity of the resulting control file and its direct use for

starting automated installation.

Make sure the configuration system is installed (package autoyast2). Call AutoYaST using the

YaST control center or as root with the following command (make sure the DISPLAY variable is set

correctly to start the graphical user interface instead of the text-based one):

/sbin/yast2 autoyast

3.3. Creating/editing a control file manually

If editing the control file manually, make sure it has a valid syntax. To check the syntax, use the

tools already available on the distribution. For example, to verify that the file is well-formed (has a

valid XML structure), use the utility xmllint available with the libxml2 package:

xmllint <control file>

Chapter 3. Creating an AutoYaST control file

9

If the control file is not well formed, for example, if a tag is not closed, xmllint will report the

errors.

To validate the control file, use the tool jing from the package with the same name. During

validation, misplaced or missing tags and attributes and wrong attribute values are detected. The

jing package is provided with the SUSE Software Development Kit.

jing /usr/share/YaST2/schema/autoyast/rng/profile.rng <control file>

/usr/share/YaST2/schema/autoyast/rng/profile.rng is provided by the package

yast2-schema-default. This file describes the syntax and classes of an AutoYaST profile.

Schema extensions

AutoYaST can be extended by other products and modules, but the schema does not

contain the specification for those extensions. As a consequence, when AutoYaST is

given a profile that uses one of those extensions, it might report the profile as invalid.

Thus, starting in SUSE Linux Enterprise Server SP3, AutoYaST does not validate

top-level unknown sections, and ignores them. For example, in the example below,

<sap-inst> is not validated. The rest is validated as usual.

<general>
 <mode>
 <confirm config:type="boolean">true</confirm>
 </mode>
</general>

<sap-inst>
 <!-- this section is not validated -->>
</sap-inst>

Before going on with the autoinstallation, fix any errors resulting from such checks. The

autoinstallation process cannot be started with an invalid and not well-formed control file.

You can use any XML editor available on your system or any text editor with XML support (for

example, Emacs, Vim). However, it is not optimal to create the control file manually for multiple

machines, and it should only be seen as an interface between the autoinstallation engine and the

Configuration Management System (CMS).

Using Emacs as an XML editor

The built-in nxml-mode turns Emacs into a fully-fledged XML editor with automatic

tag completion and validation. Refer to the Emacs help for instructions on how to set

up nxml-mode.

10

3.4. Creating a control file via script with XSLT

If you have a template and want to change a few things via script or command line, use an XSLT

processor like xsltproc. For example, if you have an AutoYaST control file and want to fill out the

host name via script for any reason. (If doing this often, you should consider scripting it.)

First, create an XSL file:

Example 3.1. Example file for replacing the host name/domain by script

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:y2="http://www.suse.com/1.0/yast2ns"
 xmlns:config="http://www.suse.com/1.0/configns"
 xmlns="http://www.suse.com/1.0/yast2ns"
 version="1.0">
 <xsl:output method="xml" encoding="UTF-8" indent="yes" omit-xml-
declaration="no" cdata-section-elements="source"/>

 <!-- the parameter names -->
 <xsl:param name="hostname"/>
 <xsl:param name="domain"/>

 <xsl:template match="/">
 <xsl:apply-templates select="@*|node()"/>
 </xsl:template>

 <xsl:template match="y2:dns">
 <xsl:copy>
 <!-- where to copy the parameters -->
 <domain><xsl:value-of select="string($domain)"/></domain>
 <hostname><xsl:value-of select="string($hostname)"/></hostname>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="@*|node()" >
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

</xsl:stylesheet>

This file expects the host name and the domain name as parameters from the user.

<xsl:param name="hostname"/>
<xsl:param name="domain"/>

There will be a copy of those parameters in the DNS section of the control file. This means that if

there already is a domain element in the DNS section, you will get a second one, which will cause

conflicts.

For more information about XSLT, go to the official Web page www.w3.org/TR/xslt

Chapter 3. Creating an AutoYaST control file

11

https://www.w3.org/TR/xslt

3.5. Checking a control file

Depending on the use case, creating an AutoYaST profile can be difficult, especially if you build a

dynamic profile using rules/classes, ERB templates or pre-scripts. For more information, see

Part III, “Managing mass installations with dynamic profiles”.

Starting with SUSE Linux Enterprise Server 15 SP3, AutoYaST validates the profile during the

installation, reporting any problem found to the user. Although it is recommended to check whether

the profile is correct or not, you can disable this behavior by setting the

YAST_SKIP_XML_VALIDATION boot parameter to 1.

Moreover, to simplify the testing and debugging process, AutoYaST offers the check-profile

command, which takes care of fetching, building and, optionally, importing the profile to detect any

potential problem.

Results may vary

Although this command uses the same approach as the installation, the results may

vary depending on the differences between the current system and installation

media: YaST package versions, architecture, etc.

Use only trusted profiles

You must be careful when running this command because pre-installation scripts and

ERB code would run as the root user. Use only profiles that you trust.

3.5.1. Basic checks

The simplest way to use this command is just to read and validate the profile:

>sudo yast2 autoyast check-profile filename=autoinst.xml output=result.xml

The result.xml file contains the result of evaluating the profile. Bear in mind that, even if you do

not use any advanced feature, the content of autoinst.xml and result.xml may differ. The

reason is that AutoYaST does some cleaning up when it processes the profile.

check-profile can deal with remote files too:

>sudo yast2 autoyast check-profile filename=http://192.168.1.100/autoinst.xml
output=result.xml

12

3.5.2. Running pre-scripts

Optionally, AutoYaST can run the scripts that are included in the profile, reporting any error found

during the execution. This is especially relevant if you are using a pre-installation script to modify

the profile. To enable this feature, you need to set the run-scripts option to true.

>sudo yast2 autoyast check-profile filename=http://192.168.1.100/autoinst.xml
output=result.xml run-scripts=true

Scripts run as root

You must be careful when enabling the run-scripts option, because the scripts

will run as root and they may affect the current system.

3.5.3. Importing the profile

It is possible to face some problems when importing a valid profile, even if it is correct. The reason

is that AutoYaST does not perform any logic check when fetching, building and validating the

profile.

To anticipate such problems, the check-profile command imports the profile and reports

problems that it has detected. As it may take a while, you can disable this behavior by setting the

import-all option to false.

>sudo yast2 autoyast check-profile filename=http://192.168.1.100/autoinst.xml
output=result.xml import-all=false

Importing the profile is a safe operation and does not alter the underlying system in any way.

Chapter 3. Creating an AutoYaST control file

13

Part II. AutoYaST configuration examples

4 Configuration and installation options
15

14

Chapter 4. Configuration and installation options

This chapter introduces important parts of a control file for standard purposes. To learn about other

available options, use the configuration management system.

Note that for some configuration options to work, additional packages need to be installed,

depending on the software selection you have configured. If you choose to install a minimal system

then some packages might be missing and need to be added to the individual package selection.

YaST will install packages required in the second phase of the installation and before the post-

installation phase of AutoYaST has started. However, if necessary YaST modules are not available

in the system, important configuration steps will be skipped. For example, no security settings will

be configured if yast2-security is not installed.

4.1. General options

The general section includes all settings that influence the installation workflow. The overall

structure of this section looks like the following:

<?xml version="1.0"?>
<!DOCTYPE profile>
<profile xmlns="http://www.suse.com/1.0/yast2ns"
 xmlns:config="http://www.suse.com/1.0/configns">
 <general>
 <ask-list>❶
 ...
 </ask-list>
 <cio_ignore>❷
 ...
 </cio_ignore>
 <mode>❸
 ...
 </mode>
 <proposals>❹
 ...
 </proposals>
 <self_update>❺
 ...
 </self_update>
 <self_update_url>
 ...
 </self_update_url>
 <semi-automatic config:type="list">❻
 ...
 </semi-automatic>
 <signature-handling>❼
 ...
 </signature-handling>
 <storage>❽
 ...
 </storage>
 <wait>❾
 ...
 </wait>
 </general>
<profile>

Chapter 4. Configuration and installation options

15

❶

❷

❸

❹

❺

❻

❼

❽

❾

the section called “Ask the user for values during installation”

the section called “Ignoring unused devices on IBM Z”

the section called “The mode section”

the section called “Configuring the installation settings screen”

Section 4.1.3, &The self-update section&

Section 4.1.4, &The semi-automatic section&

the section called “The signature handling section”

the section called “Partitioning”

the section called “The wait section”

4.1.1. The mode section

The mode section configures the behavior of AutoYaST with regard to user confirmations and

rebooting. The following elements are allowed in the mode section:

activate_systemd_default_target

If you set this entry to false, the default systemd target will not be activated via the call

systemctl isolate. Setting this value is optional. The default is true.

<general>
 <mode>
 <activate_systemd_default_target config:type="boolean">
 true
 </activate_systemd_default_target>
 </mode>
 ...
</general>

confirm

By default, the installation stops at the Installation Settings screen. Up to this point, no

changes have been made to the system and settings may be changed on this screen. To

proceed and finally start the installation, the user needs to confirm the settings. By setting

this value to false the settings are automatically accepted and the installation starts. Only

set to false to carry out a fully unattended installation. Setting this value is optional. The

default is true.

<general>
 <mode>
 <confirm config:type="boolean">true</confirm>
 </mode>
 ...
</general>

16

confirm_base_product_license

If you set this to true, the EULA of the base product will be shown. The user needs to

accept this license. Otherwise the installation will be canceled. Setting this value is optional.

The default is false. This setting applies to the base product license only. Use the flag

confirm_license in the add-on section for additional licenses (see the section called

“Installing additional/customized packages or products” for details).

<general>
 <mode>
 <confirm_base_product_license config:type="boolean">
 false
 </confirm_base_product_license>
 </mode>
 ...
</general>

final_halt

When set to true, the machine shuts down after everything is installed and configured at

the end of the second stage. If you enable final_halt, you do not need to set the

final_reboot option to true.

<general>
 <mode>
 <final_halt config:type="boolean">false</final_halt>
 </mode>
 ...
</general>

final_reboot

When set to true, the machine reboots after everything is installed and configured at the

end of the second stage. If you enable final_reboot, you do not need to set the

final_halt option to true.

<general>
 <mode>
 <final_reboot config:type="boolean">true</final_reboot>
 </mode>
 ...
</general>

final_restart_services

If you set this entry to false, services will not be restarted at the end of the installation

(when everything is installed and configured at the end of the second stage). Setting this

value is optional. The default is true.

<general>
 <mode>
 <final_restart_services config:type="boolean">
 true
 </final_restart_services>
 </mode>
 ...
</general>

Chapter 4. Configuration and installation options

17

halt

Shuts down the machine after the first stage. All packages and the boot loader have been

installed and all your chroot scripts have run. Instead of rebooting into stage two, the

machine is turned off. If you turn it on again, the machine boots and the second stage of the

autoinstallation starts. Setting this value is optional. The default is false.

<general>
 <mode>
 <halt config:type="boolean">false</halt>
 </mode>
 ...
</general>

max_systemd_wait

Specifies how long AutoYaST waits (in seconds) at most for systemd to set up the default

target. Setting this value is optional and should not normally be required. The default is 30

(seconds).

<general>
 <mode>
 <max_systemd_wait config:type="integer">30</max_systemd_wait>
 </mode>
 ...
</general>

ntp_sync_time_before_installation

Specify the NTP server with which to synchronize time before starting the installation. Time

synchronization will only occur if this option is set. Keep in mind that you need a network

connection and access to a time server. Setting this value is optional. By default no time

synchronization will occur.

<general>
 <mode>
 <ntp_sync_time_before_installation>
 &ntpname;
 </ntp_sync_time_before_installation>
 </mode>
 ...
 </general>

second_stage

A regular installation of SUSE Linux Enterprise Server is performed in a single stage. The

auto-installation process, however, is divided into two stages. After the installation of the

basic system the system boots into the second stage where the system configuration is

done. Set this option to false to disable the second stage. Setting this value is optional.

The default is true.

18

<general>
 <mode>
 <second_stage config:type="boolean">true</second_stage>
 </mode>
 ...
</general>

4.1.2. Configuring the installation settings screen

AutoYaST allows you to configure the Installation Settings screen, which shows a summary of the

installation settings. On this screen, the user can change the settings before confirming them to

start the installation. Using the proposal tag, you can control which settings (“proposals”) are

shown in the installation screen. A list of valid proposals for your products is available from the /

control.xml file on the installation medium. This setting is optional. By default all configuration

options will be shown.

<proposals config:type="list">
 <proposal>partitions_proposal</proposal>
 <proposal>timezone_proposal</proposal>
 <proposal>software_proposal</proposal>
</proposals>

4.1.3. The self-update section

During the installation, YaST can update itself to solve bugs in the installer that were discovered

after the release. Refer to the Deployment Guide for further information about this feature.

Quarterly media update: self-update disabled

The installer self-update is only available if you use the GM images of the Unified

Installer and Packages ISOs. If you install from the ISOs published as quarterly

updates (they can be identified by the string QU in the name), the installer cannot

update itself, because this feature has been disabled in the update media.

Use the following tags to configure the YaST self-update:

self_update

If set to true or false, this option enables or disables the YaST self-update feature. Setting

this value is optional. The default is true.

<general>
 <self_update config:type="boolean">true</self_update>
 ...
</general>

Alternatively, you can specify the boot parameter self_update=1 on the kernel command

line.

Chapter 4. Configuration and installation options

19

self_update_url

Location of the update repository to use during the YaST self-update. For more information,

refer to the section called “Custom self-update repositories” in “Deployment Guide”.

Installer self-update repository only

The self_update_url parameter expects only the installer self-update

repository URL. Do not supply any other repository URL—for example the URL

of the software update repository.

<general>
 <self_update_url>
 http://example.com/updates/$arch
 </self_update_url>
 ...
</general>

The URL may contain the variable $arch. It will be replaced by the system's architecture,

such as x86_64, s390x, etc.

Alternatively, you can specify the boot parameter self_update=1 together with

self_update=URL on the kernel command line.

4.1.4. The semi-automatic section

AutoYaST offers to start some YaST modules during the installation. This gives administrators

installing the machine the ability to manually configure some aspects of the installation, while also

automating the rest of the installation. Within the semi-automatic section, you can start the

following YaST modules:

The network settings module (networking)

The partitioner (partitioning)

The registration module (scc)

The following example starts all three supported YaST modules during the installation:

<general>
 <semi-automatic config:type="list">
 <semi-automatic_entry>networking</semi-automatic_entry>
 <semi-automatic_entry>scc</semi-automatic_entry>
 <semi-automatic_entry>partitioning</semi-automatic_entry>
 </semi-automatic>
</general>

4.1.5. The signature handling section

By default AutoYaST will only install signed packages from sources with known GPG keys. Use

this section to overwrite the default settings.

•

•

•

20

https://fsteimke.github.io/xsltng-docs/suse/book-deployment.pdf

Overwriting the signature handling defaults

Installing unsigned packages, packages with failing checksum checks, or packages

from sources you do not trust is a major security risk. Packages may have been

modified and may install malicious software on your machine. Only overwrite the

defaults in this section if you are sure the repository and packages can be trusted.

SUSE is not responsible for any problems arising from software installed with

integrity checks disabled.

Default values for all options are false. If an option is set to false and a package or repository fails

the respective test, it is silently ignored and will not be installed.

accept_unsigned_file

If set to true, AutoYaST will accept unsigned files like the content file.

<general>
 <signature-handling>
 <accept_unsigned_file config:type="boolean">
 false
 </accept_unsigned_file>
 </signature-handling>
 ...
<general>

accept_file_without_checksum

If set to true, AutoYaST will accept files without a checksum in the content file.

<general>
 <signature-handling>
 <accept_file_without_checksum config:type="boolean">
 false
 </accept_file_without_checksum>
 </signature-handling>
 ...
<general>

accept_verification_failed

If set to true, AutoYaST will accept signed files even when the signature verification fails.

<general>
 <signature-handling>
 <accept_verification_failed config:type="boolean">
 false
 </accept_verification_failed>
 </signature-handling>
 ...
<general>

Chapter 4. Configuration and installation options

21

accept_unknown_gpg_key

If set to true, AutoYaST will accept new GPG keys of the installation sources, for example

the key used to sign the content file.

<general>
 <signature-handling>
 <accept_unknown_gpg_key config:type="boolean">
 false
 </accept_unknown_gpg_key>
 </signature-handling>
 ...
<general>

accept_non_trusted_gpg_key

Set this option to true to accept known keys you have not yet trusted.

<general>
 <signature-handling>
 <accept_non_trusted_gpg_key config:type="boolean">
 false
 </accept_non_trusted_gpg_key>
 </signature-handling>
 ...
<general>

import_gpg_key

If set to true, AutoYaST will accept and import new GPG keys on the installation source in

its database.

<general>
 <signature-handling>
 <import_gpg_key config:type="boolean">
 false
 </import_gpg_key>
 </signature-handling>
 ...
<general>

4.1.6. The wait section

In the second stage of the installation the system is configured by running modules, for example

the network configuration. Within the wait section you can define scripts that will get executed

before and after a specific module has run. You can also configure a span of time in which the

system is inactive (“sleeps”) before and after each module.

pre-modules

Defines scripts and sleep time executed before a configuration module starts. The following

code shows an example setting the sleep time to ten seconds and executing an echo

command before running the network configuration module.

22

<general>
 <wait>
 <pre-modules config:type="list">
 <module>
 <name>networking</name>
 <sleep>
 <time config:type="integer">10</time>
 <feedback config:type="boolean">true</feedback>
 </sleep>
 <script>
 <source>echo foo</source>
 <debug config:type="boolean">false</debug>
 </script>
 </module>
 </pre-modules>
 ...
 </wait>
<general>

post-modules

Defines scripts and sleep time executed after a configuration module starts. The following

code shows an example setting the sleep time to ten seconds and executing an echo

command after running the network configuration module.

<general>
 <wait>
 <post-modules config:type="list">
 <module>
 <name>networking</name>
 <sleep>
 <time config:type="integer">10</time>
 <feedback config:type="boolean">true</feedback>
 </sleep>
 <script>
 <source>echo foo</source>
 <debug config:type="boolean">false</debug>
 </script>
 </module>
 </post-modules>
 ...
 </wait>
<general>

4.1.7. Ignoring unused devices on IBM Z

On IBM Z, you can prevent the kernel from looking at unused hardware devices by running

cio_ignore and ignoring them. This is done by setting the AutoYaST parameter with the same

name to true. Setting this value is optional and only applies to installations on IBM Z hardware.

The default is true.

<general>
 <cio_ignore config:type="boolean">true</cio_ignore>
 ...
<general>

4.1.8. Examples for the general section

Find examples covering several use cases in this section.

Chapter 4. Configuration and installation options

23

Example 4.1. General options

This example shows the most commonly used options in the general section. The scripts in the

pre- and post-modules sections are only dummy scripts illustrating the concept.

24

<?xml version="1.0"?>
<!DOCTYPE profile>
<profile xmlns="http://www.suse.com/1.0/yast2ns"
 xmlns:config="http://www.suse.com/1.0/configns">
 <general>
 <mode>
 <halt config:type="boolean">false</halt>
 <forceboot config:type="boolean">false</forceboot>
 <final_reboot config:type="boolean">false</final_reboot>
 <final_halt config:type="boolean">false</final_halt>
 <confirm_base_product_license config:type="boolean">
 false
 </confirm_base_product_license>
 <confirm config:type="boolean">true</confirm>
 <second_stage config:type="boolean">true</second_stage>
 </mode>
 <proposals config:type="list">
 <proposal>partitions_proposal</proposal>
 </proposals>
 <self_update config:type="boolean">true</self_update>
 <self_update_url>http://example.com/updates/$arch</self_update_url>
 <signature-handling>
 <accept_unsigned_file config:type="boolean">
 true
 </accept_unsigned_file>
 <accept_file_without_checksum config:type="boolean">
 true
 </accept_file_without_checksum>
 <accept_verification_failed config:type="boolean">
 true
 </accept_verification_failed>
 <accept_unknown_gpg_key config:type="boolean">
 true
 </accept_unknown_gpg_key>
 <import_gpg_key config:type="boolean">true</import_gpg_key>
 <accept_non_trusted_gpg_key config:type="boolean">
 true
 </accept_non_trusted_gpg_key>
 </signature-handling>
 <wait>
 <pre-modules config:type="list">
 <module>
 <name>networking</name>
 <sleep>
 <time config:type="integer">10</time>
 <feedback config:type="boolean">true</feedback>
 </sleep>
 <script>
 <source>>![CDATA[
echo "Sleeping 10 seconds"
]]></source>
 <debug config:type="boolean">false</debug>
 </script>
 </module>
 </pre-modules>
 <post-modules config:type="list">
 <module>
 <name>networking</name>
 <sleep>
 <time config:type="integer">10</time>
 <feedback config:type="boolean">true</feedback>
 </sleep>
 <script>
 <source>>![CDATA[
echo "Sleeping 10 seconds"
]]></source>
 <debug config:type="boolean">false</debug>
 </script>

Chapter 4. Configuration and installation options

25

 </module>
 </post-modules>
 </wait>
 </general>
</profile>

4.2. Reporting

The report resource manages three types of pop-ups that may appear during installation:

message pop-ups (usually non-critical, informative messages),

warning pop-ups (if something might go wrong),

error pop-ups (in case an error occurs).

Example 4.2. Reporting behavior

<report>
 <errors>
 <show config:type="boolean">true</show>
 <timeout config:type="integer">0</timeout>
 <log config:type="boolean">true</log>
 </errors>
 <warnings>
 <show config:type="boolean">true</show>
 <timeout config:type="integer">10</timeout>
 <log config:type="boolean">true</log>
 </warnings>
 <messages>
 <show config:type="boolean">true</show>
 <timeout config:type="integer">10</timeout>
 <log config:type="boolean">true</log>
 </messages>
 <yesno_messages>
 <show config:type="boolean">true</show>
 <timeout config:type="integer">10</timeout>
 <log config:type="boolean">true</log>
 </yesno_messages>
</report>

Depending on your experience, you can skip, log and show (with timeout) those messages. It is

recommended to show all messages with timeout. Warnings can be skipped in some places but

should not be ignored.

The default setting in auto-installation mode is to show errors without timeout and to show all

warnings/messages with a timeout of 10 seconds.

Critical system messages

Note that not all messages during installation are controlled by the report resource.

Some critical messages concerning package installation and partitioning will show up

ignoring your settings in the report section. Usually those messages will need to be

answered with Yes or No.

•

•

•

26

4.3. System registration and extension selection

Registering the system with the registration server can be configured within the suse_register

resource. The following example registers the system with the SUSE Customer Center. In case

your organization provides its own registration server, you need to specify the required data with

the reg_server* properties. Refer to the list below for details.

<suse_register>
 <do_registration config:type="boolean">true</do_registration>
 <email>tux@example.com</email>
 <reg_code>MY_SECRET_REGCODE</reg_code>
 <install_updates config:type="boolean">true</install_updates>
 <slp_discovery config:type="boolean">false</slp_discovery>
 <--! optionally register some add-ons -->
 <addons config:type="list">
 <addon>
 <name>sle-module-basesystem</name>
 <version>15.7</version>
 <arch>x86_64</arch>
 </addon>
 </addons>
</suse_register>

It is recommended to at least register the Basesystem Module to have access to the updates for

the base system (the Linux kernel, the system libraries and services).

As an alternative to the fully automated registration, AutoYaST can also be configured to start the

YaST registration module during the installation. This offers the possibility to enter the registration

data manually. The following XML code is required:

<general>
 <semi-automatic config:type="list">
 <semi-automatic_entry>scc</semi-automatic_entry>
 </semi-automatic>
</general>

Using the installation network settings

In case you need to use the same network settings that were used for the installation,

AutoYaST needs to run the network setup in stage 1 right before the registration is

started:

<networking>
 <setup_before_proposal config:type="boolean">true</
setup_before_proposal>
</networking>

suse_register Values

do_registration

Boolean

<do_registration config:type="boolean">true</do_registration>

Chapter 4. Configuration and installation options

27

Specify whether the system should be registered or not. If set to false all other options are

ignored and the system is not registered.

e-mail

E-mail address

<email>tux@example.com</email>

Optional. The e-mail address matching the registration code.

reg_code

Text

<reg_code>SECRET_REGCODE</reg_code>

Required. Registration code.

install_updates

Boolean

<install_updates config:type="boolean">true</install_updates>

Optional. Determines if updates from the Updates channels should be installed. The default

value is to not install them (false).

slp_discovery

Boolean

<slp_discovery config:type="boolean">true</slp_discovery>

Optional. Search for a registration server via SLP. The default value is false.

Expects to find a single server. If more than one server is found, the installation will fail. In

case there is more than one registration server available, you need to specify one with

reg_server.

If neither slp_discovery nor reg_server are set, the system is registered with the

SUSE Customer Center.

This setting also affects the self-update feature: If it is disabled, no SLP search will be

performed.

reg_server

URL

<reg_server>https://smt.example.com</reg_server>

28

Optional. RMT server URL. If neither slp_discovery nor reg_server are set, the system

is registered with the SUSE Customer Center.

The RMT server is queried for a URL of the self-update repository. So if self_update_url

is not set, the RMT server influences where the self-updates are downloaded from. Check

the Deployment Guide to find further information about this feature.

reg_server_cert_fingerprint_type

SHA1 or SHA256

<reg_server_cert_fingerprint_type>SHA1</reg_server_cert_fingerprint_type>

Optional. Requires a checksum value provided with reg_server_cert_fingerprint.

Using the fingerprint is recommended, since it ensures the SSL certificate is verified. The

matching certificate will be automatically imported when the SSL communication fails

because of a verification error.

reg_server_cert_fingerprint

Server Certificate Fingerprint value in hexadecimal notion (case-insensitive).

<reg_server_cert_fingerprint>01:AB...:EF</reg_server_cert_fingerprint>

Optional. Requires a fingerprint type value provided with

reg_server_cert_fingerprint_type. Using the fingerprint is recommended, since it

ensures the SSL certificate is verified. The matching certificate will be automatically imported

when SSL communication fails because of a verification error.

reg_server_cert

URL

<reg_server_cert>http://smt.example.com/smt.crt</reg_server_cert>

Optional. URL of the SSL certificate on the server. Using this option is not recommended,

since the certificate that is downloaded is not verified. Use

reg_server_cert_fingerprint instead.

addons

Add-ons list

Specify an extension from the registration server that should be added to the installation

repositories. See the section called “Extensions” for details.

Chapter 4. Configuration and installation options

29

Obtaining a server certificate fingerprint

To obtain a server certificate fingerprint for use with the

reg_server_cert_fingerprint entry, run the following command on the SMT

server (edit the default path to the smt.crt file, if needed):

openssl x509 -noout -in /srv/www/htdocs/smt.crt -fingerprint -sha256

To retrieve a fingerprint from the SMT server, use the following command:

curl --insecure -v https://scc.suse.com/smt.crt 2> /dev/null |
openssl \
 x509 -noout -fingerprint -sha256

Replace scc.suse.com with your server.

Note: This can be used in a trusted network only! In a non-trusted network, for

example the Internet, you should get the fingerprint directly from the server by other

means. Fingerprints can be fetched via SSH, a saved server configuration and other

sources. Alternatively, you can verify that the downloaded certificate is identical on

the server.

4.3.1. Extensions

The SUSE Customer Center provides several extensions, such as sle-module-development-

tools (Development Tools Module) that can be included as additional sources during the

installation. Extensions can be added via the addons property within the suse_register block.

Availability of extensions

The availability of extensions is product and architecture dependent, not all

extensions are available on all architectures.

Some extensions, such as sle-ha, require a registration code. Depending on your

subscription, either use a dedicated registration code for the extension, or restate the

code for the base product.

With SUSEConnect --list-extensions you can list all available extensions in a registered

system, and the commands to activate and disable them.

The following example shows which extensions are already activated, and labels the extensions

that require their own registration codes:

30

>sudo SUSEConnect --list-extensions
AVAILABLE EXTENSIONS AND MODULES

 Basesystem Module 15 SP 7 x86_64 (Activated)
 Deactivate with: SUSEConnect -d -p sle-module-basesystem/15.7/x86_64

 Containers Module 15 SP 7 x86_64
 Activate with: SUSEConnect -p sle-module-containers/15.7/x86_64

 Desktop Applications Module 15 SP 7 x86_64 (Activated)
 Deactivate with: SUSEConnect -d -p sle-module-desktop-applications/
 15.7/x86_64

 SUSE Linux Enterprise Workstation Extension 15 SP 7 x86_64 (BETA)
 Activate with: SUSEConnect -p sle-we/15.7/x86_64 -r ADDITIONAL
REGCODE
 [...]

The -p argument (in the above example) displays the NAME/VERSION/ARCH values that can be

used in the AutoYaST profile.

The following example shows how to configure a list of extensions. These go in the

suse_register block:

Chapter 4. Configuration and installation options

31

<suse_register>
 <do_registration config:type="boolean">true</do_registration>
 <email>tux@example.com</email>
 <reg_code>MY_SECRET_REGCODE</reg_code>
 <install_updates config:type="boolean">true</install_updates>
 <slp_discovery config:type="boolean">false</slp_discovery>

 <--! optionally register some add-ons -->
 <addons config:type="list">
 <addon>
 <!-- Development Tools Module -->
 <!-- Depends on: Desktop Applications Module -->
 <name>sle-module-development-tools</name>
 <version>15.3</version>
 <arch>x86_64</arch>
 </addon>

 <addon>
 <!-- SUSE CaaS Platform (BETA) -->
 <!-- Depends on: Containers Module -->
 <name>caasp</name>
 <version>4.0</version>
 <arch>x86_64</arch>
 <reg_code>REG_CODE_REQUIRED</reg_code>
 </addon>

 <addon>
 <!-- SUSE Enterprise Storage -->
 <!-- Depends on: Server Applications Module -->
 <name>ses</name>
 <version>6</version>
 <arch>x86_64</arch>
 <reg_code>REG_CODE_REQUIRED</reg_code>
 </addon>

 <addon>
 <!-- SUSE Linux Enterprise High Availability Extension -->
 <!-- Depends on: Server Applications Module -->
 <name>sle-ha</name>
 <version>15.3</version>
 <arch>x86_64</arch>
 <reg_code>REG_CODE_REQUIRED</reg_code>
 </addon>
 </addons>
</suse_register>

You may also see all available modules and extensions at https://scc.suse.com/packages. Select

your product and architecture, then click the In Module form to see a list of all extensions.

32

https://scc.suse.com/packages

Extension dependencies

Since SLES 15, AutoYaST automatically reorders the extensions according to their

dependencies during registration. This means the order of the extensions in the

AutoYaST profile is not important.

Also AutoYaST automatically registers the dependent extensions even though they

are missing in the profile. This means you are not required to fill the extensions list

completely.

However, if the dependent extension requires a registration key, this must be

specified in the profile, including the registration key. Otherwise the registration would

fail.

The architecture and version of an extension are not mandatory. The registration

workflow will evaluate the right one.

4.4. The GRUB 2 boot loader

This documentation is for yast2-bootloader and applies to GRUB 2. For older product versions

shipping with legacy GRUB, refer to the documentation that comes with your distribution in /usr/

share/doc/packages/autoyast2/

By default, AutoYaST proposes the same booting mechanism as used by the booting medium. For

example, if you boot using EFI, the GRUB 2 for EFI is installed. Therefore, you can omit this

section unless you have specific requirements. As the EFI boot requires specific partitioning, we

recommend using the automatic partitioning as described in the section called “Automatic

partitioning”, which will create all needed partitions automatically.

If you need to adapt the default, use the <bootloader> part. Its general structure looks like the

following snippet:

<bootloader>
 <loader_type>
 <!-- boot loader type (grub2 or grub2-efi) -->
 </loader_type>
 <global>
 <!--
 entries defining the installation settings for GRUB 2 and
 the generic boot code
 -->
 </global>
 <device_map config:type="list">
 <!-- entries defining the order of devices -->
 </device_map>
 </bootloader>

You do not need to fill out all settings. Rather, you only need to define those that you need to

change. AutoYaST will then merge the default values with those specified in the profile.

Chapter 4. Configuration and installation options

33

4.4.1. Loader type

This defines which boot loader (UEFI or BIOS/legacy) to use. Not all architectures support both

legacy and EFI variants of the boot loader. The safest (default) option is to leave the decision up

to the installer.

<loader_type>LOADER_TYPE</loader_type>

Possible values for LOADER_TYPE are:

default: The installer chooses the correct boot loader. This is the default when no option is

defined.

grub2: Use the legacy BIOS boot loader.

grub2-efi: Use the EFI boot loader.

none: The boot process is not managed and configured by the installer.

4.4.2. Globals

This is an important if optional part. Define here where to install GRUB 2 and how the boot process

will work. Again, yast2-bootloader will propose a configuration if you do not define one.

Usually the AutoYaST control file includes only this part and all other parts are added automatically

during installation by yast2-bootloader. Unless you have some special requirements, do not

specify the boot loader configuration in the XML file.

Hibernation

This is an important if optional part. Define here where to install GRUB 2 and how the

boot process will work. Again, yast2-bootloader proposes a configuration if you

do not define one. Usually, the AutoYaST control file includes only this part, and all

other parts are added automatically during installation by yast2-bootloader.

Unless you have some special requirements, do not specify the boot loader

configuration in the XML file.

•

•

•

•

34

Hibernation

If there is a need for specific hibernation settings, then resume or noresume in the

append configuration can be used.

To disable hibernation regardless of what the installer proposes, specify noresume

as a kernel parameter in the append section.

To specify the hibernation device, use the resume key with the device path. The

recommended way to get stable results is configuring your own partitioning and

having a swap device with a label:

 <append>quiet resume=/dev/disk/by-label/my_swap</append>

If you do not use resume or noresume, or if resume specifies a device that will not

exist on the installed system, then the installer may propose a correct value for

resume, or it may remove the hibernation parameter completely, depending on

installer logic.

<global>
 <activate>true</activate>
 <timeout config:type="integer">10</timeout>
 <terminal>gfxterm</terminal>
 <gfxmode>1280x1024x24</gfxmode>
</global>

Boot loader global options

activate

Set the boot flag on the boot partition. The boot partition can be / if there is no separate /

boot partition. If the boot partition is on a logical partition, the boot flag is set to the

extended partition.

<activate>true</activate>

append

Kernel parameters added at the end of boot entries for normal and recovery mode.

<append>nomodeset vga=0x317</append>

boot_boot

Write GRUB 2 to a separate /boot partition. If no separate /boot partition exists, GRUB 2

will be written to /.

<boot_boot>false</boot_boot>

Chapter 4. Configuration and installation options

35

boot_custom

Write GRUB 2 to a custom device.

<boot_custom>/dev/sda3</boot_custom>

boot_extended

Write GRUB 2 to the extended partition (important if you want to use generic boot code and

the /boot partition is logical). Note: if the boot partition is logical, you should use boot_mbr

(write GRUB 2 to MBR) rather than generic_mbr.

<boot_extended>false</boot_extended>

boot_mbr

Write GRUB 2 to the MBR of the first disk in the order. (device.map includes the order of

the disks.)

<boot_mbr>false</boot_mbr>

boot_root

Write GRUB 2 to / partition.

<boot_root>false</boot_root>

cpu_mitigations

Lets you select a default setting of kernel boot command-line parameters for CPU mitigation

(and, at the same time, strike a balance between security and performance).

Possible values are:

auto

Enables all mitigations required for your CPU model, but does not protect against

cross-CPU thread attacks. This setting may impact performance to some degree,

depending on the workload.

nosmt

Provides the full set of available security mitigations. Enables all mitigations required

for your CPU model. In addition, it disables Simultaneous Multithreading (SMT) to

avoid side-channel attacks across multiple CPU threads. This setting may further

impact performance, depending on the workload.

36

off

Disables all mitigations. Side-channel attacks against your CPU are possible,

depending on the CPU model. This setting has no impact on performance.

manual

Does not set any mitigation level. Specify your CPU mitigations manually by using the

kernel command line options.

<cpu_mitigations>auto</cpu_mitigations>

If not set in AutoYaST, the respective settings can be changed via kernel command line. By

default, the (product-specific) settings in the /control.xml file on the installation medium

are used (if nothing else is specified).

generic_mbr

Write generic boot code to the MBR (will be ignored if boot_mbr is set to true).

<generic_mbr config:type="boolean">false</generic_mbr>

gfxmode

Graphical resolution of the GRUB 2 screen (requires <terminal> to be set to gfxterm).

Valid entries are auto, HORIZONTALxVERTICAL, or HORIZONTALxVERTICALxCOLOR

DEPTH. You can see the screen resolutions supported by GRUB 2 on a particular system by

using the vbeinfo command at the GRUB 2 command line in the running system.

<gfxmode>1280x1024x24</gfxmode>

os_prober

If set to true, automatically searches for operating systems already installed and generates

boot entries for them during the installation.

<os_prober>false</os_prober>

password

If this is defined, it protects the boot loader with a password. The system will not boot until

the password is entered.

It has three subelements: value, encrypted, and unrestricted.

value holds the password. It can be either plain text, which YaST will encrypt, or a

password already encrypted with grub-mkpasswd-pbkdf2. Set encrypted to true

when you use an already encrypted password.

Chapter 4. Configuration and installation options

37

When unrestricted is set to false, users need the password defined by the value

subelement to boot or edit GRUB 2 menu entries (by pressing E on a selected boot menu

item). When it is set to true, users can boot the system without a password, but need a

password to edit GRUB 2 menu entries. If the option is omitted, it defaults to true.

For more information on managing boot passwords, see Protect Boot Loader with Password

in “Administration Guide”.

<password><value>my_strong_password</value><encrypted>false</
encrypted><unrestricted>false</unrestricted></password>

suse_btrfs

Obsolete and no longer used. Booting from Btrfs snapshots is automatically enabled.

serial

Command to execute if the GRUB 2 terminal mode is set to serial.

<serial>serial --speed=115200 --unit=0 --word=8 --parity=no --stop=1</
serials>

secure_boot

If set to false, then UEFI secure boot is disabled. Works only for grub2-efi boot loader.

<secure_boot>false</secure_boot>

terminal

Specify the GRUB 2 terminal mode to use. Valid entries are console, gfxterm, and

serial. If set to serial, the serial command needs to be specified with <serial>, too.

<terminal>serial</terminal>

timeout

The timeout in seconds until the default boot entry is booted automatically.

<timeout config:type="integer">10</timeout>

trusted_boot

If set to true, then Trusted GRUB is used. Trusted GRUB supports Trusted Platform Module

(TPM). Works only for grub2 boot loader.

<trusted_boot">true</trusted_boot>

38

https://fsteimke.github.io/xsltng-docs/suse/book-administration.pdf

update_nvram

If set to true, then AutoYaST adds an NVRAM entry for the boot loader in the firmware. This

is the desirable behavior unless you want to preserve a specific setting or you need to work

around firmware issues.

<update_nvram>true</update_nvram>

vgamode

Adds the kernel parameter vga=VALUE to the boot entries.

<vgamode>0x317</vgamode>

xen_append

Kernel parameters added at the end of boot entries for Xen guests.

<xen_append>nomodeset vga=0x317</xen_append>

xen_kernel_append

Kernel parameters added at the end of boot entries for Xen kernels on the VM Host Server.

<xen_kernel_append>dom0_mem=768M</xen_kernel_append>

4.4.3. Device map

GRUB 2 avoids mapping problems between BIOS drives and Linux devices by using device ID

strings (UUIDs) or file system labels when generating its configuration files. GRUB 2 utilities create

a temporary device map on the fly, which is usually sufficient, particularly on single-disk systems.

However, if you need to override the automatic device mapping mechanism, create your custom

mapping in this section.

<device_map config:type="list">
 <device_map_entry>
 <firmware>hd0</firmware> <!-- order of devices in target map -->
 <linux>/dev/disk/by-id/ata-ST3500418AS_6VM23FX0</linux> <!-- name of device
(disk) -->
 </device_map_entry>
</device_map>

4.5. The Systemd boot loader

This documentation is for yast2-bootloader and applies to systemd-boot.

The general structure of the AutoYaST boot loader part looks like the following:

Chapter 4. Configuration and installation options

39

<bootloader>
 <loader_type>
 systemd-boot
 </loader_type>
 <global>
 <!--
 entries defining the installation settings for systemd-boot and
 the generic boot code
 -->
 </global>
 </bootloader>

4.5.1. Loader type

This defines which boot loader (systemd-boot) to use. Not all architectures support both legacy and

EFI variants of the boot loader.

<loader_type>systemd-boot</loader_type>

4.5.2. Globals

This is an important if optional part. Define here where to install systemd-boot and how the boot

process will work. yast2-bootloader proposes a configuration if you do not define one. Unless

you have some special requirements, do not specify the boot loader configuration in the XML file.

<global>
 <timeout config:type="integer">10</timeout>
 <secure_boot>false</secure_boot>
</global>

Boot loader global options

secure_boot

If set to false, then UEFI secure boot is disabled.

<secure_boot>false</secure_boot>

timeout

The timeout in seconds until the default boot entry is booted automatically.

<timeout config:type="integer">10</timeout>

4.6. Partitioning

When it comes to partitioning, we can categorize AutoYaST use cases into three different levels:

Automatic partitioning. The user does not care about the partitioning and trusts in AutoYaST

to do the right thing.

Guided partitioning. The user wants to set some basic settings. For example, a user wants to

use LVM but has no idea about how to configure partitions, volume groups, and so on.

•

•

40

Expert partitioning. The user specifies how the layout should look. However, a complete

definition is not required, and AutoYaST should propose reasonable defaults for missing

parts.

To some extent, it is like using the regular installer. You can skip the partitioning screen and trust in

YaST, use the Guided Proposal, or define the partitioning layout through the Expert Partitioner.

4.6.1. Automatic partitioning

AutoYaST can come up with a sensible partitioning layout without any user indication. Although it

depends on the selected product to install, AutoYaST usually proposes a Btrfs root file system, a

separate /home using XFS and a swap partition. Additionally, depending on the architecture, it

adds any partition that might be needed to boot (like BIOS GRUB partitions).

However, these defaults might change depending on factors like the available disk space. For

example, having a separate /home depends on the amount of available disk space.

If you want to influence these default values, you can use the approach described in the section

called “Guided partitioning”.

4.6.2. Guided partitioning

Although AutoYaST can come up with a partitioning layout without any user indication, sometimes

it is useful to set some generic parameters and let AutoYaST do the rest. For example, you may be

interested in using LVM or encrypting your file systems without having to deal with the details. It is

similar to what you would do when using the guided proposal in a regular installation.

The storage section in Example 4.3, “LVM-based guided partitioning” instructs AutoYaST to set

up a partitioning layout using LVM and deleting all Windows partitions, no matter whether they are

needed.

Example 4.3. LVM-based guided partitioning

<general>
 <storage>
 <proposal>
 <lvm config:type="boolean">true</lvm>
 <windows_delete_mode config:type="symbol">all</windows_delete_mode>
 </proposal>
 </storage>
</general>

lvm

Creates an LVM-based proposal. The default is false.

<lvm config:type="boolean">true</lvm>

•

Chapter 4. Configuration and installation options

41

lvm_vg_reuse

Tells the installer whether an existing LVM should be reused in the proposal. The default is

true.

<lvm_vg_reuse config:type="boolean">false</lvm_vg_reuse>

resize_windows

When set to true, AutoYaST resizes Windows partitions if needed to make room for the

installation.

<resize_windows config:type="boolean">false</resize_windows>

windows_delete_mode

none does not remove Windows partitions.

ondemand removes Windows partitions if needed.

all removes all Windows partitions.

<windows_delete_mode config:type="symbol">ondemand</windows_delete_mode>

linux_delete_mode

none does not remove Linux partitions.

ondemand removes Linux partitions if needed.

all removes all Linux partitions.

<linux_delete_mode config:type="symbol">ondemand</linux_delete_mode>

other_delete_mode

none does not remove other partitions.

ondemand removes other partitions if needed.

all removes all other partitions.

<other_delete_mode config:type="symbol">ondemand</other_delete_mode>

encryption_password

Enables encryption using the specified password. By default, encryption is disabled.

<encryption_password>some-secret</encryption_password>

4.6.3. Expert partitioning

As an alternative to guided partitioning, AutoYaST allows to describe the partitioning layout through

a partitioning section. However, AutoYaST does not need to know every single detail and can

build a sensible layout from a rather incomplete specification.

•

•

•

•

•

•

•

•

•

42

The partitioning section is a list of drive elements. Each of these sections describes an

element of the partitioning layout like a disk, an LVM volume group, a RAID, a multi-device Btrfs file

system, and so on.

Example 4.4, “Creating /, /home and swap partitions”, asks AutoYaST to create a /, a /home and

a swap partition using the whole disk. Note that some information is missing, like which file

systems each partition should use. However, that is not a problem, and AutoYaST will propose

sensible values for them.

Example 4.4. Creating /, /home and swap partitions

<partitioning config:type="list">
 <drive>
 <use>all</use>
 <partitions config:type="list">
 <partition>
 <mount>/</mount>
 <size>20GiB</size>
 </partition>
 <partition>
 <mount>/home</mount>
 <size>max</size>
 </partition>
 <partition>
 <mount>swap</mount>
 <size>1GiB</size>
 </partition>
 </partitions>
 </drive>
 <partitioning>

Proposing a boot partition

AutoYaST checks whether the layout described in the profile is bootable or not. If it is

not, it adds the missing partitions. So, if you are unsure about which partitions are

needed to boot, you can rely on AutoYaST to make the right decision.

4.6.3.1. Drive configuration

The elements listed below must be placed within the following XML structure:

<profile>
 <partitioning config:type="list">
 <drive>
 ...
 </drive>
 </partitioning>
</profile>

Chapter 4. Configuration and installation options

43

Attribute, Values, Description

device

Optional, the device you want to configure. If left out, AutoYaST tries to guess the device.

See Skipping devices on how to influence guessing.

If set to ask, AutoYaST will ask the user which device to use during installation.

You can use persistent device names via ID, like /dev/disk/by-id/ata-

WDC_WD3200AAKS-75L9 or by-path, like /dev/disk/by-path/pci-0001:00:03.0-

scsi-0:0:0:0.

<device>/dev/sda</device>

In case of volume groups, software RAID or bcache devices, the name in the installed

system may be different (to avoid clashes with existing devices).

See the section called “Multipath support” for further information about dealing with multipath

devices.

initialize

Optional, the default is false. If set to true, the partition table is wiped out before

AutoYaST starts the partition calculation.

<initialize config:type="boolean">true</initialize>

partitions

Optional, a list of <partition> entries (see the section called “Partition configuration”).

<partitions config:type="list">
 <partition>...</partition>
 ...
 </partitions>

If no partitions are specified, AutoYaST will create a reasonable partitioning layout (see the

section called “Filling the gaps”).

pesize

Optional, for LVM only. The default is 4M for LVM volume groups.

<pesize>8M</pesize>

use

Recommended, specifies the strategy AutoYaST will use to partition the hard disk. Choose

from:

44

all, uses the whole device while calculating the new partitioning.

linux, only existing Linux partitions are used.

free, only unused space on the device is used, no existing partitions are touched.

1,2,3, a list of comma-separated partition numbers to use.

type

Optional, specifies the type of the drive. The default is CT_DISK for a normal physical hard

disk. The following is a list of all options:

CT_DISK for physical hard disks (default).

CT_LVM for LVM volume groups.

CT_MD for software RAID devices.

CT_DMMULTIPATH for Multipath devices (deprecated, implied with CT_DISK).

CT_BCACHE for software bcache devices.

CT_BTRFS for multi-device Btrfs file systems.

CT_NFS for NFS.

CT_TMPFS for tmpfs file systems.

<type config:type="symbol">CT_LVM</type>

disklabel

Optional. By default YaST decides what makes sense. If a partition table of a different type

already exists, it will be re-created with the given type only if it does not include any partition

that should be kept or reused. To use the disk without creating any partition, set this element

to none. The following is a list of all options:

msdos

gpt

none

<disklabel>gpt</disklabel>

keep_unknown_lv

Optional, the default is false.

Chapter 4. Configuration and installation options

45

This value only makes sense for type=CT_LVM drives. If you are reusing a logical volume

group and you set this to true, all existing logical volumes in that group will not be touched

unless they are specified in the <partitioning> section. So you can keep existing logical

volumes without specifying them.

<keep_unknown_lv config:type="boolean">false</keep_unknown_lv>

enable_snapshots

Optional, the default is true.

Enables snapshots on Btrfs file systems mounted at / (does not apply to other file systems,

or Btrfs file systems not mounted at /).

<enable_snapshots config:type="boolean">false</enable_snapshots>

quotas

Optional, the default is false.

Enables support for Btrfs subvolume quotas. Setting this element to true will enable

support for quotas for the file system. However, you need to set the limits for each

subvolume. Check the section called “Btrfs subvolumes” for further information.

<quotas config:type="boolean">true</quotas>

Beware of data loss

The value provided in the use property determines how existing data and partitions

are treated. The value all means that the entire disk will be erased. Make backups

and use the confirm property if you need to keep some partitions with important

data. Otherwise, no pop-ups will notify you about partitions being deleted.

46

Skipping devices

You can influence AutoYaST's device-guessing for cases where you do not specify a

<device> entry on your own. Usually AutoYaST would use the first device it can find

that looks reasonable but you can configure it to skip some devices like this:

<partitioning config:type="list">
 <drive>
 <initialize config:type="boolean">true</initialize>
 <skip_list config:type="list">
 <listentry>
 <!-- skip devices that use the usb-storage driver -->
 <skip_key>driver</skip_key>
 <skip_value>usb-storage</skip_value>
 </listentry>
 <listentry>
 <!-- skip devices that are smaller than 1GB -->
 <skip_key>size_k</skip_key>
 <skip_value>1048576</skip_value>
 <skip_if_less_than config:type="boolean">true</
skip_if_less_than>
 </listentry>
 <listentry>
 <!-- skip devices that are larger than 100GB -->
 <skip_key>size_k</skip_key>
 <skip_value>104857600</skip_value>
 <skip_if_more_than config:type="boolean">true</
skip_if_more_than>
 </listentry>
 </skip_list>
 </drive>
</partitioning>

For a list of all possible <skip_key>s, run yast2 ayast_probe on a system that

has already been installed.

4.6.3.2. Partition configuration

The elements listed below must be placed within the following XML structure:

<drive>
 <partitions config:type="list">
 <partition>
 ...
 </partition>
 </partitions>
</drive>

create

Specify if this partition or logical volume must be created, or if it already exists. If set to

false, you also need to set one of partition_nr, lv_name, label, or uuid to tell

AutoYaST which device to use.

<create config:type="boolean">false</create>

Chapter 4. Configuration and installation options

47

crypt_method

Optional, the partition will be encrypted using one of these methods:

luks1: regular LUKS1 encryption.

luks2: regular LUKS2 encryption.

pervasive_luks2: pervasive volume encryption.

protected_swap: encryption with volatile protected key.

secure_swap: encryption with volatile secure key.

random_swap: encryption with volatile random key.

<crypt_method config:type="symbol">luks1</crypt_method>

Encryption method selection was introduced in SUSE Linux Enterprise Server 15 SP2. To

mimic the behavior of previous versions, use luks1.

See crypt_key element to learn how to specify the encryption password if needed.

When using regular LUKS encryption, it is possible to customize several aspects of the

encryption using crypt_pbkdf, crypt_cipher or crypt_key_size, depending on the

exact variant of LUKS that is used. Keep in mind that the encryption method and its

corresponding settings may dramatically affect the amount of RAM needed to complete the

installation process. Using regular LUKS2 with default parameters typically means that

several gigabytes of RAM are needed in the system in order to encrypt the devices.

crypt_fs

Partition will be encrypted, the default is false. This element is deprecated. Use

crypt_method instead.

<crypt_fs config:type="boolean">true</crypt_fs>

crypt_key

Required if crypt_method has been set to a method that requires a password (that is,

luks1, luks2 or pervasive_luks2).

<crypt_key>xxxxxxxx</crypt_key>

crypt_cipher

Cipher used for LUKS encryption. This value is only honored if the value of crypt_method

is luks1 or luks2. The format and value of the string must be compatible with the --

cipher argument of the command cryptsetup. You can find compatible ciphers in /

proc/crypto.

<crypt_cipher>aes-xts-plain64</crypt_cipher>

•

•

•

•

•

•

48

crypt_key_size

Key size, in bits, used for LUKS encryption. This value is only honored if the value of

crypt_method is luks1 or luks2. The value has to be a multiple of 8. The possible key

sizes are limited by the used cipher.

<crypt_key_size config:type="integer">256</crypt_key_size>

crypt_pbkdf

Password-based key derivation function used for LUKS2 encryption. This is only relevant if

the crypt_method is luks2. The possible values are pbkdf2, argon2i and argon2id.

If omitted, the device will be encrypted using the default function of the command

cryptsetup. Note that both variants of Argon2 are designed to intentionally consume a

large amount of memory during the encryption process. Using any of those functions or

omitting this setting (which will likely result in the usage of Argon2) means that more RAM is

needed to complete the installation process compared to a non-encrypted setup.

<crypt_pbkdf config:type="symbol">argon2id</crypt_pbkdf>

crypt_label

LUKS label for the encrypted device. This is only relevant if the crypt_method is luks2.

<crypt_label>crypt_home</crypt_label>

mount

You should have at least a root partition (/) and a swap partition.

<mount>/</mount><mount>swap</mount>

fstopt

Mount options for this partition; see man mount for available mount options.

<fstopt>ro,noatime,user,data=ordered,acl,user_xattr</fstopt>

label

The label of the partition. Useful when formatting the device (especially if the mountby

parameter is set to label) and for identifying a device that already exists (see create

above). See man e2label for an example.

<label>mydata</label>

uuid

The uuid of the partition. Only useful for identifying an existing device (see create above).

The uuid cannot be enforced for new devices. (See man uuidgen.)

<uuid>1b4e28ba-2fa1-11d2-883f-b9a761bde3fb</uuid>

Chapter 4. Configuration and installation options

49

size

The size of the partition, for example 4G, 4500M, etc. The /boot partition and the swap

partition can have auto as size. Then AutoYaST calculates a reasonable size. One partition

can have the value max to use all remaining space.

You can also specify the size in percentage. So 10% will use 10% of the size of the hard disk

or volume group. You can mix auto, max, size, and percentage as you like.

<size>10G</size>

Starting with SUSE Linux Enterprise Server 15, all values (including auto and max) can be

used for resizing partitions as well.

format

Specify if AutoYaST should format the partition. If you set create to true, then you likely

want this option set to true as well.

<format config:type="boolean">false</format>

file system

Optional. The default is btrfs for the root partition (/) and xfs for data partitions. Specify

the file system to use on this partition:

btrfs

ext2

ext3

ext4

fat

xfs

swap

<filesystem config:type="symbol">ext3</filesystem>

mkfs_options

Optional, specify an option string for the mkfs. Only use this when you know what you are

doing. (See the relevant mkfs man page for the file system you want to use.)

<mkfs_options>-I 128</mkfs_options>

partition_nr

The number of this partition. If you have set create=false or if you use LVM, then you can

specify the partition via partition_nr.

•

•

•

•

•

•

•

50

<partition_nr config:type="integer">2</partition_nr>

partition_id

The partition_id sets the id of the partition. If you want different identifiers than 131 for

Linux partition or 130 for swap, configure them with partition_id. The default is 131 for

a Linux partition and 130 for swap.

<partition_id config:type="integer">131</partition_id>

FAT16 (MS-DOS): 6

NTFS (MS-DOS): 7

FAT32 (MS-DOS): 12

Extended FAT16 (MS-DOS): 15

DIAG, Diagnostics and firmware (MS-DOS, GPT): 18

PPC PReP Boot partition (MS-DOS, GPT): 65

Swap (MS-DOS, GPT, DASD, implicit): 130

Linux (MS-DOS, GPT, DASD): 131

Intel Rapid Start Technology (MS-DOS, GPT): 132

LVM (MS-DOS, GPT, DASD): 142

EFI System Partition (MS-DOS, GPT): 239

MD RAID (MS-DOS, GPT, DASD): 253

BIOS boot (GPT): 257

Windows basic data (GPT): 258

EFI (GPT): 259

Microsoft reserved (GPT): 261

partition_type

Optional. Allowed value is primary. When using an msdos partition table, this element sets

the type of the partition to primary. This value is ignored when using a gpt partition table,

because such a distinction does not exist in that case.

<partition_type>primary</partition_type>

mountby

Instead of a partition number, you can tell AutoYaST to mount a partition by device, label,

uuid, path or id, which are the udev path and udev id (see /dev/disk/...).

See label and uuid documentation above. The default depends on YaST and usually is

id.

<mountby config:type="symbol">label</mountby>

Chapter 4. Configuration and installation options

51

subvolumes

List of subvolumes to create for a file system of type Btrfs. This key only makes sense for file

systems of type Btrfs. (See the section called “Btrfs subvolumes” for more information.)

If no subvolumes section has been defined for a partition description, AutoYaST will create

a predefined set of subvolumes for the given mount point.

<subvolumes config:type="list">
 <path>tmp</path>
 <path>opt</path>
 <path>srv</path>
 <path>var</path>
 ...
</subvolumes>

create_subvolumes

Determine whether Btrfs subvolumes should be created or not. It is set to true by default.

When set to false, no subvolumes will be created.

subvolumes_prefix

Set the Btrfs subvolumes prefix name. If no prefix is wanted, it must be set to an empty

value:

<subvolumes_prefix><![CDATA[]]></subvolumes_prefix>

It is set to @ by default.

lv_name

If this partition is on a logical volume in a volume group, specify the logical volume name

here (see the type parameter in the drive configuration).

<lv_name>opt_lv</lv_name>

stripes

An integer that configures LVM striping. Specify across how many devices you want to stripe

(spread data).

<stripes config:type="integer">2</stripes>

stripesize

Specify the size of each block in KB.

<stripesize config:type="integer">4</stripesize>

52

lvm_group

If this is a physical partition used by (part of) a volume group (LVM), you need to specify the

name of the volume group here.

<lvm_group>system</lvm_group>

pool

pool must be set to true if the LVM logical volume should be an LVM thin pool.

<pool config:type="boolean">true</pool>

used_pool

The name of the LVM thin pool that is used as a data store for this thin logical volume. If this

is set to something non-empty, it implies that the volume is a so-called thin logical volume.

<used_pool>my_thin_pool</used_pool>

raid_name

If this physical volume is part of a RAID array, specify the name of the RAID array.

<raid_name>/dev/md/0</raid_name>

raid_options

Specify RAID options. Setting the RAID options at the partition level is deprecated. See

the section called “Software RAID”.

bcache_backing_for

If this device is used as a bcache backing device, specify the name of the bcache device.

See the section called “ bcache configuration” for further details.

<bcache_backing_for>/dev/bcache0</bcache_backing_for>

bcache_caching_for

If this device is used as a bcache caching device, specify the names of the bcache

devices. See the section called “ bcache configuration” for further details.

<bcache_caching_for config:type="list"><listentry>/dev/bcache0</
listentry></bcache_caching_for>

resize

Starting with SUSE Linux Enterprise Server 15 resizing works with physical disk partitions

and with LVM volumes

<resize config:type="boolean">false</resize>

Chapter 4. Configuration and installation options

53

4.6.3.3. Btrfs subvolumes

As mentioned in the section called “Partition configuration”, it is possible to define a set of

subvolumes for each Btrfs file system. In its simplest form, they are specified using a list of paths:

<subvolumes config:type="list">
 <path>usr/local</path>
 <path>tmp</path>
 <path>opt</path>
 <path>srv</path>
 <path>var</path>
</subvolumes>

However, it is possible to specify additional settings for each subvolume. For example, we might

want to set a quota or to disable the copy-on-write mechanism. For that purpose, it is possible to

expand any of the elements of the list as shown in the example below:

<subvolumes config:type="list">
 <listentry>usr/local</listentry>
 <listentry>
 <path>tmp</path>
 <referenced_limit>1 GiB</referenced_limit>
 </listentry>
 <listentry>opt</listentry>
 <listentry>srv</listentry>
 <listentry>
 <path>var/lib/pgsql</path>
 <copy_on_write config:type="boolean">false</copy_on_write>
 </listentry>
</subvolumes>

path

Mount point for the subvolume.

<path>tmp</tmp>

Required. AutoYaST will ignore the subvolume if the path is not specified.

copy-on-write

Whether copy-on-write should be enabled for the subvolume.

<copy-on-write config:type="boolean">false</copy-on-write>

Optional. The default value is false.

referenced_limit

Set a quota for the subvolume.

<referenced_limit>1 GiB</referenced_limit>

Optional. The default value is unlimited. Btrfs supports two kinds of limits: referenced

and exclusive. At this point, only the former is supported.

54

If there is a default subvolume used for the distribution (for example @ in SUSE Linux Enterprise

Server), the name of this default subvolume is automatically prefixed to the names of the defined

subvolumes. This behavior can be disabled by setting the subvolumes_prefix in the the section

called “Drive configuration” section.

<subvolumes_prefix><![CDATA[]]></subvolumes_prefix>

4.6.3.4. Using the whole disk

AutoYaST allows to use a whole disk without creating any partition by setting the disklabel to

none as described in the section called “Drive configuration”. In such cases, the configuration in

the first partition from the drive will be applied to the whole disk.

In the example below, we are using the second disk (/dev/sdb) as the /home file system.

Example 4.5. Using a whole disk as a file system

<partitioning config:type="list">
 <drive>
 <device>/dev/sda</device>
 <partitions config:type="list">
 <partition>
 <create config:type="boolean">true</create>
 <format config:type="boolean">true</format>
 <mount>/</mount>
 <size>max</size>
 </partition>
 </partitions>
 </drive>
 <drive>
 <device>/dev/sdb</device>
 <disklabel>none</disklabel>
 <partitions config:type="list">
 <partition>
 <format config:type="boolean">true</format>
 <mount>/home</mount>
 </partition>
 </partitions>
 </drive>

In addition, the whole disk can be used as an LVM physical volume or as a software RAID

member. See the section called “Logical volume manager (LVM)” and the section called “Software

RAID” for further details about setting up an LVM or a software RAID.

For backward compatibility reasons, it is possible to achieve the same result by setting the

<partition_nr> element to 0. However, this usage of the <partition_nr> element is

deprecated from SUSE Linux Enterprise Server 15.

4.6.3.5. Filling the gaps

When using the Expert Partitioner approach, AutoYaST can create a partition plan from a rather

incomplete profile. The following profiles show how you can describe some details of the

partitioning layout and let AutoYaST do the rest.

Chapter 4. Configuration and installation options

55

Example 4.6. Automated partitioning on selected drives

The following is an example of a single drive system, which is not pre-partitioned and should be

automatically partitioned according to the described pre-defined partition plan. If you do not specify

the device, it will be automatically detected.

<partitioning config:type="list">
 <drive>
 <device>/dev/sda</device>
 <use>all</use>
 </drive>
</partitioning>

A more detailed example shows how existing partitions and multiple drives are handled.

Example 4.7. Installing on multiple drives

<partitioning config:type="list">
 <drive>
 <device>/dev/sda</device>
 <use>all</use>
 <partitions config:type="list">
 <partition>
 <mount>/</mount>
 <size>10G</size>
 </partition>
 <partition>
 <mount>swap</mount>
 <size>1G</size>
 </partition>
 </partitions>
 </drive>
 <drive>
 <device>/dev/sdb</device>
 <use>free</use>
 <partitions config:type="list">
 <partition>
 <filesystem config:type="symbol">ext4</filesystem>
 <mount>/data1</mount>
 <size>15G</size>
 </partition>
 <partition>
 <filesystem config:type="symbol">xfs</filesystem>
 <mount>/data2</mount>
 <size>auto</size>
 </partition>
 </partitions>
 </drive>
</partitioning>

4.6.4. Advanced partitioning features

4.6.4.1. Wipe out partition table

Usually this is not needed because AutoYaST can delete partitions one by one automatically. But

you need the option to let AutoYaST clear the partition table instead of deleting partitions

individually.

Go to the drive section and add:

56

<initialize config:type="boolean">true</initialize>

With this setting AutoYaST will delete the partition table before it starts to analyze the actual

partitioning and calculates its partition plan. Of course this means, that you cannot keep any of

your existing partitions.

4.6.4.2. Mount options

By default a file system to be mounted is identified in /etc/fstab by the device name. This

identification can be changed so the file system is found by searching for a UUID or a volume

label. Note that not all file systems can be mounted by UUID or a volume label. To specify how a

partition is to be mounted, use the mountby property which has the symbol type. Possible options

are:

device (default)

label

UUID

If you choose to mount a new partition using a label, use the label property to specify its value.

Add any valid mount option in the fourth field of /etc/fstab. Multiple options are separated by

commas. Possible fstab options:

Mount read-only (ro)

No write access to the file system. Default is false.

No access time (noatime)

Access times are not updated when a file is read. Default is false.

Mountable by user (user)

The file system can be mounted by a normal user. Default is false.

Data Journaling Mode (ordered, journal, writeback)

journal

All data is committed to the journal prior to being written to the main file system.

ordered

All data is directly written to the main file system before its metadata is committed to

the journal.

•

•

•

Chapter 4. Configuration and installation options

57

writeback

Data ordering is not preserved.

Access control list (acl)

Enable access control lists on the file system.

Extended user attributes (user_xattr)

Allow extended user attributes on the file system.

Example 4.8. Mount options

<partitions config:type="list">
 <partition>
 <filesystem config:type="symbol">ext4</filesystem>
 <format config:type="boolean">true</format>
 <fstopt>ro,noatime,user,data=ordered,acl,user_xattr</fstopt>
 <mount>/local</mount>
 <mountby config:type="symbol">uuid</mountby>
 <partition_id config:type="integer">131</partition_id>
 <size>10G</size>
 </partition>
</partitions>

Check supported file system options

Different file system types support different options. Check the documentation

carefully before setting them.

4.6.4.3. Keeping specific partitions

In some cases you should leave partitions untouched and only format specific target partitions,

rather than creating them from scratch. For example, if different Linux installations coexist, or you

have another operating system installed, likely you do not want to wipe these out. You may also

want to leave data partitions untouched.

Such scenarios require specific knowledge about the target systems and hard disks. Depending on

the scenario, you might need to know the exact partition table of the target hard disk with partition

IDs, sizes and numbers. With this data, you can tell AutoYaST to keep certain partitions, format

others and create new partitions if needed.

The following example will keep partitions 1, 2 and 5 and delete partition 6 to create two new

partitions. All remaining partitions will only be formatted.

58

Example 4.9. Keeping partitions

<partitioning config:type="list">
 <drive>
 <device>/dev/sdc</device>
 <partitions config:type="list">
 <partition>
 <create config:type="boolean">false</create>
 <format config:type="boolean">true</format>
 <mount>/</mount>
 <partition_nr config:type="integer">1</partition_nr>
 </partition>
 <partition>
 <create config:type="boolean">false</create>
 <format config:type="boolean">false</format>
 <partition_nr config:type="integer">2</partition_nr>
 <mount>/space</mount>
 </partition>
 <partition>
 <create config:type="boolean">false</create>
 <format config:type="boolean">true</format>
 <filesystem config:type="symbol">swap</filesystem>
 <partition_nr config:type="integer">5</partition_nr>
 <mount>swap</mount>
 </partition>
 <partition>
 <format config:type="boolean">true</format>
 <mount>/space2</mount>
 <size>5G</size>
 </partition>
 <partition>
 <format config:type="boolean">true</format>
 <mount>/space3</mount>
 <size>max</size>
 </partition>
 </partitions>
 <use>6</use>
 </drive>
</partitioning>

The last example requires exact knowledge of the existing partition table and the partition numbers

of those partitions that should be kept. In some cases however, such data may not be available,

especially in a mixed hardware environment with different hard disk types and configurations. The

following scenario is for a system with a non-Linux OS with a designated area for a Linux

installation.

Chapter 4. Configuration and installation options

59

Figure 4.1. Keeping partitions

In this scenario, shown in figure Figure 4.1, “Keeping partitions”, AutoYaST will not create new

partitions. Instead it searches for certain partition types on the system and uses them according to

the partitioning plan in the control file. No partition numbers are given in this case, only the mount

points and the partition types (additional configuration data can be provided, for example file

system options, encryption and file system type).

Example 4.10. Auto-detection of partitions to be kept.

<partitioning config:type="list">
 <drive>
 <partitions config:type="list">
 <partition>
 <create config:type="boolean">false</create>
 <format config:type="boolean">true</format>
 <mount>/</mount>
 <partition_id config:type="integer">131</partition_id>
 </partition>
 <partition>
 <create config:type="boolean">false</create>
 <format config:type="boolean">true</format>
 <filesystem config:type="symbol">swap</filesystem>
 <partition_id config:type="integer">130</partition_id>
 <mount>swap</mount>
 </partition>
 </partitions>
 </drive>
</partitioning>

60

Keeping encrypted devices

When AutoYaST is probing the storage devices, the partitioning section from the

profile is not yet analyzed. In some scenarios, it is not clear which key should be

used to unlock a device. For example, this can happen when more than one

encryption key is defined. To solve this problem, AutoYaST will try all defined keys on

all encrypted devices until a working key is found.

4.6.5. Logical volume manager (LVM)

To configure LVM, first create a physical volume using the normal partitioning method described

above.

Example 4.11. Create LVM physical volume

The following example shows how to prepare for LVM in the partitioning resource. A non-

formatted partition is created on device /dev/sda1 of the type LVM and with the volume group

system. This partition will use all space available on the drive.

<partitioning config:type="list">
 <drive>
 <device>/dev/sda</device>
 <partitions config:type="list">
 <partition>
 <create config:type="boolean">true</create>
 <lvm_group>system</lvm_group>
 <partition_type>primary</partition_type>
 <partition_id config:type="integer">142</partition_id>
 <partition_nr config:type="integer">1</partition_nr>
 <size>max</size>
 </partition>
 </partitions>
 <use>all</use>
 </drive>
</partitioning>

Chapter 4. Configuration and installation options

61

Example 4.12. LVM logical volumes

<partitioning config:type="list">
 <drive>
 <device>/dev/sda</device>
 <partitions config:type="list">
 <partition>
 <lvm_group>system</lvm_group>
 <partition_type>primary</partition_type>
 <size>max</size>
 </partition>
 </partitions>
 <use>all</use>
 </drive>
 <drive>
 <device>/dev/system</device>
 <type config:type="symbol">CT_LVM</type>
 <partitions config:type="list">
 <partition>
 <filesystem config:type="symbol">ext4</filesystem>
 <lv_name>user_lv</lv_name>
 <mount>/usr</mount>
 <size>15G</size>
 </partition>
 <partition>
 <filesystem config:type="symbol">ext4</filesystem>
 <lv_name>opt_lv</lv_name>
 <mount>/opt</mount>
 <size>10G</size>
 </partition>
 <partition>
 <filesystem config:type="symbol">ext4</filesystem>
 <lv_name>var_lv</lv_name>
 <mount>/var</mount>
 <size>1G</size>
 </partition>
 </partitions>
 <pesize>4M</pesize>
 <use>all</use>
 </drive>
</partitioning>

It is possible to set the size to max for the logical volumes. Of course, you can only use max for

one(!) logical volume. You cannot set two logical volumes in one volume group to max.

4.6.6. Software RAID

The support for software RAID devices has been greatly improved in SUSE Linux Enterprise

Server 15 SP2.

If needed, see the section called “Using the deprecated syntax” to find out further details about the

old way of specifying a software RAID, which is still supported for backward compatibility.

Using AutoYaST, you can create and assemble software RAID devices. The supported RAID levels

are the following:

RAID 0

This level increases your disk performance. There is no redundancy in this mode. If one of

the drives crashes, data recovery will not be possible.

62

RAID 1

This mode offers the best redundancy. It can be used with two or more disks. An exact copy

of all data is maintained on all disks. As long as at least one disk is still working, no data is

lost. The partitions used for this type of RAID should have approximately the same size.

RAID 5

This mode combines management of a larger number of disks and still maintains some

redundancy. This mode can be used on three disks or more. If one disk fails, all data is still

intact. If two disks fail simultaneously, all data is lost.

Multipath

This mode allows access to the same physical device via multiple controllers for redundancy

against a fault in a controller card. This mode can be used with at least two devices.

Similar to LVM, a software RAID definition in an AutoYaST profile is composed of two different

parts:

Determining which disks or partitions are going to be used as RAID members. To do that,

you need to set the raid_name element in such devices.

Defining the RAID itself by using a dedicated drive section.

The following example shows a RAID10 configuration that uses a partition from the first disk and

another one from the second disk as RAID members:

•

•

Chapter 4. Configuration and installation options

63

Example 4.13. RAID10 configuration

<partitioning config:type="list">
 <drive>
 <device>/dev/sda</device>
 <partitions config:type="list">
 <partition>
 <mount>/</mount>
 <size>20G</size>
 </partition>
 <partition>
 <raid_name>/dev/md/0</raid_name>
 <size>max</size>
 </partition>
 </partitions>
 <use>all</use>
 </drive>
 <drive>
 <device>/dev/sdb</device>
 <disklabel>none</disklabel>
 <partitions config:type="list">
 <partition>
 <raid_name>/dev/md/0</raid_name>
 </partition>
 </partitions>
 <use>all</use>
 </drive>
 <drive>
 <device>/dev/md/0</device>
 <partitions config:type="list">
 <partition>
 <mount>/home</mount>
 <size>40G</size>
 </partition>
 <partition>
 <mount>/srv</mount>
 <size>10G</size>
 </partition>
 </partitions>
 <raid_options>
 <chunk_size>4</chunk_size>
 <parity_algorithm>near_2</parity_algorithm>
 <raid_type>raid10</raid_type>
 </raid_options>
 <use>all</use>
 </drive>
</partitioning>

If you do not want to create partitions in the software RAID, set the disklabel to none as you

would do for a regular disk. In the example below, only the RAID drive section is shown for

simplicity's sake:

64

Example 4.14. RAID10 without partitions

<drive>
 <device>/dev/md/0</device>
 <disklabel>none</disklabel>
 <partitions config:type="list">
 <partition>
 <mount>/home</mount>
 <size>40G</size>
 </partition>
 </partitions>
 <raid_options>
 <chunk_size>4</chunk_size>
 <parity_algorithm>near_2</parity_algorithm>
 <raid_type>raid10</raid_type>
 </raid_options>
 <use>all</use>
</drive>

4.6.6.1. Using the deprecated syntax

If the installer self-update feature is enabled, it is possible to partition a software RAID for SUSE

Linux Enterprise Server 15. However, that scenario was not supported in previous versions and

hence the way to define a software RAID was slightly different.

This section defines what the old-style configuration looks like because it is still supported for

backward compatibility.

Keep the following in mind when configuring a RAID using this deprecated syntax:

The device for RAID is always /dev/md.

The property partition_nr is used to determine the MD device number. If

partition_nr is equal to 0, then /dev/md/0 is configured. Adding several partition

sections means that you want to have multiple software RAIDs (/dev/md/0, /dev/md/1,

etc.).

All RAID-specific options are contained in the raid_options resource.

•

•

•

Chapter 4. Configuration and installation options

65

Example 4.15. Old style RAID10 configuration

<partitioning config:type="list">
 <drive>
 <device>/dev/sda</device>
 <partitions config:type="list">
 <partition>
 <partition_id config:type="integer">253</partition_id>
 <format config:type="boolean">false</format>
 <raid_name>/dev/md0</raid_name>
 <raid_type>raid1</raid_type>
 <size>4G</size>
 </partition>

 <!-- Insert a configuration for the regular partitions located on
 /dev/sda here (for example / and swap) -->

 </partitions>
 <use>all</use>
 </drive>
 <drive>
 <device>/dev/sdb</device>
 <partitions config:type="list">
 <partition>
 <format config:type="boolean">false</format>
 <partition_id config:type="integer">253</partition_id>
 <raid_name>/dev/md0</raid_name>
 <size>4gb</size>
 </partition>
 </partitions>
 <use>all</use>
 </drive>
 <drive>
 <device>/dev/md</device>
 <partitions config:type="list">
 <partition>
 <filesystem config:type="symbol">ext4</filesystem>
 <format config:type="boolean">true</format>
 <mount>/space</mount>
 <partition_id config:type="integer">131</partition_id>
 <partition_nr config:type="integer">0</partition_nr>
 <raid_options>
 <chunk_size>4</chunk_size>
 <parity_algorithm>near_2</parity_algorithm>
 <raid_type>raid10</raid_type>
 </raid_options>
 </partition>
 </partitions>
 <use>all</use>
 </drive>
</partitioning>

4.6.6.2. RAID options

The following elements must be placed within the following XML structure:

<partition>
 <raid_options>
 ...
 </raid_options>
 </partition>

66

chunk_size

Can be expressed as a number with the corresponding units (for example, 32M) or just as a

number. If the unit is omitted, kilobytes are used as the default unit. Do not specify

chunk_size for RAID1. Keep in mind that raid1 is the default type.

<chunk_size>4</chunk_size>

parity_algorithm

Possible values are:

left_asymmetric, left_symmetric, right_asymmetric, right_symmetric,

first, last, first_6, left_asymmetric_6, left_symmetric_6,

right_asymmetric_6, right_symmetric_6, near_2, offset_2, far_2, near_3,

offset_3 and far_3.

For backwards compatibility with previous versions of AutoYaST, the following aliases are

also recognized:

parity_first, parity_last, parity_first_6, n2, o2, f2, n3, o3 and f3.

The accepted values for each RAID depend on the RAID level (for example, raid5) and the

number of devices in the RAID. Given that RAID0 or RAID1 do not provide any parity, do not

specify this option for such devices.

<parity_algorithm>left_asymmetric</parity_algorithm>

raid_type

Possible values are: raid0, raid1, raid5, raid6 and raid10.

<raid_type>raid1</raid_type>

The default is raid1.

device_order

This list contains the order of the physical devices:

<device_order config:type="list"><device>/dev/sdb2</device><device>/dev/
sda1</device>...</device_order>

This is optional, and the default is alphabetical order.

Chapter 4. Configuration and installation options

67

4.6.7. Multipath support

AutoYaST can handle multipath devices. To take advantage of them, you need to enable multipath

support, as shown in Example 4.16, “Using multipath devices”. Alternatively, you can use the

following parameter on the Kernel command line: LIBSTORAGE_MULTIPATH_AUTOSTART=ON.

Unlike SUSE Linux Enterprise 12, it is not required to set the drive section type to

CT_DMMULTIPATH. You should use CT_DISK, although for historical reasons, both values are

equivalent.

Example 4.16. Using multipath devices

<general>
 <storage>
 <start_multipath config:type="boolean">true</start_multipath>
 </storage>
</general>
<partitioning>
 <drive>
 <partitions config:type="list">
 <partition>
 <size>20G</size>
 <mount>/</mount>
 <filesystem config:type="symbol">ext4</filesystem>
 </partition>
 <partition>
 <size>auto</size>
 <mount>swap</mount>
 </partition>
 </partitions>
 <type config:type="symbol">CT_DISK</type>
 <use>all</use>
 </drive>
</partitioning>

If you want to specify the device, you could use the World Wide Identifier (WWID), its device name

(for example, /dev/dm-0), any other path under /dev/disk that refers to the multipath device or

any of its paths.

For example, given the multipath listing from Example 4.17, “Listing multipath devices”, you

could use /dev/mapper/14945540000000000f86756dce9286158be4c6e3567e75ba5, /

dev/dm-3, any other corresponding path under /dev/disk (as shown in Example 4.18, “Using

the WWID to identify a multipath device”), or any of its paths (/dev/sda or /dev/sdb).

Example 4.17. Listing multipath devices

multipath -l
14945540000000000f86756dce9286158be4c6e3567e75ba5 dm-3 ATA,VIRTUAL-DISK
size=40G features='0' hwhandler='0' wp=rw
|-+- policy='service-time 0' prio=1 status=active
| `- 2:0:0:0 sda 8:0 active ready running
`-+- policy='service-time 0' prio=1 status=enabled
 `- 3:0:0:0 sdb 8:16 active ready running

68

Example 4.18. Using the WWID to identify a multipath device

<drive>
 <partitions config:type="list">
 <device>/dev/mapper/14945540000000000f86756dce9286158be4c6e3567e75ba5</
device>
 <partition>
 <size>20G</size>
 <mount>/</mount>
 <filesystem config:type="symbol">ext4</filesystem>
 </partition>
 </partitions>
 <type config:type="symbol">CT_DISK</type>
 <use>all</use>
</drive>

4.6.8. bcache configuration

bcache is a caching system which allows the use of multiple fast drives to speed up the access to

one or more slower drives. For example, you can improve the performance of a large (but slow)

drive by using a fast one as a cache.

For more information about bcache on SUSE Linux Enterprise Server, also see the blog post at

https://www.suse.com/c/combine-the-performance-of-solid-state-drive-with-the-capacity-of-a-hard-

drive-with-bcache-and-yast/.

To set up a bcache device, AutoYaST needs a profile that specifies the following:

To set a (slow) block device as backing device, use the bcache_backing_for element.

To set a (fast) block device as caching device, use the bcache_caching_for element. You

can use the same device to speed up the access to several drives.

To specify the layout of the bcache device, use a drive section and set the type element

to CT_BCACHE. The layout of the bcache device may contain partitions.

•

•

•

Chapter 4. Configuration and installation options

69

https://www.suse.com/c/combine-the-performance-of-solid-state-drive-with-the-capacity-of-a-hard-drive-with-bcache-and-yast/
https://www.suse.com/c/combine-the-performance-of-solid-state-drive-with-the-capacity-of-a-hard-drive-with-bcache-and-yast/

Example 4.19. bcache definition

70

<partitioning config:type="list">
 <drive>
 <device>/dev/sda</device>
 <type config:type="symbol">CT_DISK</type>
 <use>all</use>
 <enable_snapshots config:type="boolean">true</enable_snapshots>
 <partitions config:type="list">
 <partition>
 <filesystem config:type="symbol">btrfs</filesystem>
 <mount>/</mount>
 <create config:type="boolean">true</create>
 <size>max</size>
 </partition>
 <partition>
 <filesystem config:type="symbol">swap</filesystem>
 <mount>swap</mount>
 <create config:type="boolean">true</create>
 <size>2GiB</size>
 </partition>
 </partitions>
 </drive>

 <drive>
 <type config:type="symbol">CT_DISK</type>
 <device>/dev/sdb</device>
 <disklabel>msdos</disklabel>
 <use>all</use>
 <partitions config:type="list">
 <partition>
 <!-- It can serve as caching device for several bcaches -->
 <bcache_caching_for config:type="list">
 <listentry>/dev/bcache0</listentry>
 </bcache_caching_for>
 <size>max</size>
 </partition>
 </partitions>
 </drive>

 <drive>
 <type config:type="symbol">CT_DISK</type>
 <device>/dev/sdc</device>
 <use>all</use>
 <disklabel>msdos</disklabel>
 <partitions config:type="list">
 <partition>
 <!-- It can serve as backing device for one bcache -->
 <bcache_backing_for>/dev/bcache0</bcache_backing_for>
 </partition>
 </partitions>
 </drive>

 <drive>
 <type config:type="symbol">CT_BCACHE</type>
 <device>/dev/bcache0</device>
 <bcache_options>
 <cache_mode>writethrough</cache_mode>
 </bcache_options>
 <use>all</use>
 <partitions config:type="list">
 <partition>
 <mount>/data</mount>
 <size>20GiB</size>
 </partition>
 <partition>
 <mount>swap</mount>
 <filesystem config:type="symbol">swap</filesystem>
 <size>1GiB</size>
 </partition>

Chapter 4. Configuration and installation options

71

 </partitions>
 </drive>
</partitioning>

For the time being, the only supported option in the bcache_options section is cache_mode,

described below.

cache_mode

Cache mode for bcache. Possible values are:

writethrough

writeback

writearound

none

<cache_mode>writethrough</cache_mode>

4.6.9. Multi-device Btrfs configuration

Btrfs supports creating a single volume that spans more than one storage device, offering similar

features to software RAID implementations such as the Linux kernel's built-in mdraid subsystem.

Multi-device Btrfs offers advantages over some other RAID implementations. For example, you can

dynamically migrate a multi-device Btrfs volume from one RAID level to another, RAID levels can

be set on a per-file basis, and more. However, not all of these features are fully supported yet in

SUSE Linux Enterprise Server 15 SP7.

With AutoYaST, a multi-device Btrfs can be configured by specifying a drive with the CT_BTRFS

type. The device property is used as an arbitrary name to identify each multi-device Btrfs.

As with RAID, you need to create all block devices first (for example, partitions, LVM logical

volumes, etc.) and assign them to the Btrfs file system you want to create over such block devices.

The following example shows a simple multi-device Btrfs configuration:

•

•

•

•

72

Example 4.20. Multi-device Btrfs configuration

<partitioning config:type="list">
 <drive>
 <device>/dev/sda</device>
 <disklabel>none</disklabel>
 <partitions>
 <partition>
 <btrfs_name>root_fs</btrfs_name>
 </partition>
 </partitions>
 <use>all</use>
 </drive>
 <drive>
 <device>/dev/sdb</device>
 <disklabel>gpt</disklabel>
 <partitions>
 <partition>
 <partition_nr>1</partition_nr>
 <size>4gb</size>
 <filesystem>ext4</filesystem>
 <btrfs_name>root_fs</btrfs_name>
 </partition>
 </partitions>
 <use>all</use>
 </drive>
 <drive>
 <device>root_fs</device>
 <type config:type="symbol">CT_BTRFS</type>
 <partitions>
 <partition config:type="list>
 <mount>/</mount>
 </partition>
 </partitions>
 <btrfs_options>
 <raid_leve>raid1</raid_level>
 <metadata_raid_leve>raid1</metadata_raid_level>
 </btrfs_options>
 </drive>
</partitioning>

The supported data and metadata RAID levels are: default, single, dup, raid0, raid1, and

raid10. By default, file system metadata is mirrored across two devices and data is striped across

all of the devices. If only one device is present, metadata will be duplicated on that one device.

Keep the following in mind when configuring a multi-device Btrfs file system:

Devices need to indicate the btrfs_name property to be included into a multi-device Btrfs

file system.

All Btrfs-specific options are contained in the btrfs_options resource of a CT_BTRFS

drive.

4.6.10. NFS configuration

AutoYaST allows to install SUSE Linux Enterprise Server onto Network File System (NFS) shares.

To do so, you must create a drive with the CT_NFS type and provide the NFS share name

(SERVER:PATH) as device name. The information relative to the mount point is included as part of

its first partition section. Note that for an NFS drive, only the first partition is taken into account.

•

•

Chapter 4. Configuration and installation options

73

For more information on how to configure an NFS client and server after the system has been

installed, refer to the section called “NFS client and server”.

Example 4.21. NFS share definition

 <partitioning config:type="list">
 <drive>
 <device>192.168.1.1:/exports/root_fs</device>
 <type config:type="symbol">CT_NFS</type>
 <use>all</use>
 <partitions config:type="list">
 <partition>
 <mount>/</mount>
 <fstopt>nolock</fstopt>
 </partition>
 </partitions>
 </drive>
 </partitioning>

4.6.11. tmpfs configuration

AutoYaST supports the definition of tmpfs virtual file systems by setting the type element to

CT_TMPFS. Each partition section represents a tmpfs file system.

Example 4.22. tmpfs definition

 <partitioning config:type="list">
 <drive>
 <type config:type="symbol">CT_TMPFS</type>
 <partitions config:type="list">
 <partition>
 <mount>/srv</mount>
 <fstopt>size=512M</fstopt>
 </partition>
 <partition>
 <mount>/temp</mount>
 </partition>
 </partitions>
 <drive>
 <partitioning>

tmpfs devices are different from regular file systems like Ext4 or Btrfs. Therefore, the only relevant

elements are mount, which is mandatory, and fstopt. The latter is used to set file system

attributes like its size limit, mode, and so on. You can find additional information about the known

options in the tmpfs man page.

4.6.12. IBM Z specific configuration

4.6.12.1. Configuring DASD disks

The elements listed below must be placed within the following XML structure:

74

<dasd>
 <devices config:type="list">
 <listentry>
 ...
 </listentry>
 </devices>
</dasd>

tags in the <profile> section. Each disk needs to be configured in a separate <listentry> ... </

listentry> section.

DASD configuration

device

DASD is the only value allowed.

<device>DASD</dev_name>

dev_name

Specify the device (dasdN) you want to configure in this section.

<dev_name>/dev/dasda</dev_name>

Optional but recommended. If left out, AutoYaST tries to guess the device.

channel

Channel by which the disk is accessed.

<channel>0.0.0150</channel>

Mandatory.

diag

Enable or disable the use of DIAG. Possible values are true (enable) or false (disable).

<diagconfig:type="boolean">true</diag>

Optional.

4.6.12.2. Configuring zFCP disks

The following elements must be placed within the following XML structure:

<profile>
 <zfcp>
 <devices config:type="list">
 <listentry>
 ...
 </listentry>
 </devices>
 </zfcp>
<profile>

Chapter 4. Configuration and installation options

75

Each disk needs to be configured in a separate listentry section, which needs to provide the

following elements:

controller_id

Channel number

<controller_id>0.0.fc00</controller_id>

wwpn

Worldwide port number, the target port through which the SCSI device is attached

<wwpn>0x500507630300c562</wwpn>

fcp_lun

Logical unit number

<fcp_lun>0x4010403200000000</fcp_lun>

See the IBM documentation for more information, https://www.ibm.com/docs/en/linux-on-systems?

topic=wsd-configuring-devices.

4.7. iSCSI initiator overview

Using the iscsi-client resource, you can configure the target machine as an iSCSI client.

Example 4.23. iSCSI client

 <iscsi-client>
 <initiatorname>iqn.2013-02.de.suse:01:e229358d2dea</initiatorname>
 <targets config:type="list">
 <listentry>
 <authmethod>None</authmethod>
 <portal>192.168.1.1:3260</portal>
 <startup>onboot</startup>
 <target>iqn.2001-05.com.doe:test</target>
 <iface>default</iface>
 </listentry>
 </targets>
 <version>1.0</version>
 </iscsi-client>

iSCSI initiator configuration settings

initiatorname

InitiatorName is a value from /etc/iscsi/initiatorname.iscsi. In case you have

iBFT, this value will be added from there and you are only able to change it in the BIOS

setup.

76

file:///home/frank/oxygenxml/xsltng-framework/resources/xsl/%20https:/www.ibm.com/docs/en/linux-on-systems?topic=wsd-configuring-devices
file:///home/frank/oxygenxml/xsltng-framework/resources/xsl/%20https:/www.ibm.com/docs/en/linux-on-systems?topic=wsd-configuring-devices

version

Version of the YaST module. Default: 1.0

targets

List of targets. Each entry contains:

authmethod

Authentication method: None/CHAP

portal

Portal address

startup

Value: manual/onboot

target

Target name

iface

Interface name

4.8. Fibre channel over Ethernet configuration (FCoE)

Using the fcoe_cfg resource, you can configure a Fibre Channel over Ethernet (FCoE).

Chapter 4. Configuration and installation options

77

Example 4.24. FCoE configuration

 <fcoe-client>
 <fcoe_cfg>
 <DEBUG>no</DEBUG>
 <USE_SYSLOG>yes</USE_SYSLOG>
 </fcoe_cfg>
 <interfaces config:type="list">
 <listentry>
 <dev_name>eth3</dev_name>
 <mac_addr>01:000:000:000:42:42</mac_addr>
 <device>Gigabit 1313</device>
 <vlan_interface>200</vlan_interface>
 <fcoe_vlan>eth3.200</fcoe_vlan>
 <fcoe_enable>yes</fcoe_enable>
 <dcb_required>yes</dcb_required>
 <auto_vlan>no</auto_vlan>
 <dcb_capable>no</dcb_capable>
 <cfg_device>eth3.200</cfg_device>
 </listentry>
 </interfaces>
 <service_start>
 <fcoe config:type="boolean">true</fcoe>
 <lldpad config:type="boolean">true</lldpad>
 </service_start>
 </fcoe-client>

fcoe_cfg

Values: yes/no

DEBUG is used to enable or disable debugging messages from the fcoe service script and

fcoemon.

USE_SYSLOG messages are sent to the system log if set to yes.

interfaces

List of network cards including the status of VLAN and FCoE configuration.

service_start

Values: yes/no

Enable or disable the start of the services fcoe and lldpad boot time.

Starting the fcoe service means starting the Fibre Channel over Ethernet service daemon

fcoemon, which controls the FCoE interfaces and establishes a connection with the lldpad

daemon.

The lldpad service provides the Link Layer Discovery Protocol agent daemon lldpad,

which informs fcoemon about DCB (Data Center Bridging) features and configuration of the

interfaces.

78

4.9. Country settings

Language, time zone, and keyboard settings.

Example 4.25. Language

 <language>
 <language>en_GB</language>
 <languages>de_DE,en_US</languages>
 </language>

language

Primary language

languages

Secondary languages separated by commas

A list of available languages can be found under /usr/share/YaST2/data/languages.

If the configured value for the primary language is unknown, it will be reset to the default, en_US.

Example 4.26. Time zone

 <timezone>
 <hwclock>UTC</hwclock>
 <timezone>Europe/Berlin</timezone>
 </timezone>

hwclock

Whether the hardware clock uses local time or UTC.

Values: localtime/UTC.

timezone

Time zone.

A list of available time zones can be found under /usr/share/YaST2/data/

timezone_raw.ycp

Example 4.27. Keyboard

 <keyboard>
 <keymap>german</keymap>
 </keyboard>

Chapter 4. Configuration and installation options

79

keymap

Keyboard layout

Keymap-code values or keymap-alias values are valid. A list of available entries can be

found in /usr/share/YaST2/lib/y2keyboard/keyboards.rb. For example,

english-us, us, english-uk, uk.

4.10. Software

4.10.1. Product selection

Starting with SUSE Linux Enterprise Server 15, all products are distributed using a single

installation medium. Therefore you need to choose which product to install by using the product

tag.

The available values for the product tag are:

SLES

SUSE Linux Enterprise Server

SLE_HPC

SUSE Linux Enterprise High Performance Computing

SLE_RT

SUSE Linux Enterprise Real Time

SLES_SAP

SUSE Linux Enterprise Server for SAP applications

SLED

SUSE Linux Enterprise Desktop

SUSE-manager-server

SUSE Multi-Linux Manager Server

SUSE-manager-retail-branch-server

SUSE Multi-Linux Manager for Retail

80

SUSE-manager-proxy

SUSE Multi-Linux Manager Proxy

Example 4.28. Explicit product selection

In the following example, SUSE Linux Enterprise Desktop is the chosen product:

<software>
 <products config:type="list">
 <product>SLED</product>
 </products>
</software>

In special cases, the medium might contain only one product. If so, you do not need to select a

product explicitly as described above. AutoYaST will select the only available product automatically.

Using AutoYaST files from previous versions

If you are using or migrating an AutoYaST configuration file from an older version of

SUSE Linux Enterprise Server, be aware that there are some special considerations.

For details, refer to the section called “Product selection”.

4.10.2. Package selection with patterns and packages sections

Patterns or packages are configured like this:

Example 4.29. Package selection in the control file with patterns and packages sections

<software>
 <patterns config:type="list">
 <pattern>directory_server</pattern>
 </patterns>
 <packages config:type="list">
 <package>apache</package>
 <package>postfix</package>
 </packages>
 <do_online_update config:type="boolean">true</do_online_update>
</software>

Package and pattern names

The values are real package or pattern names. If the package name has been

changed because of an upgrade, you will need to adapt these settings too.

It is possible to specify package and pattern names using regular expressions. In that case,

AutoYaST will select all packages or patterns that match the expression. Beware that such

expressions must be enclosed within slashes. In Example 4.30, “Packages selection using a

regular expression”, all packages whose name starts with nginx will be selected (for example,

nginx and nginx-macros).

Chapter 4. Configuration and installation options

81

Example 4.30. Packages selection using a regular expression

<software>
 <packages config:type="list">
 <package>/nginx.*/</package>
 </packages>
</software>

4.10.3. Installing additional/customized packages or products

In addition to the packages available for installation on the DVD-ROMs, you can add external

packages including customized kernels. Customized kernel packages must be compatible with the

SUSE packages and must install the kernel files to the same locations.

Unlike in earlier versions, you do not need a special resource in the control file to install custom

and external packages. Instead you need to re-create the package database and update it with

any new packages or new package versions in the source repository.

A script is provided for this task which will query packages available in the repository and create

the package database. Use the command /usr/bin/create_package_descr. It can be found

in the inst-source-utils package in the openSUSE Build Service. When creating the

database, all languages will be reset to English.

Example 4.31. Creating a package database with the additional package inst-source-

utils.rpm

The unpacked DVD is located in /usr/local/DVDs/LATEST.

>cp /tmp/inst-source-utils-2016.7.26-1.2.noarch.rpm /usr/local/DVDs/LATEST/suse/
noarch
>cd /usr/local/DVDs/LATEST/suse
>create_package_descr -d /usr/local/CDs/LATEST/suse

In the above example, the directory /usr/local/CDs/LATEST/suse contains the architecture-

dependent (for example x86_64) and architecture-independent packages (noarch). This might

look different on other architectures.

The advantage of this method is that you can keep an up-to-date repository with a fixed and

updated package. Additionally, this method makes the creation of custom CD-ROMs easier.

To add your own module such as the SDK (SUSE Software Development Kit), add a file

add_on_products.xml to the installation source in the root directory.

The following example shows how the SDK module can be added to the base product repository.

The complete SDK repository will be stored in the directory /sdk.

Example 4.32. add_on_products.xml

This file describes an SDK module included in the base product.

82

<?xml version="1.0"?>
<add_on_products xmlns="http://www.suse.com/1.0/yast2ns"
 xmlns:config="http://www.suse.com/1.0/configns">
 <product_items config:type="list">
 <product_item>
 <name>SUSE Linux Enterprise Software Development Kit</name>
 <url>relurl:////sdk?alias=SLE_SDK</url>
 <path>/</path>
 <-- Users are asked whether to add such a product -->
 <ask_user config:type="boolean">false</ask_user>
 <-- Defines the default state of pre-selected state in case of ask_user
used. -->
 <selected config:type="boolean">true</selected>
 </product_item>
 </product_items>
</add_on_products>

Besides this special case, all other modules, extensions and add-on products can be added from

almost every other location during an AutoYaST installation.

Repositories served by a registration server

If you want to use add-ons from a registration server (SMT, RMT, or SCC), define

them in the suse_register section. See the section called “Extensions”.

Even repositories that do not have any product or module information can be added during the

installation. These are called other add-ons.

Example 4.33. Adding the SDK extension and a user defined repository

<add-on>
 <add_on_products config:type="list">
 <listentry>
 <media_url>cd:///sdk</media_url>
 <product>sle-sdk</product>
 <alias>SLE SDK</alias>
 <product_dir>/</product_dir>
 <priority config:type="integer">20</priority>
 <ask_on_error config:type="boolean">false</ask_on_error>
 <confirm_license config:type="boolean">false</confirm_license>
 <name>SUSE Linux Enterprise Software Development Kit</name>
 </listentry>
 </add_on_products>
 <add_on_others config:type="list">
 <listentry>
 <media_url>https://download.opensuse.org/repositories/YaST:/Head/
openSUSE_Leap_15.2/</media_url>
 <alias>yast2_head</alias>
 <priority config:type="integer">30</priority>
 <name>Latest YaST2 packages from OBS</name>
 </listentry>
 </add_on_others>
</add-on>

The add_on_others and add_on_products sections support the same values:

Chapter 4. Configuration and installation options

83

media_url

Product URL. Can have the prefix cd:///, http://, ftp://, etc. This entry is mandatory.

If you use a multi-product medium such as the SUSE Linux Enterprise Packages DVD, then

the URL path should point to the root directory of the multi-product medium. The specific

product directory is selected using the product_dir value (see below).

product

Internal product name if the add-on is a product. The command zypper products shows

the names of installed products.

alias

Repository alias name. Defined by the user.

product_dir

Optional subpath. This should only be used for multi-product media such as the SUSE Linux

Enterprise Packages DVD.

priority

Sets the repository libzypp priority. Priority of 1 is the highest. The higher the number, the

lower the priority. Default is 99.

ask_on_error

AutoYaST can ask the user to make add-on products, modules or extensions available

instead of reporting a time-out error when no repository can be found at the given location.

Set ask_on_error to true (the default is false).

confirm_license

The user needs to confirm the license. Default is false.

name

Repository name. The command zypper lr shows the names of added repositories.

To use unsigned installation sources with AutoYaST, turn off the checks with the following

configuration in your AutoYaST control file.

84

Unsigned installation sources—limitations

You can only disable signature checking during the first stage of the auto-installation

process. In stage two, the installed system's configuration takes precedence over

AutoYaST configuration.

The elements listed below must be placed within the following XML structure:

<general>
 <signature-handling>
 ...
 </signature-handling>
</general>

Default values for all options are false. If an option is set to false and a package or repository

fails the respective test, it is silently ignored and will not be installed. Note that setting any of these

options to true is a potential security risk. Never do it when using packages or repositories from

third-party sources.

accept_unsigned_file

If set to true, AutoYaST will accept unsigned files such as the content file.

<accept_unsigned_file config:type="boolean" >true</accept_unsigned_file>

accept_file_without_checksum

If set to true, AutoYaST will accept files without a checksum in the content file.

<accept_file_without_checksum config:type="boolean" >true</
accept_file_without_checksum>

accept_verification_failed

If set to true, AutoYaST will accept signed files even when the verification of the signature

failed.

<accept_verification_failed config:type="boolean" >true</
accept_verification_failed>

accept_unknown_gpg_key

If set to true, AutoYaST will accept new GPG keys of the installation sources, for example

the key used to sign the content file.

<accept_unknown_gpg_key config:type="boolean" >true</
accept_unknown_gpg_key>

accept_non_trusted_gpg_key

Set this option to true to accept known keys you have not yet trusted.

Chapter 4. Configuration and installation options

85

<accept_non_trusted_gpg_key config:type="boolean" >true</
accept_non_trusted_gpg_key>

import_gpg_key

If set to true, AutoYaST will accept and import new GPG keys on the installation source in

its database.

<import_gpg_key config:type="boolean" >true</import_gpg_key>

It is possible to configure the signature handling for each add-on product, module, or extension

individually. The following elements must be between the signature-handling section of the

individual add-on product, module, or extension. All settings are optional. If not configured, the

global signature-handling from the general section is used.

accept_unsigned_file

If set to true, AutoYaST will accept unsigned files such as the content file for this add-on

product.

<accept_unsigned_file config:type="boolean" >true</accept_unsigned_file>

accept_file_without_checksum

If set to true, AutoYaST will accept files without a checksum in the content file for this add-

on.

<accept_file_without_checksum config:type="boolean" >true</
accept_file_without_checksum>

accept_verification_failed

If set to true, AutoYaST will accept signed files even when the verification of the signature

fails.

<accept_verification_failed config:type="boolean" >true</
accept_verification_failed>

accept_unknown_gpg_key

If all is set to true, AutoYaST will accept new GPG keys on the installation source.

<accept_unknown_gpg_key> <all config:type="boolean">true</all> </
accept_unknown_gpg_key>

Alternatively, you can define single keys:

<accept_unknown_gpg_key> <all config:type="boolean">false</all> <keys
config:type="list"> <keyid>3B3011B76B9D6523</keyid> lt;/keys> </
accept_unknown_gpg_key>

86

accept_non_trusted_gpg_key

This means that the key is known, but it is not trusted by you. You can trust all keys by

adding:

<accept_non_trusted_gpg_key> <all config:type="boolean">true</all> </
accept_non_trusted_gpg_key>

Alternatively, you can trust specific keys:

<accept_non_trusted_gpg_key> <all config:type="boolean">false</all> <keys
config:type="list"> <keyid>3B3011B76B9D6523</keyid> </keys> </
accept_non_trusted_gpg_key>

import_gpg_key

If all is set to true, AutoYaST will accept and import all new GPG keys on the installation

source into its database.

<import_gpg_key> <all config:type="boolean">true</all> </import_gpg_key>

This can be done for specific keys only:

<import_gpg_key> <all config:type="boolean">false</all> <keys
config:type="list"> <keyid>3B3011B76B9D6523</keyid> </keys> </
import_gpg_key>

4.10.4. Kernel packages

Kernel packages are not part of any selection. The required kernel is determined during

installation. If the kernel package is added to any selection or to the individual package selection,

installation will mostly fail because of conflicts.

To force the installation of a specific kernel, use the kernel property. The following is an example

of forcing the installation of the default kernel. This kernel will be installed even if an SMP or other

kernel is required.

Example 4.34. Kernel selection in the control file

<software>
 <kernel>kernel-default</kernel>
 ...
</software>

4.10.5. Removing automatically selected packages

Some packages are selected automatically either because of a dependency or because it is

available in a selection.

Removing these packages might break the system consistency, and it is not recommended to

remove basic packages unless a replacement which provides the same services is provided. The

best example for this case are mail transfer agent (MTA) packages. By default, postfix will be

Chapter 4. Configuration and installation options

87

selected and installed. To use another MTA like sendmail, then postfix can be removed from the

list of selected package using a list in the software resource. However, note that sendmail is not

shipped with SUSE Linux Enterprise Server. The following example shows how this can be done:

Example 4.35. Package selection in control file

<software>
 <packages config:type="list">
 <package>sendmail</package>
 </packages>
 <remove-packages config:type="list">
 <package>postfix</package>
 </remove-packages>
</software>

Package removal failure

Note that it is not possible to remove a package that is part of a pattern (see the

section called “Package selection with patterns and packages sections”). When

specifying such a package for removal, the installation will fail with the following error

message:

The package resolver run failed. Check
 your software section in the AutoYaST profile.

4.10.6. Installing recommended packages and patterns

AutoYaST enables you to control which recommended packages and patterns are installed. There

are three options:

Install all recommended packages and patterns

Install only required packages and patterns

Install recommended packages, ignore recommended patterns

Set the install_recommended flag to true in the configuration file to install all recommended

packages and patterns.

If you want a minimal installation, and to install only required packages and patterns, set the flag to

false.

Omit the flag from the configuration file to install only recommended packages, and ignore all

recommended patterns. Note that this flag only affects a fresh installation and will be ignored

during an upgrade.

•

•

•

88

The install_recommended flag affects only the installation process

Keep in mind that the flag influences only the package resolver during the installation

process and does not change any settings in /etc/zypp/zypp.conf. Therefore,

the package resolving in the running system is not affected by this AutoYaST setting.

<software>
 <install_recommended config:type="boolean">false
 </install_recommended>
</software>

4.10.7. Installing packages in stage 2

To install packages after the reboot during stage two, you can use the post-packages element

for that:

<software>
 <post-packages config:type="list">
 <package>yast2-cim</package>
 </post-packages>
</software>

4.10.8. Installing patterns in stage 2

You can also install patterns in stage 2. Use the post-patterns element for that:

<software>
 <post-patterns config:type="list">
 <pattern>apparmor</pattern>
 </post-patterns>
</software>

4.10.9. Online update in stage 2

You can perform an online update at the end of the installation. Set the boolean

do_online_update to true. Of course this only makes sense if you add an online update

repository in the suse-register/customer-center section, for example, or in a post-script. If the

online update repository was already available in stage one via the add-on section, then AutoYaST

has already installed the latest packages available. If a kernel update is done via online-update, a

reboot at the end of stage two is triggered.

<software>
 <do_online_update config:type="boolean">true</do_online_update>
</software>

Chapter 4. Configuration and installation options

89

4.11. Upgrade

AutoYaST can also be used for doing a system upgrade. Besides upgrade packages, the following

sections are supported too:

scripts/pre-scripts Running user scripts very early, before anything else really

happens.

add-on Defining an additional add-on product.

language Setting language.

timezone Setting timezone.

keyboard Setting keyboard.

software Installing additional software/patterns. Removing installed packages.

suse_register Running registration process.

To control the upgrade process the following sections can be defined:

Example 4.36. Upgrade and backup

 <upgrade>
 <stop_on_solver_conflict config:type="boolean">true</
stop_on_solver_conflict>
 </upgrade>
 <backup>
 <sysconfig config:type="boolean">true</sysconfig>
 <modified config:type="boolean">true</modified>
 <remove_old config:type="boolean">true</remove_old>
 </backup>

stop_on_solver_conflict

Halt installation if there are package dependency issues.

modified

Create backups of modified files.

sysconfig

Create backup of /etc/sysconfig directory.

remove_old

Remove backups from previous updates.

To start the AutoYaST upgrade mode, you need:

•

•

•

•

•

•

•

90

Procedure 4.1. Starting AutoYaST in offline upgrade mode

Copy the AutoYaST profile to /root/autoupg.xml on its file system.

Boot the system from the installation medium.

Select the Upgrade menu item.

On the command line, set autoupgrade=1.

Press ↵ to start the upgrade process.

Procedure 4.2. Starting AutoYaST in online upgrade mode

Boot the system from the installation media.

Select the Upgrade menu item.

On the command line, set netsetup=dhcp autoupgrade=1 autoyast=http://

192.169.3.1/autoyast.xml.

Here, network will be set up via DHCP.

Press ↵ to start the upgrade process.

4.12. Services and targets

With the services-manager resource, you can set the default systemd target and specify in

detail which system services you want to start or deactivate, and how to start them.

The default-target property specifies the default systemd target into which the system boots.

Valid options are graphical for a graphical login, or multi-user for a console login.

To specify the set of services that should be started on boot, use the enable and disable lists.

To start a service, add its name to the enable list. To make sure that the service is not started on

boot, add it to the disable list.

If a service is not listed as enabled or disabled, a default setting is used. The default setting may

be either disabled or enabled.

Finally, some services like cups support on-demand activation (socket activated services). If you

want to take advantage of such a feature, list the names of those services in the on_demand list

instead of enable.

1.

2.

3.

4.

5.

1.

2.

3.

4.

Chapter 4. Configuration and installation options

91

Example 4.37. Configuring services and targets

<services-manager>
 <default_target>multi-user</default_target>
 <services>
 <disable config:type="list">
 <service>libvirtd</service>
 </disable>
 <enable config:type="list">
 <service>sshd</service>
 </enable>
 <on_demand config:type="list">
 <service>cups</service>
 </on_demand>
 </services>
</services-manager>

4.13. Network configuration

4.13.1. Configuration Workflow

Network configuration is mainly used to connect a single workstation to an Ethernet-based LAN. It

is commonly configured before AutoYaST starts, to fetch the profile from a network location. This

network configuration is usually done through linuxrc

The linuxrc program

For a detailed description of how linuxrc works and its keywords, see Appendix C,

Advanced linuxrc options.

By default, YaST copies the network settings that were used during the installation into the final,

installed system. This configuration is merged with the one defined in the AutoYaST profile.

AutoYaST settings have higher priority than any existing configuration files. YaST will write ifcfg-

* files based on the entries in the profile without removing old ones. If the DNS and routing section

is empty or missing, YaST will keep any pre-existing values. Otherwise, it applies the settings from

the profile file.

92

Use AutoYaST network settings during installation

Since SUSE Linux Enterprise Server 15.3, writing the configuration based on the

profile happens at the end of the first stage.

However, if network settings are needed during the installation, you can force

AutoYaST to write and apply them before registration takes place by setting the

setup_before_proposal option to true. Asking AutoYaST to set up the network

in the early stages is useful when installation on a network is needed, but the

configuration is too complex to define it using linuxrc (see the section called “Auto-

installing a single system”).

<setup_before_proposal config:type="boolean">true</
setup_before_proposal>

If the configuration is written at the end of installation, it will not be applied until the

system is rebooted.

Network settings and service activation are defined under the profilenetworking global

resource.

Chapter 4. Configuration and installation options

93

4.13.2. The Network Resource

Example 4.38. Network configuration

<networking>
 <dns>
 <dhcp_hostname config:type="boolean">true</dhcp_hostname>
 <hostname>linux-bqua</hostname>
 <nameservers config:type="list">
 <nameserver>192.168.1.116</nameserver>
 <nameserver>192.168.1.117</nameserver>
 <nameserver>192.168.1.118</nameserver>
 </nameservers>
 <resolv_conf_policy>auto</resolv_conf_policy>
 <searchlist config:type="list">
 <search>example.com</search>
 <search>example.net</search>
 </searchlist>
 </dns>
 <interfaces config:type="list">
 <interface>
 <bootproto>dhcp</bootproto>
 <name>eth0</name>
 <startmode>auto</startmode>
 </interface>
 </interfaces>
 <ipv6 config:type="boolean">true</ipv6>
 <keep_install_network config:type="boolean">false</keep_install_network>
 <managed config:type="boolean">false</managed>
 <net-udev config:type="list">
 <rule>
 <name>eth0</name>
 <rule>ATTR{address}</rule>
 <value>00:30:6E:08:EC:80</value>
 </rule>
 </net-udev>
 <s390-devices config:type="list">
 <listentry>
 <chanids>0.0.0800:0.0.0801:0.0.0802</chanids>
 <type>qeth</type>
 </listentry>
 </s390-devices>
 <routing>
 <ipv4_forward config:type="boolean">false</ipv4_forward>
 <ipv6_forward config:type="boolean">false</ipv6_forward>
 <routes config:type="list">
 <route>
 <destination>192.168.100.0/24</destination>
 <device>eth1</device>
 <extrapara>scope link src 192.168.100.100 table one</extrapara>
 <gateway>-</gateway>
 </route>
 <route>
 <destination>default</destination>
 <device>eth1</device>
 <gateway>192.168.100.1</gateway>
 </route>
 <route>
 <destination>default</destination>
 <device>lo</device>
 <gateway>192.168.5.1</gateway>
 </route>
 </routes>
 </routing>
</networking>

94

As shown in the example above, the <networking> section can be composed of a few

subsections:

interfaces describes the configuration of the network interfaces, including their IP

addresses, how they are started, etc.

dns specifies DNS related settings, such as the host name, the list of name servers, etc.

routing defines the routing rules.

s390-devices covers z Systems-specific device settings.

net-udev enumerates the udev rules used to set persistent names.

Additionally, there are a few elements that allow modification of how the network configuration is

applied:

backend

Selects the network back-end to be used. Supported values are wicked,

network_manager or none, the latter of which will disable the network service.

<backend>network_manager</backend>

keep_install_network

As described in the section called “Configuration Workflow”, by default, AutoYaST merges

the network configuration from the running system with the one defined in the profile. If you

want to use only the configuration from the profile, set this element to false. The value is

true by default.

<keep_install_network config:type="boolean">false</keep_install_network>

managed

Determines whether to use NetworkManager instead of Wicked.

Deprecated. Use backend instead.

<managed config:type="boolean">true</managed>

start_immediately

Forces AutoYaST to restart the network just after writing the configuration.

<start_immediately config:type="boolean">true</start_immediately>

setup_before_proposal

Use the network configuration defined in the profile during the installation process.

Otherwise, AutoYaST relies on the configuration set by linuxrc.

<setup_before_proposal config:type="boolean">true</setup_before_proposal>

•

•

•

•

•

Chapter 4. Configuration and installation options

95

strict_IP_check_timeout

After setting up the network, AutoYaST checks whether the assigned IP address is

duplicated. In that case, it shows a warning whose timeout in seconds is controlled by this

element. If it is set to 0, the installation is stopped.

<strict_IP_check_timeout config:type="integer">5</strict_IP_check_timeout>

virt_bridge_proposal

AutoYaST configures a bridge when a virtualization package is selected to be installed (for

example, Xen, QEMU or KVM). You can disable this behavior by setting this element to

false.

<virt_bridge_proposal config:type="boolean">false</virt_bridge_proposal>

IPv6 address support

Using IPv6 addresses in AutoYaST is fully supported. To disable IPv6 Address

Support, set <ipv6 config:type="boolean">false</ipv6>

4.13.3. Interfaces

The interfaces section allows the user to define the configuration of interfaces, including how

they are started, their IP addresses, networks, and more. The following elements must be enclosed

in <interfaces>...</interfaces> tags.

bootproto

Boot protocol used by the interface. Possible values:

static for statically assigned addresses. It is required to specify the IP using the

ipaddr element.

dhcp4, dhcp6 or dhcp for setting the IP address with DHCP (IPv4, IPv6 or any).

dhcp+autoip to get the IPv4 configuration from Zeroconf and get IPv6 from DHCP.

autoip to get the IPv4 configuration from Zeroconf.

ibft to get the IP address using the iBFT protocol.

none to skip setting an address. This value is used for bridges and bonding ports.

Required.

broadcast

Broadcast IP address.

Used only with static boot protocol.

•

•

•

•

•

•

96

device

Device name.

Deprecated. Use name instead.

name

Device name, for example: eth0.

Required.

lladdr

Link layer address (MAC address).

Optional.

ipaddr

IP address assigned to the interface.

Used only with static boot protocol. It can include a network prefix, for example:

192.168.1.1/24.

remote_ipaddr

Remote IP address for point-to-point connections.

Used only with static boot protocol.

netmask

Network mask, for example: 255.255.255.0.

Deprecated. Use prefixlen instead or include the network prefix in the ipaddr element.

network

Network IP address.

Deprecated. Use ipaddr with prefixlen instead.

prefixlen

Network prefix, for example: 24.

Used only with static boot protocol.

Chapter 4. Configuration and installation options

97

startmode

When to bring up an interface. Possible values are:

hotplug when the device is plugged in. Useful for USB network cards, for example.

auto when the system boots. onboot is a deprecated alias.

ifplugd when the device is managed by the ifplugd daemon.

manual when the device is supposed to be started manually.

nfsroot when the device is needed to mount the root file system, for example, when

/ is on an NFS volume.

off to never start the device.

ifplugd_priority

Priority for ifplugd daemon. It determines in which order the devices are activated.

Used only with ifplugd start mode.

usercontrol

Parameter is no longer used.

Deprecated.

bonding_slaveX

Name of the bonding device.

Required for bonding devices. X is replaced by a number starting from 0, for example

bonding_slave0. Each port needs to have a unique number.

bonding_module_opts

Options for bonding device.

Used only with bond device.

mtu

Maximum transmission unit for the interface.

Optional.

ethtool_options

Ethtool options during device activation.

Optional.

•

•

•

•

•

•

98

zone

Firewall zone name which the interface is assigned to.

Optional.

vlan_id

Identifier used for this VLAN.

Used only with a vlan device.

etherdevice

Device to which VLAN is attached.

Used only with a vlan device and required for it.

bridge

yes if interface is a bridge.

Deprecated. It is inferred from other attributes.

bridge_ports

Space-separated list of bridge ports, for example, eth0 eth1.

Used only with a bridge device and required for it.

bridge_stp

Spanning tree protocol. Possible values are on (when enabled) and off (when disabled).

Used only with a bridge device.

bridge_forward_delay

Forward delay for bridge, for example: 15.

Used only with bridge devices. Valid values are between 4 and 30.

aliases

Additional IP addresses. See the section called “Assigning multiple IP addresses”.

Chapter 4. Configuration and installation options

99

Example 4.39. Bonding interface configuration

<networking>
 <setup_before_proposal config:type="boolean">false</setup_before_proposal>
 <keep_install_network config:type="boolean">false</keep_install_network>
 <interfaces config:type="list">
 <interface>
 <bonding_master>yes</bonding_master>
 <bonding_module_opts>mode=active-backup miimon=100</bonding_module_opts>
 <bonding_slave0>eth1</bonding_slave0>
 <bonding_slave1>eth2</bonding_slave1>
 <bootproto>static</bootproto>
 <name>bond0</name>
 <ipaddr>192.168.1.61</ipaddr>
 <prefixlen>24</prefixlen>
 <startmode>auto</startmode>
 </interface>
 <interface>
 <bootproto>none</bootproto>
 <name>eth1</name>
 <startmode>auto</startmode>
 </interface>
 <interface>
 <bootproto>none</bootproto>
 <name>eth2</name>
 <startmode>auto</startmode>
 </interface>
 </interfaces>
 <net-udev config:type="list">
 <rule>
 <name>eth1</name>
 <rule>ATTR{address}</rule>
 <value>dc:e4:cc:27:94:c7</value>
 </rule>
 <rule>
 <name>eth2</name>
 <rule>ATTR{address}</rule>
 <value>dc:e4:cc:27:94:c8</value>
 </rule>
 </net-udev>
</networking>

100

Example 4.40. Bridge interface configuration

<interfaces config:type="list">
 <interface>
 <name>br0</name>
 <bootproto>static</bootproto>
 <bridge>yes</bridge>
 <bridge_forwarddelay>0</bridge_forwarddelay>
 <bridge_ports>eth0 eth1</bridge_ports>
 <bridge_stp>off</bridge_stp>
 <ipaddr>192.168.1.100</ipaddr>
 <prefixlen>24</prefixlen>
 <startmode>auto</startmode>
 </interface>
 <interface>
 <name>eth0</name>
 <bootproto>none</bootproto>
 <startmode>hotplug</startmode>
 </interface>
 <interface>
 <name>eth1</name>
 <bootproto>none</bootproto>
 <startmode>hotplug</startmode>
 </interface>
</interfaces>

4.13.4. Assigning multiple IP addresses

AutoYaST makes it possible to assign multiple IP addresses to the same interface. They are

specified using an aliases element that contains an aliasX entry for each address.

Each entry supports the following elements:

IPADDR

Additional IP address. It can include a network prefix, for example: 192.168.1.1/24.

PREFIXLEN

Network prefix, for example: 24.

NETMASK

Netmask of the address.

Deprecated. Use PREFIXLEN instead or include the network prefix in the IPADDR element.

LABEL

Label of the address.

Chapter 4. Configuration and installation options

101

Case-sensitive elements

Keep in mind that for historical reasons, the IPADDR, PREFIXLEN, LABEL and

NETMASK elements within the aliases section are case-sensitive.

Example 4.41. Multiple IP Addresses

<interfaces config:type="list">
 <interface>
 <name>br0</name>
 <bootproto>static</bootproto>
 <ipaddr>192.168.1.100</ipaddr>
 <prefixlen>24</prefixlen>
 <startmode>auto</startmode>
 <aliases>
 <alias0>
 <IPADDR>192.168.1.101</IPADDR>
 <PREFIXLEN>24</PREFIXLEN>
 <LABEL>http</LABEL>
 </alias0>
 <alias1>
 <IPADDR>192.168.2.100</IPADDR>
 <PREFIXLEN>24</PREFIXLEN>
 <LABEL>extra</LABEL>
 </alias1>
 </aliases>
 </interface>
</interfaces>

4.13.5. Persistent names of network interfaces

The net-udev element allows to specify a set of udev rules that can be used to assign persistent

names to interfaces.

name

Network interface name, for example eth3. (Required.)

rule

ATTR{address} for a MAC-based rule, KERNELS for a bus-ID-based rule. (Required.)

value

For example: f0:de:f1:6b:da:69 for a MAC rule, 0000:00:1c.1 or 0.0.0700 for a

bus ID rule. (Required.)

102

Handling collisions in device names

When creating an incomplete udev rule set, the chosen device name can collide with

existing device names. For example, when renaming a network interface to eth0, a

collision with a device automatically generated by the kernel can occur. AutoYaST

tries to handle such cases in a best effort manner and renames colliding devices.

Example 4.42. Assigning a persistent name using the MAC address

<net-udev config:type="list">
 <rule>
 <name>eth1</name>
 <rule>ATTR{address}</rule>
 <value>52:54:00:68:54:fb</value>
 </rule>
</net-udev>

4.13.6. Domain name system

The dns section is used to define name-service related settings, such as the host name or name

servers.

hostname

Host name, excluding the domain name part. For example: foo instead of foo.bar. The Linux

kernel allows you to use the fully qualified domain name (FQDN) in place of the host name,

and so does YaST. However, this is not the correct usage in the dns section of YaST. The

resolver should determine the FQDN. (See "THE FQDN" section of man 1 hostname for

information on how FQDNs are resolved.)

If a host name is not specified and is not assigned by a DHCP server (see

dhcp_hostname), AutoYaST will generate install as the host name.

nameservers

List of name servers. Example:

<nameservers config:type="list">
 <nameserver>192.168.1.116</nameserver>
 <nameserver>192.168.1.117</nameserver>
</nameservers>

searchlist

Search list for host name lookup.

<searchlist config:type="list">
 <search>example.com</search>
</searchlist>

Optional.

Chapter 4. Configuration and installation options

103

dhcp_hostname

Specifies whether the host name must be taken from DHCP or not.

<dhcp_hostname config:type="boolean">true</dhcp_hostname>

4.13.7. Routing

The routing table allows specification of a list of routes and the packet-forwarding settings for

IPv4 and IPv6.

ipv4_forward

Optional: Whether IP forwarding must be enabled for IPv4.

ipv6_forward

Optional: Whether IP forwarding must be enabled for IPv6.

routes

Optional: List of routes.

The following settings describe how routes are defined.

destination

Required: Route destination. An address prefix can be specified, for example:

192.168.122.0/24.

The heading default can be used to indicate that the route is the default gateway in the

same address family (IPv4 or IPv6) as the gateway.

device

Required: Interface associated to the route.

gateway

Optional: Gateway's IP address.

netmask

(Deprecated.) Destination's netmask.

Specifying the prefix as part of the destination value is preferred.

extrapara

Optional: Further route options like metric, mtu or table.

104

Example 4.43. Network routing configuration

<routing>
 <ipv4_forward config:type="boolean">true</ipv4_forward>
 <ipv6_forward config:type="boolean">true</ipv6_forward>
 <routes config:type="list">
 <route>
 <destination>192.168.100.0/24</destination>
 <device>eth1</device>
 <extrapara>scope link src 192.168.100.100 table one</extrapara>
 </route>
 <route>
 <destination>default</destination>
 <device>eth1</device>
 <gateway>192.168.100.1</gateway>
 </route>
 <route>
 <destination>default</destination>
 <device>lo</device>
 <gateway>192.168.5.1</gateway>
 </route>
 </routes>
</routing>

4.13.8. s390 options

The following elements must be between the <s390-devices>... </s390-devices> tags.

type

qeth, ctc or iucv.

chanids

channel IDs, separated by a colon (preferred) or a space

<chanids>0.0.0700:0.0.0701:0.0.0702</chanids>

layer2

<layer2 config:type="boolean">true</layer2>

boolean; default: false

portname

QETH port name (deprecated since SLE 12 SP2)

protocol

Optional: CTC / LCS protocol, a small number (as a string)

<protocol>1</protocol>

router

IUCV router/user

Chapter 4. Configuration and installation options

105

In addition to the options mentioned above, AutoYaST also supports IBM Z-specific options in other

sections of the configuration file. In particular, you can define the logical link address, or LLADDR

(in the case of Ethernet, that is the MAC address). To do so, use the option LLADDR in the device

definition.

LLADDR for VLANs

VLAN devices inherit their LLADDR from the underlying physical devices. To set a

particular address for a VLAN device, set the LLADDR option for the underlying

physical device.

4.14. Proxy

Configure your Internet proxy (caching) settings.

Configure proxies for HTTP, HTTPS, and FTP with http_proxy, https_proxy and ftp_proxy,

respectively. Addresses or names that should be directly accessible need to be specified with

no_proxy (space separated values). If you are using a proxy server with authorization, fill in

proxy_user and proxy_password,

Example 4.44. Network configuration: proxy

<proxy>
 <enabled config:type="boolean">true</enabled>
 <ftp_proxy>http://192.168.1.240:3128</ftp_proxy>
 <http_proxy>http://192.168.1.240:3128</http_proxy>
 <no_proxy>www.example.com .example.org localhost</no_proxy>
 <proxy_password>testpw</proxy_password>
 <proxy_user>testuser</proxy_user>
</proxy>

Note

The proxy settings will be written during the installation when the network

configuration is forced to be written before the proposal, or when the proxy settings

are given through linuxrc.

4.15. NIS client and server

Using the nis resource, you can configure the target machine as a NIS client. The following

example shows a detailed configuration using multiple domains.

106

Example 4.45. Network configuration: NIS

 <nis>
 <nis_broadcast config:type="boolean">true</nis_broadcast>
 <nis_broken_server config:type="boolean">true</nis_broken_server>
 <nis_domain>test.com</nis_domain>
 <nis_local_only config:type="boolean">true</nis_local_only>
 <nis_options></nis_options>
 <nis_other_domains config:type="list">
 <nis_other_domain>
 <nis_broadcast config:type="boolean">false</nis_broadcast>
 <nis_domain>domain.com</nis_domain>
 <nis_servers config:type="list">
 <nis_server>10.10.0.1</nis_server>
 </nis_servers>
 </nis_other_domain>
 </nis_other_domains>
 <nis_servers config:type="list">
 <nis_server>192.168.1.1</nis_server>
 </nis_servers>
 <start_autofs config:type="boolean">true</start_autofs>
 <start_nis config:type="boolean">true</start_nis>
</nis>

4.16. NIS server

You can configure the target machine as a NIS server. NIS Master Server and NIS Worker Server

and a combination of both are available.

Example 4.46. NIS server configuration

 <nis_server>
 <domain>mydomain.de</domain>
 <maps_to_serve config:type="list">
 <nis_map>auto.master</nis_map>
 <nis_map>ethers</nis_map>
 </maps_to_serve>
 <merge_passwd config:type="boolean">false</merge_passwd>
 <mingid config:type="integer">0</mingid>
 <minuid config:type="integer">0</minuid>
 <nopush config:type="boolean">false</nopush>
 <pwd_chfn config:type="boolean">false</pwd_chfn>
 <pwd_chsh config:type="boolean">false</pwd_chsh>
 <pwd_srcdir>/etc</pwd_srcdir>
 <securenets config:type="list">
 <securenet>
 <netmask>255.0.0.0</netmask>
 <network>127.0.0.0</network>
 </securenet>
 </securenets>
 <server_type>master</server_type>
 <slaves config:type="list"/>
 <start_ypbind config:type="boolean">false</start_ypbind>
 <start_yppasswdd config:type="boolean">false</start_yppasswdd>
 <start_ypxfrd config:type="boolean">false</start_ypxfrd>
 </nis_server>

Attribute, Values, Description

domain

NIS domain name.

Chapter 4. Configuration and installation options

107

maps_to_serve

List of maps which are available for the server.

Values: auto.master, ethers, group, hosts, netgrp, networks, passwd, protocols, rpc,

services, shadow

merge_passwd

Select if your passwd file should be merged with the shadow file (only possible if the shadow

file exists).

Value: true/false

mingid

Minimum GID to include in the user maps.

minuid

Minimum UID to include in the user maps.

nopush

Do not push the changes to worker servers. (Useful if there are none).

Value: true/false

pwd_chfn

YPPWD_CHFN - allow changing the full name

Value: true/false

pwd_chsh

YPPWD_CHSH - allow changing the login shell

Value: true/false

pwd_srcdir

YPPWD_SRCDIR - source directory for passwd data

Default: /etc

securenets

List of allowed hosts to query the NIS server

108

A host address will be allowed if network is equal to the bitwise AND of the host's address

and the netmask.

The entry with netmask 255.0.0.0 and network 127.0.0.0 must exist to allow connections

from the local host.

Entering netmask 0.0.0.0 and network 0.0.0.0 gives access to all hosts.

server_type

Select whether to configure the NIS server as a master or a worker or not to configure a NIS

server.

Values: master, slave, none

slaves

List of host names to configure as NIS server workers.

start_ypbind

This host is also a NIS client (only when client is configured locally).

Value: true/false

start_yppasswdd

Also start the password daemon.

Value: true/false

start_ypxfrd

Also start the map transfer daemon. Fast Map distribution; it will speed up the transfer of

maps to the workers.

Value: true/false

4.17. Hosts definition

Using the host resource, you can add more entries to the /etc/hosts file. Already existing

entries will not be deleted. The following example shows details.

Chapter 4. Configuration and installation options

109

Example 4.47. /etc/hosts

 <host>
 <hosts config:type="list">
 <hosts_entry>
 <host_address>133.3.0.1</host_address>
 <names config:type="list">
 <name>booking</name>
 </names>
 </hosts_entry>
 <hosts_entry>
 <host_address>133.3.0.5</host_address>
 <names config:type="list">
 <name>test-machine</name>
 </names>
 </hosts_entry>
 </hosts>
 </host>

4.18. Windows domain membership

Using the samba-client resource, you can configure membership of a workgroup, NT domain,

or Active Directory domain.

Example 4.48. Samba client configuration

 <samba-client>
 <disable_dhcp_hostname config:type="boolean">true</disable_dhcp_hostname>
 <global>
 <security>domain</security>
 <usershare_allow_guests>No</usershare_allow_guests>
 <usershare_max_shares>100</usershare_max_shares>
 <workgroup>WORKGROUP</workgroup>
 </global>
 <winbind config:type="boolean">false</winbind>
 </samba-client>

Attribute, Values, Description

disable_dhcp_hostname

Do not allow DHCP to change the host name.

Value: true/false

global/security

Kind of authentication regime (domain technology or Active Directory server (ADS)).

Value: ADS/domain

global/usershare_allow_guests

Sharing guest access is allowed.

Value: No/Yes

110

global/usershare_max_shares

Max. number of shares from smb.conf.

0 means that shares are not enabled.

global/workgroup

Workgroup or domain name.

winbind

Using winbind.

Value: true/false

4.19. Samba server

Configuration of a simple Samba server.

Example 4.49. Samba server configuration

 <samba-server>
 <accounts config:type="list"/>
 <backend/>
 <config config:type="list">
 <listentry>
 <name>global</name>
 <parameters>
 <security>domain</security>
 <usershare_allow_guests>No</usershare_allow_guests>
 <usershare_max_shares>100</usershare_max_shares>
 <workgroup>WORKGROUP</workgroup>
 </parameters>
 </listentry>
 </config>
 <service>Disabled</service>
 <trustdom/>
 <version>2.11</version>
 </samba-server>

Attribute, Values, Description

accounts

List of Samba accounts.

backend

List of available back-ends.

Value: true/false.

Chapter 4. Configuration and installation options

111

config

Setting additional user-defined parameters in /etc/samba/smb.conf.

The example shows parameters in the global section of /etc/samba/smb.conf.

service

Samba service starts during boot.

Value: Enabled/Disabled.

trustdom/

Trusted Domains.

A map of two maps (keys: establish, revoke). Each map contains entries in the format

key: domainnamevalue: password.

version

Samba version.

Default: 2.11.

4.20. Authentication client

The configuration file must be in the JSON format. Verify that both autoyast2 and autoyast2-

installation are installed. Use the Autoinstallation Configuration module in YaST to generate a

valid JSON configuration file. Launch YaST and switch to the Miscellaneous > Autoinstallation

Configuration. Choose Network Services > User Logon Management, click Edit, and configure the

available settings. Click OK when done. To save the generated configuration file, use File > Save.

Using ldaps://

To use LDAP with native SSL (rather than TLS), add the ldaps resource.

4.21. NFS client and server

Configuring a system as an NFS client or an NFS server can be done using the configuration

system. The following examples show how both NFS client and server can be configured.

From SUSE Linux Enterprise Server15 SP7 on, the structure of NFS client configuration has

changed. Some global configuration options were introduced: enable_nfs4 to switch NFS4

support on/off and idmapd_domain to define domain name for rpc.idmapd (this only makes sense

when NFS4 is enabled). Attention: the old structure is not compatible with the new one, and the

control files with an NFS section created on older releases will not work with newer products.

112

For more information on how to install SUSE Linux Enterprise Server onto NFS shares, refer to the

section called “NFS configuration”.

Example 4.50. Network configuration: NFS client

<nfs>
 <enable_nfs4 config:type="boolean">true</enable_nfs4>
 <idmapd_domain>suse.cz</idmapd_domain>
 <nfs_entries config:type="list">
 <nfs_entry>
 <mount_point>/home</mount_point>
 <nfs_options>sec=krb5i,intr,rw</nfs_options>
 <server_path>saurus.suse.cz:/home</server_path>
 <vfstype>nfs4</vfstype>
 </nfs_entry>
 <nfs_entry>
 <mount_point>/work</mount_point>
 <nfs_options>defaults</nfs_options>
 <server_path>bivoj.suse.cz:/work</server_path>
 <vfstype>nfs</vfstype>
 </nfs_entry>
 <nfs_entry>
 <mount_point>/mnt</mount_point>
 <nfs_options>defaults</nfs_options>
 <server_path>fallback.suse.cz:/srv/dist</server_path>
 <vfstype>nfs</vfstype>
 </nfs_entry>
 </nfs_entries>
</nfs>

Example 4.51. Network configuration: NFS server

<nfs_server>
 <nfs_exports config:type="list">
 <nfs_export>
 <allowed config:type="list">
 <allowed_clients>*(ro,root_squash,sync)</allowed_clients>
 </allowed>
 <mountpoint>/home</mountpoint>
 </nfs_export>
 <nfs_export>
 <allowed config:type="list">
 <allowed_clients>*(ro,root_squash,sync)</allowed_clients>
 </allowed>
 <mountpoint>/work</mountpoint>
 </nfs_export>
 </nfs_exports>
 <start_nfsserver config:type="boolean">true</start_nfsserver>
</nfs_server>

4.22. NTP client

NTP client profile incompatible

Starting with SUSE Linux Enterprise Server 15, the NTP client profile has a new

format and is not compatible with previous profiles. You need to update your NTP

client profile used in prior SUSE Linux Enterprise Server versions to be compatible

with version 15 and newer.

Chapter 4. Configuration and installation options

113

❶

❷

❸

❹

❺

Following is an example of the NTP client configuration:

Example 4.52. Network configuration: NTP client

<ntp-client>
 <ntp_policy>auto</ntp_policy>❶
 <ntp_servers config:type="list">
 <ntp_server>
 <address>cz.pool.ntp.org</address>❷
 <iburst config:type="boolean">false</iburst>❸
 <offline config:type="boolean">false</offline>❹
 </ntp_server>
 </ntp_servers>
 <ntp_sync>15</ntp_sync>❺
</ntp-client>

The ntp_policy takes the same values as the NETCONFIG_NTP_POLICY option in /etc/

sysconfig/network/config. The most common options are 'static' and 'auto' (default). See

man 8 netconfig for more details.

URL of the time server or pool of time servers.

iburst speeds up the initial time synchronization for the specific time source after chronyd is

started.

When the offline option is set to true it will prevent the client from polling the time server if it

is not available when chronyd is started. Polling will not resume until it is started manually with

chronyc online. This command does not survive a reboot. Setting it to false ensures that

clients will always attempt to contact the time server, without administrator intervention.

For ntp_sync, enter 'systemd' (default) when running an NTP daemon, an integer interval in

seconds to synchronize using cron, or 'manual' for no automatic synchronization.

The following example illustrates an IPv6 configuration. You may use the server's IP address, host

name, or both:

<ntp-server>
 <address>2001:418:3ff::1:53</address>
</ntp-server>

<ntp-server>
 <address>2.pool.ntp.org</address>
</ntp-server>

4.23. Mail server configuration

For the mail configuration of the client, this module lets you create a detailed mail configuration.

The module contains various options. We recommended you use it at least for the initial

configuration.

114

Example 4.53. Mail configuration

Chapter 4. Configuration and installation options

115

<mail>
 <aliases config:type="list">
 <alias>
 <alias>root</alias>
 <comment></comment>
 <destinations>foo</destinations>
 </alias>
 <alias>
 <alias>test</alias>
 <comment></comment>
 <destinations>foo</destinations>
 </alias>
 </aliases>
 <connection_type config:type="symbol">permanent</connection_type>
 <fetchmail config:type="list">
 <fetchmail_entry>
 <local_user>foo</local_user>
 <password>bar</password>
 <protocol>POP3</protocol>
 <remote_user>foo</remote_user>
 <server>pop.foo.com</server>
 </fetchmail_entry>
 <fetchmail_entry>
 <local_user>test</local_user>
 <password>bar</password>
 <protocol>IMAP</protocol>
 <remote_user>test</remote_user>
 <server>blah.com</server>
 </fetchmail_entry>
 </fetchmail>
 <from_header>test.com</from_header>
 <listen_remote config:type="boolean">true</listen_remote>
 <local_domains config:type="list">
 <domains>test1.com</domains>
 </local_domains>
 <masquerade_other_domains config:type="list">
 <domain>blah.com</domain>
 </masquerade_other_domains>
 <masquerade_users config:type="list">
 <masquerade_user>
 <address>joe@test.com</address>
 <comment></comment>
 <user>joeuser</user>
 </masquerade_user>
 <masquerade_user>
 <address>bar@test.com</address>
 <comment></comment>
 <user>foo</user>
 </masquerade_user>
 </masquerade_users>
 <mta config:type="symbol">postfix</mta>
 <outgoing_mail_server>test.com</outgoing_mail_server>
 <postfix_mda config:type="symbol">local</postfix_mda>
 <smtp_auth config:type="list">
 <listentry>
 <password>bar</password>
 <server>test.com</server>
 <user>foo</user>
 </listentry>
 </smtp_auth>
 <use_amavis config:type="boolean">true</use_amavis>
 <virtual_users config:type="list">
 <virtual_user>
 <alias>test.com</alias>
 <comment></comment>
 <destinations>foo.com</destinations>
 </virtual_user>
 <virtual_user>

116

 <alias>geek.com</alias>
 <comment></comment>
 <destinations>bar.com</destinations>
 </virtual_user>
 </virtual_users>
</mail>

4.24. Apache HTTP server configuration

This section is used for configuration of an Apache HTTP server.

For less experienced users, we would suggest to configure the Apache server using the HTTP

server YaST module. After that, call the AutoYaST configuration module, select the HTTP

server YaST module and clone the Apache settings. These settings can be exported via the

menu File.

Chapter 4. Configuration and installation options

117

Example 4.54. HTTP server configuration

118

 <http-server>
 <Listen config:type="list">
 <listentry>
 <ADDRESS/>
 <PORT>80</PORT>
 </listentry>
 </Listen>
 <hosts config:type="list">
 <hosts_entry>
 <KEY>main</KEY>
 <VALUE config:type="list">
 <listentry>
 <KEY>DocumentRoot</KEY>
 <OVERHEAD>
 #
 # Global configuration that will be applicable for all
 # virtual hosts, unless deleted here or overridden elsewhere.
 #
 </OVERHEAD>
 <VALUE>"/srv/www/htdocs"</VALUE>
 </listentry>
 <listentry>
 <KEY>_SECTION</KEY>
 <OVERHEAD>
 #
 # Configure the DocumentRoot
 #
 </OVERHEAD>
 <SECTIONNAME>Directory</SECTIONNAME>
 <SECTIONPARAM>"/srv/www/htdocs"</SECTIONPARAM>
 <VALUE config:type="list">
 <listentry>
 <KEY>Options</KEY>
 <OVERHEAD>
 # Possible values for the Options directive are "None", "All",
 # or any combination of:
 # Indexes Includes FollowSymLinks SymLinksifOwnerMatch
 # ExecCGI MultiViews
 #
 # Note that "MultiViews" must be named *explicitly*
 # --- "Options All"
 # does not give it to you.
 #
 # The Options directive is both complicated and important.
 # Please see
 # http://httpd.apache.org/docs/2.4/mod/core.html#options
 # for more information.
 </OVERHEAD>
 <VALUE>None</VALUE>
 </listentry>
 <listentry>
 <KEY>AllowOverride</KEY>
 <OVERHEAD>
 # AllowOverride controls what directives may be placed in
 # .htaccess files. It can be "All", "None", or any combination
 # of the keywords:
 # Options FileInfo AuthConfig Limit
 </OVERHEAD>
 <VALUE>None</VALUE>
 </listentry>
 <listentry>
 <KEY>_SECTION</KEY>
 <OVERHEAD>
 # Controls who can get stuff from this server.
 </OVERHEAD>
 <SECTIONNAME>IfModule</SECTIONNAME>
 <SECTIONPARAM>!mod_access_compat.c</SECTIONPARAM>

Chapter 4. Configuration and installation options

119

 <VALUE config:type="list">
 <listentry>
 <KEY>Require</KEY>
 <VALUE>all granted</VALUE>
 </listentry>
 </VALUE>
 </listentry>
 <listentry>
 <KEY>_SECTION</KEY>
 <SECTIONNAME>IfModule</SECTIONNAME>
 <SECTIONPARAM>mod_access_compat.c</SECTIONPARAM>
 <VALUE config:type="list">
 <listentry>
 <KEY>Order</KEY>
 <VALUE>allow,deny</VALUE>
 </listentry>
 <listentry>
 <KEY>Allow</KEY>
 <VALUE>from all</VALUE>
 </listentry>
 </VALUE>
 </listentry>
 </VALUE>
 </listentry>
 <listentry>
 <KEY>Alias</KEY>
 <OVERHEAD>
 # Aliases: aliases can be added as needed (with no limit).
 # The format is Alias fakename realname
 #
 # Note that if you include a trailing / on fakename then the
 # server will require it to be present in the URL. So "/icons"
 # is not aliased in this example, only "/icons/". If the fakename
 # is slash-terminated, then the realname must also be slash
 # terminated, and if the fakename omits the trailing slash, the
 # realname must also omit it.
 # We include the /icons/ alias for FancyIndexed directory listings.
 # If you do not use FancyIndexing, you may comment this out.
 #
 </OVERHEAD>
 <VALUE>/icons/ "/usr/share/apache2/icons/"</VALUE>
 </listentry>
 <listentry>
 <KEY>_SECTION</KEY>
 <OVERHEAD>
 </OVERHEAD>
 <SECTIONNAME>Directory</SECTIONNAME>
 <SECTIONPARAM>"/usr/share/apache2/icons"</SECTIONPARAM>
 <VALUE config:type="list">
 <listentry>
 <KEY>Options</KEY>
 <VALUE>Indexes MultiViews</VALUE>
 </listentry>
 <listentry>
 <KEY>AllowOverride</KEY>
 <VALUE>None</VALUE>
 </listentry>
 <listentry>
 <KEY>_SECTION</KEY>
 <SECTIONNAME>IfModule</SECTIONNAME>
 <SECTIONPARAM>!mod_access_compat.c</SECTIONPARAM>
 <VALUE config:type="list">
 <listentry>
 <KEY>Require</KEY>
 <VALUE>all granted</VALUE>
 </listentry>
 </VALUE>
 </listentry>
 <listentry>

120

 <KEY>_SECTION</KEY>
 <SECTIONNAME>IfModule</SECTIONNAME>
 <SECTIONPARAM>mod_access_compat.c</SECTIONPARAM>
 <VALUE config:type="list">
 <listentry>
 <KEY>Order</KEY>
 <VALUE>allow,deny</VALUE>
 </listentry>
 <listentry>
 <KEY>Allow</KEY>
 <VALUE>from all</VALUE>
 </listentry>
 </VALUE>
 </listentry>
 </VALUE>
 </listentry>
 <listentry>
 <KEY>ScriptAlias</KEY>
 <OVERHEAD>
 # ScriptAlias: This controls which directories contain server
 # scripts. ScriptAliases are essentially the same as Aliases,
 # except that documents in the realname directory are treated
 # as applications and run by the server when requested rather
 # than as documents sent to the client.
 # The same rules about trailing "/" apply to ScriptAlias
 # directives as to Alias.
 #
 </OVERHEAD>
 <VALUE>/cgi-bin/ "/srv/www/cgi-bin/"</VALUE>
 </listentry>
 <listentry>
 <KEY>_SECTION</KEY>
 <OVERHEAD>
 # "/srv/www/cgi-bin" should be changed to wherever your
 # ScriptAliased CGI directory exists, if you have that configured.
 #
 </OVERHEAD>
 <SECTIONNAME>Directory</SECTIONNAME>
 <SECTIONPARAM>"/srv/www/cgi-bin"</SECTIONPARAM>
 <VALUE config:type="list">
 <listentry>
 <KEY>AllowOverride</KEY>
 <VALUE>None</VALUE>
 </listentry>
 <listentry>
 <KEY>Options</KEY>
 <VALUE>+ExecCGI -Includes</VALUE>
 </listentry>
 <listentry>
 <KEY>_SECTION</KEY>
 <SECTIONNAME>IfModule</SECTIONNAME>
 <SECTIONPARAM>!mod_access_compat.c</SECTIONPARAM>
 <VALUE config:type="list">
 <listentry>
 <KEY>Require</KEY>
 <VALUE>all granted</VALUE>
 </listentry>
 </VALUE>
 </listentry>
 <listentry>
 <KEY>_SECTION</KEY>
 <SECTIONNAME>IfModule</SECTIONNAME>
 <SECTIONPARAM>mod_access_compat.c</SECTIONPARAM>
 <VALUE config:type="list">
 <listentry>
 <KEY>Order</KEY>
 <VALUE>allow,deny</VALUE>
 </listentry>
 <listentry>

Chapter 4. Configuration and installation options

121

 <KEY>Allow</KEY>
 <VALUE>from all</VALUE>
 </listentry>
 </VALUE>
 </listentry>
 </VALUE>
 </listentry>
 <listentry>
 <KEY>_SECTION</KEY>
 <OVERHEAD>
 # UserDir: The name of the directory that is appended onto a
 # user's home directory if a ~user request is received.
 # To disable it, simply remove userdir from the list of modules
 # in APACHE_MODULES in /etc/sysconfig/apache2.
 #
 </OVERHEAD>
 <SECTIONNAME>IfModule</SECTIONNAME>
 <SECTIONPARAM>mod_userdir.c</SECTIONPARAM>
 <VALUE config:type="list">
 <listentry>
 <KEY>UserDir</KEY>
 <OVERHEAD>
 # Note that the name of the user directory ("public_html")
 # cannot simply be changed here, since it is a compile time
 # setting. The apache package would need to be rebuilt.
 # You could work around by deleting /usr/sbin/suexec, but
 # then all scripts from the directories would be executed
 # with the UID of the webserver.
 </OVERHEAD>
 <VALUE>public_html</VALUE>
 </listentry>
 <listentry>
 <KEY>Include</KEY>
 <OVERHEAD>
 # The actual configuration of the directory is in
 # /etc/apache2/mod_userdir.conf.
 </OVERHEAD>
 <VALUE>/etc/apache2/mod_userdir.conf</VALUE>
 </listentry>
 </VALUE>
 </listentry>
 <listentry>
 <KEY>IncludeOptional</KEY>
 <OVERHEAD>
 # Include all *.conf files from /etc/apache2/conf.d/.
 #
 # This is mostly meant as a place for other RPM packages to drop
 # in their configuration snippet.
 #
 #
 # You can comment this out here if you want those bits include
 # only in a certain virtual host, but not here.
 </OVERHEAD>
 <VALUE>/etc/apache2/conf.d/*.conf</VALUE>
 </listentry>
 <listentry>
 <KEY>IncludeOptional</KEY>
 <OVERHEAD>
 # The manual... if it is installed ('?' means it will not complain)
 </OVERHEAD>
 <VALUE>/etc/apache2/conf.d/apache2-manual?conf</VALUE>
 </listentry>
 <listentry>
 <KEY>ServerName</KEY>
 <VALUE>linux-wtyj</VALUE>
 </listentry>
 <listentry>
 <KEY>ServerAdmin</KEY>
 <OVERHEAD>

122

 </OVERHEAD>
 <VALUE>root@linux-wtyj</VALUE>
 </listentry>
 <listentry>
 <KEY>NameVirtualHost</KEY>
 <VALUE>192.168.43.2</VALUE>
 </listentry>
 </VALUE>
 </hosts_entry>
 <hosts_entry>
 <KEY>192.168.43.2/secondserver.suse.de</KEY>
 <VALUE config:type="list">
 <listentry>
 <KEY>DocumentRoot</KEY>
 <VALUE>/srv/www/htdocs</VALUE>
 </listentry>
 <listentry>
 <KEY>ServerName</KEY>
 <VALUE>secondserver.suse.de</VALUE>
 </listentry>
 <listentry>
 <KEY>ServerAdmin</KEY>
 <VALUE>second_server@suse.de</VALUE>
 </listentry>
 <listentry>
 <KEY>_SECTION</KEY>
 <SECTIONNAME>Directory</SECTIONNAME>
 <SECTIONPARAM>/srv/www/htdocs</SECTIONPARAM>
 <VALUE config:type="list">
 <listentry>
 <KEY>AllowOverride</KEY>
 <VALUE>None</VALUE>
 </listentry>
 <listentry>
 <KEY>Require</KEY>
 <VALUE>all granted</VALUE>
 </listentry>
 </VALUE>
 </listentry>
 </VALUE>
 </hosts_entry>
 </hosts>
 <modules config:type="list">
 <module_entry>
 <change>enable</change>
 <name>socache_shmcb</name>
 <userdefined config:type="boolean">true</userdefined>
 </module_entry>
 <module_entry>
 <change>enable</change>
 <name>reqtimeout</name>
 <userdefined config:type="boolean">true</userdefined>
 </module_entry>
 <module_entry>
 <change>enable</change>
 <name>authn_core</name>
 <userdefined config:type="boolean">true</userdefined>
 </module_entry>
 <module_entry>
 <change>enable</change>
 <name>authz_core</name>
 <userdefined config:type="boolean">true</userdefined>
 </module_entry>
 </modules>
 <service config:type="boolean">true</service>
 <version>2.9</version>
 </http-server>

Chapter 4. Configuration and installation options

123

List Name, List Elements, Description

Listen

List of host Listen settings

PORT

port address

ADDRESS

Network address. All addresses will be taken if this entry is empty.

hosts

List of Hosts configuration

Key

Host name; <KEY>main</KEY> defines the main hosts, for example

<KEY>192.168.43.2/secondserver.suse.de</KEY>

VALUE

List of different values describing the host.

modules

Module list. Only user-defined modules need to be described.

name

Module name

userdefined

For historical reasons, it is always set to true.

change

For historical reasons, it is always set to enable.

Element, Description, Comment

version

Version of used Apache server

Only for information. Default 2.9

124

service

Enable Apache service

Optional. Default: false

Firewall

To run an Apache server correctly, make sure the firewall is configured appropriately.

4.25. Squid server

Squid is a caching and forwarding Web proxy.

Chapter 4. Configuration and installation options

125

Example 4.55. Squid server configuration

126

 <squid>
 <acls config:type="list">
 <listentry>
 <name>QUERY</name>
 <options config:type="list">
 <option>cgi-bin \?</option>
 </options>
 <type>urlpath_regex</type>
 </listentry>
 <listentry>
 <name>apache</name>
 <options config:type="list">
 <option>Server</option>
 <option>^Apache</option>
 </options>
 <type>rep_header</type>
 </listentry>
 <listentry>
 <name>all</name>
 <options config:type="list">
 <option>0.0.0.0/0.0.0.0</option>
 </options>
 <type>src</type>
 </listentry>
 <listentry>
 <name>manager</name>
 <options config:type="list">
 <option>cache_object</option>
 </options>
 <type>proto</type>
 </listentry>
 <listentry>
 <name>localhost</name>
 <options config:type="list">
 <option>127.0.0.1/255.255.255.255</option>
 </options>
 <type>src</type>
 </listentry>
 <listentry>
 <name>to_localhost</name>
 <options config:type="list">
 <option>127.0.0.0/8</option>
 </options>
 <type>dst</type>
 </listentry>
 <listentry>
 <name>SSL_ports</name>
 <options config:type="list">
 <option>443</option>
 </options>
 <type>port</type>
 </listentry>
 <listentry>
 <name>Safe_ports</name>
 <options config:type="list">
 <option>80</option>
 </options>
 <type>port</type>
 </listentry>
 <listentry>
 <name>Safe_ports</name>
 <options config:type="list">
 <option>21</option>
 </options>
 <type>port</type>
 </listentry>
 <listentry>

Chapter 4. Configuration and installation options

127

 <name>Safe_ports</name>
 <options config:type="list">
 <option>443</option>
 </options>
 <type>port</type>
 </listentry>
 <listentry>
 <name>Safe_ports</name>
 <options config:type="list">
 <option>70</option>
 </options>
 <type>port</type>
 </listentry>
 <listentry>
 <name>Safe_ports</name>
 <options config:type="list">
 <option>210</option>
 </options>
 <type>port</type>
 </listentry>
 <listentry>
 <name>Safe_ports</name>
 <options config:type="list">
 <option>1025-65535</option>
 </options>
 <type>port</type>
 </listentry>
 <listentry>
 <name>Safe_ports</name>
 <options config:type="list">
 <option>280</option>
 </options>
 <type>port</type>
 </listentry>
 <listentry>
 <name>Safe_ports</name>
 <options config:type="list">
 <option>488</option>
 </options>
 <type>port</type>
 </listentry>
 <listentry>
 <name>Safe_ports</name>
 <options config:type="list">
 <option>591</option>
 </options>
 <type>port</type>
 </listentry>
 <listentry>
 <name>Safe_ports</name>
 <options config:type="list">
 <option>777</option>
 </options>
 <type>port</type>
 </listentry>
 <listentry>
 <name>CONNECT</name>
 <options config:type="list">
 <option>CONNECT</option>
 </options>
 <type>method</type>
 </listentry>
 </acls>
 <http_accesses config:type="list">
 <listentry>
 <acl config:type="list">
 <listentry>manager</listentry>
 <listentry>localhost</listentry>
 </acl>

128

 <allow config:type="boolean">true</allow>
 </listentry>
 <listentry>
 <acl config:type="list">
 <listentry>manager</listentry>
 </acl>
 <allow config:type="boolean">false</allow>
 </listentry>
 <listentry>
 <acl config:type="list">
 <listentry>!Safe_ports</listentry>
 </acl>
 <allow config:type="boolean">false</allow>
 </listentry>
 <listentry>
 <acl config:type="list">
 <listentry>CONNECT</listentry>
 <listentry>!SSL_ports</listentry>
 </acl>
 <allow config:type="boolean">false</allow>
 </listentry>
 <listentry>
 <acl config:type="list">
 <listentry>localhost</listentry>
 </acl>
 <allow config:type="boolean">true</allow>
 </listentry>
 <listentry>
 <acl config:type="list">
 <listentry>all</listentry>
 </acl>
 <allow config:type="boolean">false</allow>
 </listentry>
 </http_accesses>
 <http_ports config:type="list">
 <listentry>
 <host/>
 <port>3128</port>
 <transparent config:type="boolean">false</transparent>
 </listentry>
 </http_ports>
 <refresh_patterns config:type="list">
 <listentry>
 <case_sensitive config:type="boolean">true</case_sensitive>
 <max>10080</max>
 <min>1440</min>
 <percent>20</percent>
 <regexp>^ftp:</regexp>
 </listentry>
 <listentry>
 <case_sensitive config:type="boolean">true</case_sensitive>
 <max>1440</max>
 <min>1440</min>
 <percent>0</percent>
 <regexp>^gopher:</regexp>
 </listentry>
 <listentry>
 <case_sensitive config:type="boolean">true</case_sensitive>
 <max>4320</max>
 <min>0</min>
 <percent>20</percent>
 <regexp>.</regexp>
 </listentry>
 </refresh_patterns>
 <service_enabled_on_startup config:type="boolean">true</
service_enabled_on_startup>
 <settings>
 <access_log config:type="list">
 <listentry>/var/log/squid/access.log</listentry>

Chapter 4. Configuration and installation options

129

 </access_log>
 <cache_dir config:type="list">
 <listentry>ufs</listentry>
 <listentry>/var/cache/squid</listentry>
 <listentry>100</listentry>
 <listentry>16</listentry>
 <listentry>256</listentry>
 </cache_dir>
 <cache_log config:type="list">
 <listentry>/var/log/squid/cache.log</listentry>
 </cache_log>
 <cache_mem config:type="list">
 <listentry>8</listentry>
 <listentry>MB</listentry>
 </cache_mem>
 <cache_mgr config:type="list">
 <listentry>webmaster</listentry>
 </cache_mgr>
 <cache_replacement_policy config:type="list">
 <listentry>lru</listentry>
 </cache_replacement_policy>
 <cache_store_log config:type="list">
 <listentry>/var/log/squid/store.log</listentry>
 </cache_store_log>
 <cache_swap_high config:type="list">
 <listentry>95</listentry>
 </cache_swap_high>
 <cache_swap_low config:type="list">
 <listentry>90</listentry>
 </cache_swap_low>
 <client_lifetime config:type="list">
 <listentry>1</listentry>
 <listentry>days</listentry>
 </client_lifetime>
 <connect_timeout config:type="list">
 <listentry>2</listentry>
 <listentry>minutes</listentry>
 </connect_timeout>
 <emulate_httpd_log config:type="list">
 <listentry>off</listentry>
 </emulate_httpd_log>
 <error_directory config:type="list">
 <listentry/>
 </error_directory>
 <ftp_passive config:type="list">
 <listentry>on</listentry>
 </ftp_passive>
 <maximum_object_size config:type="list">
 <listentry>4096</listentry>
 <listentry>KB</listentry>
 </maximum_object_size>
 <memory_replacement_policy config:type="list">
 <listentry>lru</listentry>
 </memory_replacement_policy>
 <minimum_object_size config:type="list">
 <listentry>0</listentry>
 <listentry>KB</listentry>
 </minimum_object_size>
 </settings>
 </squid>

Attribute, Values, Description

acls

List of Access Control Settings (ACLs).

130

Each list entry contains the name, type, and additional options. Use the YaST Squid

configuration module to get an overview of possible entries.

http_accesses

In the Access Control table, access can be denied or allowed to ACL Groups.

If there are more ACL Groups in one definition, access will be allowed or denied to members

who belong to all ACL Groups at the same time.

The Access Control table is checked in the order listed here. The first matching entry is used.

http_ports

Define all ports where Squid will listen for clients' HTTP requests.

Host can contain a host name or IP address or remain empty.

transparent disables PMTU discovery when transparent.

refresh_patterns

Refresh patterns define how Squid treats the objects in the cache.

The refresh patterns are checked in the order listed here. The first matching entry is used.

Min determines how long (in minutes) an object should be considered fresh if no explicit

expiry time is given. Max is the upper limit of how long objects without an explicit expiry time

will be considered fresh. Percent is the percentage of the object's age (time since last

modification). An object without an explicit expiry time will be considered fresh.

settings

Map of all available general parameters with default values.

Use the YaST Squid configuration module to get an overview about possible entries.

service_enabled_on_startup

Squid service start when booting.

Value: true/false

4.26. FTP server

Configure your FTP Internet server settings.

Chapter 4. Configuration and installation options

131

Example 4.56. FTP server configuration:

 <ftp-server>
 <AnonAuthen>2</AnonAuthen>
 <AnonCreatDirs>NO</AnonCreatDirs>
 <AnonMaxRate>0</AnonMaxRate>
 <AnonReadOnly>NO</AnonReadOnly>
 <AntiWarez>YES</AntiWarez>
 <Banner>Welcome message</Banner>
 <CertFile/>
 <ChrootEnable>NO</ChrootEnable>
 <EnableUpload>YES</EnableUpload>
 <FTPUser>ftp</FTPUser>
 <FtpDirAnon>/srv/ftp</FtpDirAnon>
 <FtpDirLocal/>
 <GuestUser/>
 <LocalMaxRate>0</LocalMaxRate>
 <MaxClientsNumber>10</MaxClientsNumber>
 <MaxClientsPerIP>3</MaxClientsPerIP>
 <MaxIdleTime>15</MaxIdleTime>
 <PasMaxPort>40500</PasMaxPort>
 <PasMinPort>40000</PasMinPort>
 <PassiveMode>YES</PassiveMode>
 <SSL>0</SSL>
 <SSLEnable>NO</SSLEnable>
 <SSLv2>NO</SSLv2>
 <SSLv3>NO</SSLv3>
 <StartDaemon>2</StartDaemon>
 <TLS>YES</TLS>
 <Umask/>
 <UmaskAnon/>
 <UmaskLocal/>
 <VerboseLogging>NO</VerboseLogging>
 <VirtualUser>NO</VirtualUser>
 </ftp-server>

Element, Description, Comment

AnonAuthen

Enable/disable anonymous and local users.

Authenticated Users Only: 1; Anonymous Only: 0; Both: 2

AnonCreatDirs

Anonymous users can create directories.

Values: YES/NO

AnonReadOnly

Anonymous users can upload.

Values: YES/NO

AnonMaxRate

The maximum data transfer rate permitted for anonymous clients.

132

KB/s

AntiWarez

Disallow downloading of files that were uploaded but not validated by a local admin.

Values: YES/NO

Banner

Specify the name of a file containing the text to display when someone connects to the

server.

CertFile

DSA certificate to use for SSL-encrypted connections

This option specifies the location of the DSA certificate to use for SSL-encrypted

connections.

ChrootEnable

When enabled, local users will by default be placed in a chroot jail in their home directory

after login.

Warning: This option has security implications. Values: YES/NO

EnableUpload

If enabled, FTP users can upload.

To allow anonymous users to upload, enable AnonReadOnly. Values: YES/NO

FTPUser

Defines the anonymous FTP user.

FtpDirAnon

FTP directory for anonymous users.

Specify a directory which is used for anonymous FTP users.

FtpDirLocal

FTP directory for authenticated users.

Specify a directory which is used for FTP authenticated users.

Chapter 4. Configuration and installation options

133

LocalMaxRate

The maximum data transfer rate permitted for local authenticated users.

KB/s

MaxClientsNumber

The maximum number of clients allowed to connect.

MaxClientsPerIP

Defines the maximum number of clients for one IP.

This limits the number of clients allowed to connect from a single source Internet address.

MaxIdleTime

The maximum time (timeout) a remote client may wait between FTP commands.

Minutes

PasMaxPort

Maximum value for a port range for passive connection replies.

PassiveMode needs to be set to YES.

PasMinPort

Minimum value for a port range for passive connection replies.

PassiveMode needs to be set to YES.

PassiveMode

Enable Passive Mode

Value: YES/NO

SSL

Security Settings

Disable TLS/SSL: 0; Accept TLS/SSL: 1; Refuse Connections Without TLS/SSL: 2

SSLEnable

If enabled, SSL connections are allowed.

134

Value: YES/NO

SSLv2

If enabled, SSL version 2 connections are allowed.

Value: YES/NO

SSLv3

If enabled, SSL version 3 connections are allowed.

Value: YES/NO

StartDaemon

How the FTP daemon will be started.

Manually: 0; when booting: 1; via systemd socket: 2

TLS

If enabled, TLS connections are allowed.

Value: YES/NO

Umask

File creation mask, in the format (umask for files):(umask for directories).

For example 177:077 if you feel paranoid.

UmaskAnon

The value to which the umask for file creation is set for anonymous users.

To specify octal values, remember the "0" prefix, otherwise the value will be treated as a

base-10 integer.

UmaskLocal

Umask for authenticated users.

To specify octal values, remember the "0" prefix, otherwise the value will be treated as a

base-10 integer.

VerboseLogging

When enabled, all FTP requests and responses are logged.

Chapter 4. Configuration and installation options

135

Value: YES/NO

VirtualUser

By using virtual users, FTP accounts can be administrated without affecting system

accounts.

Value: YES/NO

Firewall

Proper Firewall setting will be required for the FTP server to run correctly.

4.27. TFTP server

Configure your TFTP Internet server settings.

Use this to enable a server for TFTP (trivial file transfer protocol). The server will be started using

the systemd socket.

Note that TFTP and FTP are not the same.

Example 4.57. TFTP server configuration:

 <tftp-server>
 <start_tftpd config:type="boolean">true</start_tftpd>
 <tftp_directory>/tftpboot</tftp_directory>
 </tftp-server>

start_tftpd

Enabling TFTP server service. Value: true/ false.

tftp_directory

Boot Image Directory: Specify the directory where served files are located.

The usual value is /tftpboot. The directory will be created if it does not exist. The server

uses this as its root directory (using the -s option).

4.28. Firstboot workflow

The YaST firstboot utility (YaST Initial System Configuration), which runs after the installation is

completed, lets you configure the freshly installed system. On the first boot after the installation,

users are guided through a series of steps that allow for easier configuration of a system. YaST

firstboot does not run by default and needs to be configured to run.

136

Example 4.58. Enabling firstboot workflow

 <firstboot>
 <firstboot_enabled config:type="boolean">true</firstboot_enabled>
 </firstboot>

4.29. Security settings

Using the features of this module, you can change the local security settings on the target system.

The local security settings include the boot configuration, login settings, password settings, user

addition settings, and file permissions.

Configuring the security settings automatically is similar to the Custom Settings in the security

module available in the running system. This allows you create a customized configuration.

Example 4.59. Security configuration

See the reference for the meaning and the possible values of the settings in the following example.

<security>
 <console_shutdown>ignore</console_shutdown>
 <displaymanager_remote_access>no</displaymanager_remote_access>
 <fail_delay>3</fail_delay>
 <faillog_enab>yes</faillog_enab>
 <gid_max>60000</gid_max>
 <gid_min>101</gid_min>
 <gdm_shutdown>root</gdm_shutdown>
 <lastlog_enab>yes</lastlog_enab>
 <encryption>md5</encryption>
 <obscure_checks_enab>no</obscure_checks_enab>
 <pass_max_days>99999</pass_max_days>
 <pass_max_len>8</pass_max_len>
 <pass_min_days>1</pass_min_days>
 <pass_min_len>6</pass_min_len>
 <pass_warn_age>14</pass_warn_age>
 <passwd_use_cracklib>yes</passwd_use_cracklib>
 <permission_security>secure</permission_security>
 <run_updatedb_as>nobody</run_updatedb_as>
 <uid_max>60000</uid_max>
 <uid_min>500</uid_min>
 <selinux_mode>permissive</selinux_mode>
 <lsm_select>selinux</lsm_select>
</security>

4.29.1. Password settings options

Use the <pass_* resources to change various password settings, such as minimum password

length, password expiration, and more.

Use the <encryption> resource to activate one of the encryption methods currently supported. If

not set, sha512 is configured.

You can use one of the following encryption methods:

md5 — allows longer passwords with 128-bit hash value

sha256 or sha512 — widely used secure hash algorithm

•

•

Chapter 4. Configuration and installation options

137

des — we do not recommend using this encryption method because of insufficient security

4.29.2. Boot settings

Use the security resource, to change various boot settings.

How to interpret Ctrl— Alt— Delete ?

When someone at the console has pressed the Ctrl—Alt—Delete key combination, the

system usually reboots. Sometimes it is desirable to ignore this event, for example, when the

system serves as both workstation and server.

Shutdown behavior of GDM

Configure a list of users allowed to shut down the machine from GDM.

4.29.3. Login settings

Change various login settings. These settings are mainly stored in the /etc/login.defs file.

4.29.4. New user settings (useradd settings)

Set the minimum and maximum possible user and group IDs.

4.29.5. Linux Security Module (LSM) settings

In SUSE Linux Enterprise 15 SP4 and up, the installation control file has a new option,

<lsm_select> for configuring which major Linux Security Module (LSM) will be activated by

default after installation: AppArmor, SELinux, or none.

selinux_mode

Optional. Configure the SELinux mode. Values: permissive, enforcing and disabled.

lsm_select

Optional. Major Linux Security Module to be selected during installation. Values: selinux,

apparmor, or none.

4.29.6. Using OpenSCAP security policies

YaST allows for system hardening using OpenSCAP security policies. Checking and applying a

security policy happens in two phases:

At installation, YaST checks a subset of the security policy rules, especially those that are

hard to fix after the installation, such as encrypting the file system. If the system described in

•

•

138

the profile does not comply with any of these rules, AutoYaST will report the problems and

abort the installation.

Additionally, AutoYaST installs and configures the ssg-apply tool. During first boot, ssg-

apply can be run to scan the system and, optionally, remediate system to meet the selected

policy.

Availability in SUSE Linux Enterprise 15 SP4

This feature is available for SUSE Linux Enterprise 15 SP4 GM via self-update or

using the QU2 media. Make sure to enable updates during installation with

<install_updates t="boolean">true</install_updates> in the

<suse_register> section (see the section called “System registration and

extension selection”).

If you install without an internet connection, add the Basesystem module from the

QU2 medium to the <add_on_products> section:

<listentry t="map">
 <media_url>relurl://</media_url>
 <product>sle-module-basesystem</product>
 <product_dir>/Module-Basesystem</product_dir>
</listentry>

For more information, refer to the section called “Installing additional/customized

packages or products”.

The security_policy section selects a security policy and configures ssg-apply.

policy

Selects the security policy to check or apply. Currently, only the Defense Information

Systems Agency Security Technical Implementation Guide (DISA STIG) is supported. Use

the name stig to refer to this policy. This element is mandatory.

action

Specify what ssg-apply should do during first boot.

scan: scan the system during first boot. This is the default behavior.

remediate: scan and remediate the system to comply with the selected policy.

none: configure but do not run ssg-apply during first boot. This option is useful if

you want to modify the policy before hardening your system.

•

•

•

•

Chapter 4. Configuration and installation options

139

Example 4.60. Select the Defense Information Systems Agency Security Technical

Implementation Guide

The following excerpt instructs AutoYaST to check the DISA STIG policy and remediate the system

during the first boot.

<security>
 <security_policy>
 <policy>stig</policy>
 <action>remediate</action>
 </security_policy>
</security>

4.30. Linux audit framework (LAF)

This module allows the configuration of the audit daemon and to add rules for the audit subsystem.

Example 4.61. LAF configuration

 <audit-laf>
 <auditd>
 <flush>INCREMENTAL</flush>
 <freq>20</freq>
 <log_file>/var/log/audit/audit.log</log_file>
 <log_format>RAW</log_format>
 <max_log_file>5</max_log_file>
 <max_log_file_action>ROTATE</max_log_file_action>
 <name_format>NONE</name_format>
 <num_logs>4</num_logs>
 </auditd>
 <rules/>
 </audit-laf>

Attribute, Values, Description

auditd/flush

Describes how to write the data to disk.

If set to INCREMENTAL the Frequency parameter tells how many records to write before

issuing an explicit flush to disk. NONE means: no special effort is made to flush data, DATA:

keep data portion synchronized, SYNC: keep data and metadata fully synchronized.

auditd/freq

This parameter tells how many records to write before issuing an explicit flush to disk.

The parameter flush needs to be set to INCREMENTAL.

auditd/log_file

The full path name to the log file.

140

auditd/log_fomat

How much information needs to be logged.

Set RAW to log all data (store in a format exactly as the kernel sends it) or NOLOG to discard

all audit information instead of writing it to disk (does not affect data sent to the dispatcher).

auditd/max_log_file

How much information needs to be logged.

Unit: Megabytes

auditd/num_logs

Number of log files.

max_log_file_action needs to be set to ROTATE

auditd/max_log_file_action

What happens if the log capacity has been reached.

If the action is set to ROTATE the Number of Log Files specifies the number of files to keep.

Set to SYSLOG, the audit daemon will write a warning to the system log. With SUSPEND the

daemon stops writing records to disk. IGNORE means do nothing, KEEP_LOGS is similar to

ROTATE, but log files are not overwritten.

auditd/name_format

Computer Name Format describes how to write the computer name to the log file.

If USER is set, the user-defined name is used. NONE means no computer name is inserted.

HOSTNAME uses the name returned by the 'gethostname' syscall. FQD uses the fully qualified

domain name.

rules

Rules for auditctl

You can edit the rules manually, which we only recommend for advanced users. For more

information about all options, see man auditctl.

Chapter 4. Configuration and installation options

141

4.31. Users and groups

4.31.1. Users

A list of users can be defined in the <users> section. To be able to log in, make sure that either

the root users are set up or rootpassword is specified as a linuxrc option.

Example 4.62. Minimal user configuration

<users config:type="list">
 <user>
 <username>root</username>
 <user_password>password</user_password>
 <encrypted config:type="boolean">false</encrypted>
 </user>
 <user>
 <username>tux</username>
 <user_password>password</user_password>
 <encrypted config:type="boolean">false</encrypted>
 </user>
</users>

The following example shows a more complex scenario. System-wide default settings from /etc/

default/useradd, such as the shell or the parent directory for the home directory, are applied.

Example 4.63. Complex user configuration

<users config:type="list">
 <user>
 <username>root</username>
 <user_password>password</user_password>
 <uid>1001</uid>
 <gid>100</gid>
 <encrypted config:type="boolean">false</encrypted>
 <fullname>Root User</fullname>
 <authorized_keys config:type="list">
 <listentry> ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDKLt1vnW2vTJpBp3VK91rFsBvpY97NljsVLdgUrlPbZ/
L51FerQQ+djQ/ivDASQjO+567nMGqfYGFA/De1EGMMEoeShza67qjNi14L1HBGgVojaNajMR/
NI2d1kDyvsgRy7D7FT5UGGUNT0dlcSD3b85zwgHeYLidgcGIoKeRi7HpVDOOTyhwUv4sq3ubrPCWARgP
eOLdVFa9clC8PTZdxSeKp4jpNjIHEyREPin2Un1luCIPWrOYyym7aRJEPopCEqBA9HvfwpbuwBI5F0uI
WZgSQLfpwW86599fBo/PvMDa96DpxH1VlzJlAIHQsMkMHbsCazPNC0++Kp5ZVERiH
root@example.net</listentry>
 </authorized_keys>
 </user>
 <user>
 <username>tux</username>
 <user_password>password</user_password>
 <uid>1002</uid>
 <gid>100</gid>
 <encrypted config:type="boolean">false</encrypted>
 <fullname>Plain User</fullname>
 <home>/Users/plain</home>
 <password_settings>
 <max>120</max>
 <inact>5</inact>
 </password_settings>
 </user>
</users>

142

authorized_keys file will be overwritten

If the profile defines a set of SSH authorized keys for a user in the

authorized_keys section, an existing $HOME/.ssh/authorized_keys file will

be overwritten. If not existing, the file will be created with the content specified. Avoid

overwriting an existing authorized_keys file by not specifying the respective

section in the AutoYaST control file.

Combine rootpassword and root user options

It is possible to specify rootpassword in linuxrc and have a user section for the

root user. If this section is missing the password, then the password from linuxrc

will be used. Passwords in profiles take precedence over linuxrc passwords.

Do not create a superuser account with a name other than root

While it is technically possible to create an account with the user ID (uid) 0 and a

name other than root, certain applications, scripts or third-party products may rely

on the existence of a user called root. While such a configuration always targets

individual environments, necessary adjustments could be overwritten by vendor

updates, so this becomes an ongoing task rather than a one-time setting. This is

especially true in very complex setups involving third-party applications, where it

needs to be verified with every vendor involved whether a rename of the root

account is supported.

As the implications for renaming the root account cannot be foreseen, SUSE does

not support renaming the root account.

Usually, the idea behind renaming the root account is to hide it or make it

unpredictable. However, /etc/passwd requires 644 permissions for regular users,

so any user of the system can retrieve the login name for the user ID 0. For better

ways to secure the root account, refer to the section called “Restricting root logins”

in “Security and Hardening Guide” and the section called “Restricting SSH logins” in

“Security and Hardening Guide”.

Chapter 4. Configuration and installation options

143

https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf

Specifying a user ID (uid)

Each user on a Linux system has a numeric user ID. You can either specify such a

user ID within the AutoYaST control file manually by using uid, or let the system

automatically choose a user ID by not using uid.

User IDs should be unique throughout the system. If not, some applications such as

the login manager gdm may no longer work as expected.

When adding users with the AutoYaST control file, it is strongly recommended not to

mix user-defined IDs and automatically provided IDs. When doing so, unique IDs

cannot be guaranteed. Either specify IDs for all users added with the AutoYaST

control file or let the system choose the ID for all users.

Attribute, Values, Description

username

Text

<username>lukesw</username>

Required. It should be a valid user name. Check man 8 useradd if you are not sure.

fullname

Text

<fullname>Tux Torvalds</fullname>

Optional. User's full name.

forename

Text

<forname>Tux</forename>

Optional. User's forename.

surname

Text

<surname>Skywalker</surname>

Optional. User's surname.

144

uid

Number

<uid>1001</uid>

Optional. User ID. It should be a unique and must be a non-negative number. If not

specified, AutoYaST will automatically choose a user ID. Also refer to Specifying a user ID

(uid) for additional information.

gid

Number

<gid>100</gid>

Optional. Initial group ID. It must be a unique and non-negative number. Moreover it must

refer to an existing group.

home

Path

<home>/home/luke</home>

Optional. Absolute path to the user's home directory. By default, /home/username will be

used (for example, alice's home directory will be /home/alice).

home_btrfs_subvolume

Boolean

<home_btrfs_subvolume config:type="boolean">true</home_btrfs_subvolume>

Optional. Generates the home directory in a Btrfs subvolume. Disabled by default.

shell

Path

<shell>/usr/bin/zsh</shell>

Optional. /bin/bash is the default value. If you choose another one, make sure that it is

installed (adding the corresponding package to the software section).

user_password

Text

<user_password>some-password</user_password>

Chapter 4. Configuration and installation options

145

Optional. A user's password can be written in plain text (not recommended) or in encrypted

form. To create an encrypted password, use mkpasswd. Enter the password as written in /

etc/shadow (second column). To enable or disable the use of encrypted passwords in the

profile, see the encrypted parameter. If you enter an exclamation mark (!) with encrypted

passwords enabled, the value is copied to the password field of /etc/shadow. Therefore,

you get an account with a locked password that cannot log in on console.

encrypted

Boolean

<encrypted config:type="boolean">true</encrypted>

Optional. Considered false if not present. Indicates if the user's password in the profile is

encrypted or not. AutoYaST supports standard encryption algorithms (see man 3 crypt).

password_settings

Password settings

<password_settings>
 <expire/>
 <max>60</max>
 <warn>7</warn>
</password_settings>

Optional. Some password settings can be customized: expire (account expiration date in

format YYYY-MM-DD), flag (/etc/shadow flag), inact (number of days after password

expiration that account is disabled), max (maximum number of days a password is valid),

min (grace period in days until which a user can change password after it has expired) and

warn (number of days before expiration when the password change reminder starts).

authorized_keys

List of authorized keys

<authorized_keys config:type="list">
 <listentry>ssh-rsa ...</listentry>
</authorized_keys>

A list of authorized keys to be written to $HOME/.ssh/authorized_keys. See example

below.

4.31.2. User defaults

The profile can specify a set of default values for new users like password expiration, initial group,

home directory prefix, etc. Besides using them as default values for the users that are defined in

the profile, AutoYaST will write those settings to /etc/default/useradd or any other

appropriate file to be read for useradd.

146

Attribute, Values, Description

group

Text

<group>100</group>

Optional. Default initial login group.

home

Path

<home>/home</home>

Optional. User's home directory prefix.

expire

Date

<expire>2017-12-31</expire>

Optional. Default password expiration date in YYYY-MM-DD format.

inactive

Number

<inactive>3</inactive>

Optional. Number of days after which an expired account is disabled.

shell

Path

<shell>/usr/bin/fish</shell>

Default login shell. /bin/bash is the default value. If you choose another one, make sure

that it is installed (adding the corresponding package to the software section).

umask

File creation mode mask

<umask>022</umask>

Set the file creation mode mask for the home directory. By default useradd will use 022.

Check man 8 useradd and man 1 umask for further information.

Chapter 4. Configuration and installation options

147

4.31.3. Groups

A list of groups can be defined in <groups> as shown in the example.

Example 4.64. Group configuration

<groups config:type="list">
 <group>
 <gid>100</gid>
 <groupname>users</groupname>
 <userlist>bob,alice</userlist>
 </group>
</groups>

Attribute, Values, Description

groupname

Text

<groupname>users</groupname>

Required. It should be a valid group name. Check man 8 groupadd if you are not sure.

gid

Number

<gid>100</gid>

Optional. Group ID. It must be a unique and non-negative number.

userlist

Users list

<userlist>bob,alice</userlist>

Optional. A list of users who belong to the group. User names must be separated by

commas.

4.31.4. Login settings

Two special login settings can be enabled through an AutoYaST profile: autologin and password-

less login. Both of them are disabled by default.

Example 4.65. Enabling autologin and password-less login

<login_settings>
 <autologin_user>vagrant</autologin_user>
 <password_less_login config:type="boolean">true</password_less_login>
</login_settings>

148

Attribute, Values, Description

password_less_login

Boolean

<password_less_login config:type="boolean">true</password_less_login>

Optional. Enables password-less login. It only affects graphical login.

autologin_user

Text

<autologin_user>alice</autologin_user>

Optional. Enables autologin for the given user.

4.32. Custom user scripts

By adding scripts to the auto-installation process you can customize the installation according to

your needs and take control in different stages of the installation.

In the auto-installation process, five types of scripts can be executed at different points in time

during the installation:

Except for init scripts, all scripts must be included in the <scripts> section.

pre-scripts (very early, before anything else really happens)

postpartitioning-scripts (after partitioning and mounting to /mnt but before RPM

installation)

chroot-scripts (after the package installation, before the first boot)

post-scripts (during the first boot of the installed system, no services running)

Init scripts (when the installed system is first booted, when all services are running) are not

executed by YaST and therefore have a special Status. See the section called “Init scripts” for

further information.

4.32.1. Pre-scripts

Executed before YaST does any real change to the system (before partitioning and package

installation but after the hardware detection).

You can use a pre-script to modify your control file and let AutoYaST reread it. Find your control file

in /tmp/profile/autoinst.xml. Adjust the file and store the modified version in /tmp/

profile/modified.xml. AutoYaST will read the modified file after the pre-script finishes.

•

•

•

•

Chapter 4. Configuration and installation options

149

It is also possible to modify the storage devices in your pre-scripts. For example, you can create

new partitions or change the configuration of certain technologies like multipath. AutoYaST always

inspects the storage devices again after executing all the pre-scripts.

Pre-scripts with confirmation

Pre-scripts are executed at an early stage of the installation. This means if you have

requested to confirm the installation, these scripts will be executed before the

confirmation screen shows up (profile/install/general/mode/confirm).

Pre-scripts and Zypper

To call Zypper in the pre-script you will need to set the environment variable

ZYPP_LOCKFILE_ROOT="/var/run/autoyast" to prevent conflicts with the running

YaST process.

The pre-script elements must be placed as follows:

<scripts>
 <pre-scripts config:type="list">
 <script>
 ...
 </script>
 </pre-scripts>
</scripts>

4.32.2. Postpartitioning scripts

Executed after YaST has done the partitioning and written /etc/fstab. The empty system is

already mounted to /mnt.

The postpartitioning-script elements must be placed as follows:

<scripts>
 <postpartitioning-scripts config:type="list">
 <script>
 ...
 </script>
 </postpartitioning-scripts>
</scripts>

4.32.3. Chroot environment scripts

Chroot scripts are executed before the machine reboots for the first time. You can execute chroot

scripts before the installation chroots into the installed system and configures the boot loader, or

you can execute a script after the chroot into the installed system has happened (look at the

chrooted parameter for that).

The chroot-scripts elements must be placed as follows:

150

<scripts>
 <chroot-scripts config:type="list">
 <script>
 ...
 </script>
 </chroot-scripts>
</scripts>

4.32.4. Post-scripts

These scripts are executed after AutoYaST has completed the system configuration and after it has

booted the system for the first time.

The post-script elements must be placed as follows:

<scripts>
 <post-scripts config:type="list">
 <script>
 ...
 </script>
 </post-scripts>
 </scripts>

4.32.5. Init scripts

These scripts are executed when YaST has finished, during the initial boot process after the

network has been initialized. These final scripts are executed using /usr/lib/YaST2/bin/

autoyast-initscripts.sh and are executed only once. Init scripts are configured using the

tag init-scripts.

The init-script elements must be placed as follows:

 <init-scripts config:type="list">
 <script>
 ...
 </script>
 </init-scripts>

Init scripts are different from the other script types because they are not executed by YaST, but

after YaST has finished. For this reason, their XML representation is different from other script

types.

Init script XML representation

location

Define a location from where the script gets fetched. Locations can be the same as for the

profile (HTTP, FTP, NFS, etc.).

<location>http://10.10.0.1/myInitScript.sh</location>

Either <location> or <source> must be defined.

Chapter 4. Configuration and installation options

151

source

The script itself (source code), encapsulated in a CDATA tag. If you do not want to put the

whole shell script into the XML profile, use the location parameter.

<source>
<![CDATA[echo "Testing the init script" >/tmp/init_out.txt]]></source>

Either <location> or <source> must be defined.

filename

The file name of the script. It will be stored in a temporary directory under /tmp

<filename>mynitScript5.sh</filename>

Optional in case you only have a single init script. The default name (init-scripts) is

used in this case. If having specified more than one init script, you must set a unique name

for each script.

rerun

Normally, a script is only run once, even if you use ayast_setup to run an XML file multiple

times. Change this default behavior by setting this boolean to true.

<rerun config:type="boolean">true</rerun>

Optional. Default is false (scripts only run once).

When added to the control file manually, scripts need to be included in a CDATA element to avoid

confusion with the file syntax and other tags defined in the control file.

4.32.6. Script XML representation

Most of the XML elements described below can be used for all the script types described above,

except for init scripts, whose definitions can contain only a subset of these elements. See the

section called “Init scripts” for further information about them.

Deprecated elements

debug is a deprecated element and can be removed in future releases. To adapt,

use an interpreter-specific debugging parameter in interpreter. For example,

instead of <interpreter>shell</interpreter> use <interpreter>/bin/sh -x</interpreter> for

the same result as having enabled the debug flag.

152

Script XML representation

location

Define a location from where the script gets fetched. Locations can be the same as for the

control file (HTTP, FTP, NFS, etc.), for example:

<location>http://10.10.0.1/myPreScript.sh</location>

The location can also be defined as a relative URL, where the path is relative to the directory

with the control file. If the relative URL is used, the location attribute appears as follows:

<location>relurl://script.sh</location>

Alternatively, you can use the repo URI scheme. The script location is relative to the

installation source, and the definition appears as follows:

<location>repo:/script.sh</location>

Either location or source must be defined.

source

The script itself (source code), encapsulated in a CDATA tag. If you do not want to put the

whole shell script into the XML control file, refer to the location parameter.

<source>
<![CDATA[
echo "Testing the pre script" > /tmp/pre-script_out.txt
]]>
</source>

Either location or source must be defined.

interpreter

Specify the interpreter that must be used for the script. Any interpreter available in the given

environment can be specified. It is possible to provide a full path to the interpreter, including

parameters. There are also deprecated keywords interpreter "shell", "perl" and "python" that

are supported by the debug flag.

<interpreter>/bin/bash -x</interpreter>

Optional; default is shell.

file name

The file name of the script. It will be stored in a temporary directory under /tmp.

<filename>myPreScript5.sh</filename>

Chapter 4. Configuration and installation options

153

Optional; default is the type of the script (pre-scripts in this case). If you have more than one

script, you should define different names for each script. If filename is not defined and

location is defined, the file name from the location path will be used.

feedback

If this boolean is true, output and error messages of the script (STDOUT and STDERR) will

be shown in a pop-up. The user needs to confirm them via the OK button.

<feedback config:type="boolean">true</feedback>

Optional; default is false.

feedback_type

This can be message, warning or error. Set the timeout for these pop-ups in the <report>

section.

<feedback_type>warning</feedback_type>

Optional; if missing, an always-blocking pop-up is used.

debug

If this is true, every single line of a shell script is logged. Perl scripts are run with warnings

turned on. This only works for the deprecated keyword interpreter. For other languages,

give the path to the interpreter as a parameter in the interpreter value, for example

"<interpreter>ruby -w</interpreter>".

<debug config:type="boolean">true</debug>

Optional; default is true.

notification

This text will be shown in a pop-up for the time the script is running in the background.

<notification>Please wait while script is running...</notification>

Optional; if not configured, no notification pop-up will be shown.

param-list

It is possible to specify parameters given to the script being called. You may have more than

one param entry. They are concatenated by a single space character on the script command

line. If any shell quoting should be necessary (for example to protect embedded spaces) you

need to include this.

154

<param-list config:type="list">
 <param>par1</param>
 <param>par2 par3</param>
 <param>"par4.1 par4.2"</param>
</param-list>

Optional; if not configured, no parameters get passed to script.

rerun

A script is only run once. Even if you use ayast_setup to run an XML file multiple times, the

script is only run once. Change this default behavior by setting this boolean to true.

<rerun config:type="boolean">true</rerun>

Optional; default is false, meaning that scripts only run once.

chrooted

During installation, the new system is mounted at /mnt. If this parameter is set to false,

AutoYaST does not run chroot and does not install the boot loader at this stage. If the

parameter is set to true, AutoYaST performs a chroot into /mnt and installs the boot

loader. The result is that to change anything in the newly-installed system, you no longer

need to use the /mnt prefix.

<chrooted config:type="boolean">true</chrooted>

Optional; default is false. This option is only available for chroot environment scripts.

Chapter 4. Configuration and installation options

155

4.32.7. Script example

156

Example 4.66. Script configuration

Chapter 4. Configuration and installation options

157

<?xml version="1.0"?>
<!DOCTYPE profile>
<profile xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://
www.suse.com/1.0/configns">
<scripts>
 <chroot-scripts config:type="list">
 <script>
 <chrooted config:type="boolean">true</chrooted>
 <filename>chroot-post.sh</filename>
 <interpreter>shell</interpreter>
 <source><![CDATA[
echo "Testing chroot (chrooted) scripts"
ls
]]>
 </source>
 </script>
 <script>
 <filename>chroot-pre.sh</filename>
 <interpreter>/bin/bash -x</interpreter>
 <source><![CDATA[
echo "Testing chroot scripts"
df
cd /mnt
ls
]]>
 </source>
 </script>
 </chroot-scripts>
 <post-scripts config:type="list">
 <script>
 <filename>post.sh</filename>
 <interpreter>shell</interpreter>
 <source><![CDATA[
echo "Running Post-install script"
systemctl start portmap
mount -a 192.168.1.1:/local /mnt
cp /mnt/test.sh /tmp
umount /mnt
]]>
 </source>
 </script>
 <script>
 <filename>post.pl</filename>
 <interpreter>perl</interpreter>
 <source><![CDATA[
print "Running Post-install script";
]]>
 </source>
 </script>
 </post-scripts>
 <pre-scripts config:type="list">
 <script>
 <interpreter>shell</interpreter>
 <location>http://192.168.1.1/profiles/scripts/prescripts.sh</location>
 </script>
 <script>
 <filename>pre.sh</filename>
 <interpreter>shell</interpreter>
 <source><![CDATA[
echo "Running pre-script"
]]>
 </source>
 </script>
 </pre-scripts>
 <postpartitioning-scripts config:type="list">
 <script>
 <filename>postpart.sh</filename>
 <interpreter>shell</interpreter>

158

 <debug config:type="boolean">false</debug>
 <feedback config:type="boolean">true</feedback>
 <source><![CDATA[
touch /mnt/testfile
echo Hi
]]>
 </source>
 </script>
 </postpartitioning-scripts>
 </scripts>
</profile>

After installation is finished, the scripts and the output logs can be found in the directory /var/

adm/autoinstall. The scripts are located in the subdirectory scripts and the output logs in

the log directory.

The log consists of the output produced when executing the scripts, containing a combination of

both the standard output and the standard error output.

If the script ends with a non-zero exit code, then a warning will be shown with the content of the

logs, unless the feedback option was provided.

4.33. System variables (sysconfig)

Using the sysconfig resource, it is possible to define configuration variables in the sysconfig

repository (/etc/sysconfig) directly. Sysconfig variables, offer the possibility to fine-tune many

system components and environment variables exactly to your needs.

The following example shows how a variable can be set using the sysconfig resource.

Example 4.67. Sysconfig configuration

<sysconfig config:type="list" >
 <sysconfig_entry>
 <sysconfig_key>XNTPD_INITIAL_NTPDATE</sysconfig_key>
 <sysconfig_path>/etc/sysconfig/xntp</sysconfig_path>
 <sysconfig_value>ntp.host.com</sysconfig_value>
 </sysconfig_entry>
 <sysconfig_entry>
 <sysconfig_key>HTTP_PROXY</sysconfig_key>
 <sysconfig_path>/etc/sysconfig/proxy</sysconfig_path>
 <sysconfig_value>proxy.host.com:3128</sysconfig_value>
 </sysconfig_entry>
 <sysconfig_entry>
 <sysconfig_key>FTP_PROXY</sysconfig_key>
 <sysconfig_path>/etc/sysconfig/proxy</sysconfig_path>
 <sysconfig_value>proxy.host.com:3128</sysconfig_value>
 </sysconfig_entry>
</sysconfig>

Both relative and absolute paths can be provided. If no absolute path is given, it is treated as a

sysconfig file under the /etc/sysconfig directory.

Chapter 4. Configuration and installation options

159

4.34. Adding complete configurations

For many applications and services you may have a configuration file which should be copied to

the appropriate location on the installed system. For example, if you are installing a Web server,

you may have a server configuration file (httpd.conf).

Using this resource, you can embed the file into the control file by specifying the final path on the

installed system. YaST will copy this file to the specified location.

This feature requires the autoyast2 package to be installed. If the package is missing, AutoYaST

will automatically install the package if it is missing.

You can specify the file_location where the file should be retrieved from. This can also be a

location on the network such as an HTTP server: <file_location>http://

my.server.site/issue</file_location>.

It is also possible to specify a local file using the relurl:// prefix, for example:

<file_location>relurl://path/to/file.conf</file_location>.

You can create directories by specifying a file_path that ends with a slash.

Example 4.68. Dumping files into the installed system

<files config:type="list">
 <file>
 <file_path>/etc/apache2/httpd.conf</file_path>
 <file_contents>

<![CDATA[
some content
]]>

 </file_contents>
 </file>
 <file>
 <file_path>/mydir/a/b/c/</file_path> <!-- create directory -->
 </file>
</files>

A more advanced example is shown below. This configuration will create a file using the content

supplied in file_contents and change the permissions and ownership of the file. After the file

has been copied to the system, a script is executed. This can be used to modify the file and

prepare it for the client's environment.

160

Example 4.69. Dumping files into the installed system

<files config:type="list">
 <file>
 <file_path>/etc/someconf.conf</file_path>
 <file_contents>

<![CDATA[
some content
]]>

 </file_contents>
 <file_owner>tux.users</file_owner>
 <file_permissions>444</file_permissions>
 <file_script>
 <interpreter>shell</interpreter>
 <source>

<![CDATA[
#!/bin/sh

echo "Testing file scripts" >> /etc/someconf.conf
df
cd /mnt
ls
]]>

 </source>
 </file_script>
 </file>
</files>

4.35. Ask the user for values during installation

You have the option to let the user decide the values of specific parts of the control file during the

installation. If you use this feature, a pop-up will ask the user to enter a specific part of the control

file during installation. If you want a full auto installation, but the user should set the password of

the local account, you can do this via the ask directive in the control file.

The elements listed below must be placed within the following XML structure:

<general>
 <ask-list config:type="list">
 <ask>
 ...
 </ask>
 </ask-list>
</general>

Ask the user for values: XML representation

question

The question you want to ask the user.

<question>Enter the LDAP server</question>

The default value is the path to the element (the path often looks strange, so we recommend

entering a question).

Chapter 4. Configuration and installation options

161

default

Set a preselection for the user. A text entry will be filled out with this value. A check box will

be true or false and a selection will have the given value preselected.

<default>dc=suse,dc=de</default>

Optional.

help

An optional help text that is shown on the left side of the question.

<help>Enter the LDAP server address.</help>

Optional.

title

An optional title that is shown above the questions.

<title>LDAP server</title>

Optional.

type

The type of the element you want to change. Possible values are symbol, boolean,

string and integer. The file system in the partition section is a symbol, while the

encrypted element in the user configuration is a boolean. You can see the type of that

element if you look in your control file at the config:type="...." attribute. You can also

use static_text as type. A static_text is a text that does not require any user input

and can show information not included in the help text.

<type>symbol</type>

Optional. The default is string. If type is symbol, you must provide the selection element

too (see below).

password

If this boolean is set to true, a password dialog pops up instead of a simple text entry.

Setting this to true only makes sense if type is string.

<password config:type="boolean">true</password>

Optional. The default is false.

162

pathlist

A list of path elements. A path is a comma-separated list of elements that describes the

path to the element you want to change. For example, the network configuration element

can be found in the control file in the <networking> section. So, to change that value, you

need to set the path to networking.

<pathlist config:type="list">
 <path>networking,dns,hostname</path>
 <path>...</path>
</pathlist>

To change the password of the first user in the control file, you need to set the path to

users,0,user_password. 0 indicates the first item in the configuration section. For

example, in the <users config:type="list"> list of users mentioned below, it relates to root. 1

would be the second item, and so on.

<users config:type="list">
 <user>
 <username>root</username>
 <user_password>password to change</user_password>
 <encrypted config:type="boolean">false</encrypted>
 </user>
 <user>
 <username>tux</username>
 <user_password>password to change</user_password>
 <encrypted config:type="boolean">false</encrypted>
 </user>
</users>

To set a password for root if the <user> section is similar to the one above, use the

<pathlist> as follows:

<pathlist config:type="list">
 <path>users,0,user_password</path>
 </pathlist>

This information is optional, but you should at least provide path or file.

file

You can store the answer to a question in a file, to use it in one of your scripts later. If you

ask during stage=initial and you want to use the answer in stage 2, then you need to

copy the answer-file in a chroot script that is running as chrooted=false. Use the

command: cp /tmp/my_answer /mnt/tmp/. The reason is that /tmp in stage 1 is in the

RAM disk and will be lost after the reboot, but the installed system is already mounted at /

mnt/.

<file>/tmp/answer_hostname</file>

This information is optional, but you should at least provide path or file.

Chapter 4. Configuration and installation options

163

stage

Stage configures the installation stage in which the question pops up. You can set this value

to cont or initial. initial means the pop-up comes up very early in the installation,

shortly after the pre-script has run. cont means, that the dialog with the question comes

after the first reboot when the system boots for the very first time. Questions you answer

during the initial stage will write their answer into the control file on the hard disk. You

should know that if you enter clear text passwords during initial. Of course it does not

make sense to ask for the file system to use during the cont phase. The hard disk is already

partitioned at that stage and the question will have no effect.

<stage>cont</stage>

Optional. The default is initial.

selection

The selection element contains a list of entry elements. Each entry represents a possible

option for the user to choose. The user cannot enter a value in a text box, but they can

choose from a list of values.

<selection config:type="list">
 <entry>
 <value>
 btrfs
 </value>
 <label>
 Btrfs File System
 </label>
 </entry>
 <entry>
 <value>
 ext3
 </value>
 <label>
 Extended3 File System
 </label>
 </entry>
</selection>

Optional for type=string, not possible for type=boolean and mandatory for

type=symbol.

dialog

You can ask more than one question per dialog. To do so, specify the dialog-id with an

integer. All questions with the same dialog-id belong to the same dialog. The dialogs are

sorted by the id too.

<dialog config:type="integer">3</dialog>

Optional.

164

element

You can have more than one question per dialog. To make that possible you need to specify

the element-id with an integer. The questions in a dialog are sorted by ID.

<element config:type="integer">1</element>

Optional (see dialog).

width

You can increase the default width of the dialog. If there are multiple width specifications per

dialog, the largest one is used. The number is roughly equivalent to the number of

characters.

<width config:type="integer">50</width>

Optional.

height

You can increase the default height of the dialog. If there are multiple height specifications

per dialog, the largest one is used. The number is roughly equivalent to the number of lines.

<height config:type="integer">15</height>

Optional.

frametitle

You can have more than one question per dialog. Each question on a dialog has a frame that

can have a frame title, a small caption for each question. You can put multiple elements into

one frame. They need to have the same frame title.

<frametitle>User data</frametitle>

Optional; default is no frame title.

script

You can run scripts after a question has been answered. (See the section called “Default

value scripts” for detailed instructions about scripts.)

<script>...</script>

Optional; default is no script.

ok_label

You can change the label on the Ok button. The last element that specifies the label for a

dialog wins.

Chapter 4. Configuration and installation options

165

<ok_label>Finish</ok_label>

Optional.

back_label

You can change the label on the Back button. The last element that specifies the label for a

dialog wins.

<back_label>change values</back_label>

Optional.

timeout

You can specify an integer here that is used as timeout in seconds. If the user does not

answer the question before the timeout, the default value is taken as answer. When the user

touches or changes any widget in the dialog, the timeout is turned off and the dialog needs

to be confirmed via Ok.

<timeout config:type="integer">30</timeout>

Optional; a missing value is interpreted as 0, which means that there is no timeout.

default_value_script

You can run scripts to set the default value for a question (see the section called “Default

value scripts” for detailed instructions about default value scripts). This feature is useful if

you can calculate a default value, especially in combination with the timeout option.

<default_value_script>...</default_value_script>

Optional; default is no script.

4.35.1. Default value scripts

You can run scripts to set the default value for a question. This feature is useful if you can

calculate a default value, especially in combination with the timeout option.

The scripts are defined by placing the elements described in the section called “Script XML

representation” within the following XML structure:

<general>
 <ask-list config:type="list">
 <ask>
 <default_value_script>
 ...
 </default_value_script>
 </ask>
 </ask-list>
</general>

166

Whatever you echo to STDOUT will be used as default value for the ask-dialog. If your script has

an exit code other than 0, the normal default element is used. Take care you use echo -n to

suppress the \n and that you echo reasonable values and not “okay” for a boolean (use “true”

instead).

4.35.2. Scripts

You can run scripts after a question has been answered.

The elements listed below must be placed within the following XML structure:

<general>
 <ask-list config:type="list">
 <ask>
 <script>
 ...
 </script>
 </ask>
 </ask-list>
</general>

In addition to the elements listed in the section called “Script XML representation”, scripts in <ask>

elements support these options:

Scripts: XML representation

filename

The file name of the script.

<filename>my_ask_script.sh</filename>

The default is ask_script.sh

environment

A boolean that passes the value of the answer to the question as an environment variable to

the script. The variable is named VAL.

<environment config:type="boolean">true</environment>

Optional. Default is false.

feedback

A boolean that turns on feedback for the script execution. STDOUT will be displayed in a

pop-up window that must be confirmed after the script execution.

<feedback config:type="boolean">true</feedback>

Optional, default is false.

Chapter 4. Configuration and installation options

167

rerun_on_error

Keep the dialog open until the script has an exit code of 0 (zero). You can use this feature to

validate the user's input. The script should print a meaningful error message and return a

code different from zero. Bear in mind that you should also set the feedback option to true

so the user can read the error message from the script. Optional, default is false.

Your script can create a file /tmp/next_dialog containing the ID of the following dialog to

display. A value of -1 terminates the sequence.

Below you can see an example of the usage of the ask feature.

168

<general>
 <ask-list config:type="list">
 <ask>
 <pathlist config:type="list">
 <path>ldap,ldap_server</path>
 </pathlist>
 <stage>cont</stage>
 <help>Choose your server depending on your department</help>
 <selection config:type="list">
 <entry>
 <value>ldap1.mydom.de</value>
 <label>LDAP for development</label>
 </entry>
 <entry>
 <value>ldap2.mydom.de</value>
 <label>LDAP for sales</label>
 </entry>
 </selection>
 <default>ldap2.mydom.de</default>
 <default_value_script>
 <source> <![CDATA[
echo -n "ldap1.mydom.de"
]]>
 </source>
 </default_value_script>
 </ask>
 <ask>
 <pathlist config:type="list">
 <path>networking,dns,hostname</path>
 </pathlist>
 <question>Enter Hostname</question>
 <stage>initial</stage>
 <default>enter your hostname here</default>
 </ask>
 <ask>
 <pathlist config:type="list">
 <path>partitioning,0,partitions,0,filesystem</path>
 </pathlist>
 <question>File System</question>
 <type>symbol</type>
 <selection config:type="list">
 <entry>
 <value config:type="symbol">ext4</value>
 <label>default File System (recommended)</label>
 </entry>
 <entry>
 <value config:type="symbol">ext3</value>
 <label>Fallback File System</label>
 </entry>
 </selection>
 </ask>
 </ask-list>
</general>

The following example shows a to choose between AutoYaST control files. AutoYaST will read the

modified.xml file again after the ask-dialogs are done. This way you can fetch a complete new

control file.

Chapter 4. Configuration and installation options

169

<general>
 <ask-list config:type="list">
 <ask>
 <selection config:type="list">
 <entry>
 <value>part1.xml</value>
 <label>Simple partitioning</label>
 </entry>
 <entry>
 <value>part2.xml</value>
 <label>encrypted /tmp</label>
 </entry>
 <entry>
 <value>part3.xml</value>
 <label>LVM</label>
 </entry>
 </selection>
 <title>XML Profile</title>
 <question>Choose a profile</question>
 <stage>initial</stage>
 <default>part1.xml</default>
 <script>
 <filename>fetch.sh</filename>
 <environment config:type="boolean">true</environment>
 <source>
<![CDATA[
wget http://10.10.0.162/$VAL -O /tmp/profile/modified.xml 2>/dev/null
]]>
 </source>
 <debug config:type="boolean">false</debug>
 <feedback config:type="boolean">false</feedback>
 </script>
 </ask>tion>
 </ask-list>
</general>

You can verify the answer of a question with a script like this:

<general>
 <ask-list config:type="list">
 <ask>
 <script>
 <filename>my.sh</filename>
 <rerun_on_error config:type="boolean">true</rerun_on_error>
 <environment config:type="boolean">true</environment>
 <source><![CDATA[
if ["$VAL" = "myhost"]; then
 echo "Illegal Hostname!";
 exit 1;
fi
exit 0
]]>
 </source>
 <debug config:type="boolean">false</debug>
 <feedback config:type="boolean">true</feedback>
 </script>
 <dialog config:type="integer">0</dialog>
 <element config:type="integer">0</element>
 <pathlist config:type="list">
 <path>networking,dns,hostname</path>
 </pathlist>
 <question>Enter Hostname</question>
 <default>enter your hostname here</default>
 </ask>
 </ask-list>
</general>

170

4.36. Kernel dumps

Availability

This feature is not available on AArch64, or on systems with less than 1 GB of RAM.

With Kdump the system can create crash dump files if the whole kernel crashes. Crash dump files

contain the memory contents while the system crashed. Such core files can be analyzed later by

support or a (kernel) developer to find the reason for the system crash. Kdump is mostly useful for

servers where you cannot easily reproduce such crashes but it is important to get the problem

fixed.

There is a downside to this. Enabling Kdump requires between 64 MB and 128 MB of additional

system RAM reserved for Kdump in case the system crashes and the dump needs to be

generated.

This section only describes how to set up Kdump with AutoYaST. It does not describe how Kdump

works. For details, refer to the kdump(7) manual page.

The following example shows a general Kdump configuration.

Chapter 4. Configuration and installation options

171

Example 4.70. Kdump configuration

<kdump>
 <!-- memory reservation -->
 <add_crash_kernel config:type="boolean">true</add_crash_kernel>
 <crash_kernel>256M-:64M</crash_kernel>
 <general>

 <!-- dump target settings -->
 <KDUMP_SAVEDIR>ftp://stravinsky.suse.de/incoming/dumps</KDUMP_SAVEDIR>
 <KDUMP_FREE_DISK_SIZE>64</KDUMP_FREE_DISK_SIZE>
 <KDUMP_KEEP_OLD_DUMPS>5</KDUMP_KEEP_OLD_DUMPS>

 <!-- filtering and compression -->
 <KDUMP_DUMPFORMAT>compressed</KDUMP_DUMPFORMAT>
 <KDUMP_DUMPLEVEL>1</KDUMP_DUMPLEVEL>

 <!-- notification -->
 <KDUMP_NOTIFICATION_TO>tux@example.com</KDUMP_NOTIFICATION_TO>
 <KDUMP_NOTIFICATION_CC>spam@example.com devnull@example.com</
KDUMP_NOTIFICATION_CC>
 <KDUMP_SMTP_SERVER>mail.example.com</KDUMP_SMTP_SERVER>
 <KDUMP_SMTP_USER></KDUMP_SMTP_USER>
 <KDUMP_SMTP_PASSWORD></KDUMP_SMTP_PASSWORD>

 <!-- kdump kernel -->
 <KDUMP_KERNELVER></KDUMP_KERNELVER>
 <KDUMP_COMMANDLINE></KDUMP_COMMANDLINE>
 <KDUMP_COMMANDLINE_APPEND></KDUMP_COMMANDLINE_APPEND>

 <!-- expert settings -->
 <KDUMP_IMMEDIATE_REBOOT>yes</KDUMP_IMMEDIATE_REBOOT>
 <KDUMP_VERBOSE>15</KDUMP_VERBOSE>
 <KEXEC_OPTIONS></KEXEC_OPTIONS>
 </general>
</kdump>

Kdump is enabled by default. The following configuration shows how to disable it.

Example 4.71. Disabled Kdump configuration

<kdump>
 <add_crash_kernel config:type="boolean">false</add_crash_kernel>
</kdump>

4.36.1. Memory reservation

The first step is to reserve memory for Kdump at boot-up. Because the memory must be reserved

very early during the boot process, the configuration is done via a kernel command line parameter

called crashkernel. The reserved memory will be used to load a second kernel which will be

executed without rebooting if the first kernel crashes. This second kernel has a special initrd, which

contains all programs necessary to save the dump over the network or to disk, send a notification

e-mail, and finally reboot.

To reserve memory for Kdump, specify the amount (such as 64M to reserve 64 MB of memory

from the RAM) and the offset. The syntax is crashkernel=AMOUNT@OFFSET. The kernel can

auto-detect the right offset (except for the Xen hypervisor, where you need to specify 16M as

offset). The amount of memory that needs to be reserved depends on architecture and main

172

memory. Refer to the section called “Manual Kdump configuration” in “System Analysis and Tuning

Guide” for recommendations on the amount of memory to reserve for Kdump.

You can also use the extended command line syntax to specify the amount of reserved memory

depending on the System RAM. That is useful if you share one AutoYaST control file for multiple

installations or if you often remove or install memory on one machine. The syntax is:

BEGIN_RANGE_1-END_RANGE_1:AMOUNT_1,BEGIN_RANGE_2-END_RANGE_2:AMOUNT_2@OFFSET

BEGIN_RANGE_1 is the start of the first memory range (for example: 0M) and END_RANGE_1 is the

end of the first memory range (can be empty in case infinity should be assumed) and so on.

For example, 256M-2G:64M,2G-:128M reserves 64 MB of crashkernel memory if the system has

between 256 MB and 2 GB RAM, and reserves 128 MB of crashkernel memory if the system has

more than 2 GB RAM.

On the other hand, it is possible to specify multiple values for the crashkernel parameter. For

example, when you need to reserve different segments of low and high memory, use values like

72M,low and 256M,high:

Example 4.72. Kdump memory reservation with multiple values

<kdump>
 <!-- memory reservation (high and low) -->
 <add_crash_kernel config:type="boolean">true</add_crash_kernel>
 <crash_kernel config:type="list">
 <listentry>72M,low</listentry>
 <listentry>256M,high</listentry>
 </crash_kernel>
</kdump>

The following list shows the settings necessary to reserve memory:

Kdump memory reservation settings:XML representation

add_crash_kernel

Set to true if memory should be reserved and Kdump enabled.

<add_crash_kernel config:type="boolean">true</add_crash_kernel>

required

crash_kernel

Use the syntax of the crashkernel command line as discussed above.

<crash_kernel>256M:64M</crash_kernel>

A list of values is also supported.

Chapter 4. Configuration and installation options

173

https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf
https://fsteimke.github.io/xsltng-docs/suse/book-tuning.pdf

<crash_kernel config:type="list">
 <listentry>72M,low</listentry>
 <listentry>256M,high</listentry>
</crash_kernel>

required

4.36.2. Dump saving

This section describes where and how crash dumps will be stored.

4.36.2.1. Target

The element KDUMP_SAVEDIR specifies the URL to where the dump is saved. The following

methods are possible:

file to save to the local disk,

ftp to save to an FTP server (without encryption),

sftp to save to an SSH2 SFTP server,

nfs to save to an NFS location and

cifs to save the dump to a CIFS/SMP export from Samba or Microsoft Windows.

For details see the kdump(5) manual page. Two examples are: file:///var/crash (which is

the default location according to FHS) and ftp://user:password@host:port/incoming/

dumps. A subdirectory, with the time stamp contained in the name, will be created and the dumps

saved there.

When the dump is saved to the local disk, KDUMP_KEEP_OLD_DUMPS can be used to delete old

dumps automatically. Set it to the number of old dumps that should be kept. If the target partition

would end up with less free disk space than specified in KDUMP_FREE_DISK_SIZE, the dump is

not saved.

4.36.2.2. Filtering and compression

The kernel dump is uncompressed and unfiltered. It can get as large as your system RAM. To get

smaller files, compress the dump file afterward. The dump needs to be decompressed before

opening.

To use page compression, which compresses every page and allows dynamic decompression with

the crash(8) debugging tool, set KDUMP_DUMPFORMAT to compressed (default).

You may not want to save all memory pages, for example those filled with zeroes. To filter the

dump, set the KDUMP_DUMPLEVEL. 0 produces a full dump and 31 is the smallest dump. The

manual pages kdump(5) and makedumpfile(8) list for each value which pages will be saved.

•

•

•

•

•

174

4.36.2.3. Summary

Dump target settings: XML representation

KDUMP_SAVEDIR

A URL that specifies the target to which the dump and related files will be saved.

<KDUMP_SAVEDIR>file:///var/crash/</KDUMP_SAVEDIR>

required

KDUMP_FREE_DISK_SIZE

Disk space in megabytes that must remain free after saving the dump. If not enough space is

available, the dump will not be saved.

<KDUMP_FREE_DISK_SIZE>64</KDUMP_FREE_DISK_SIZE>

optional

KDUMP_KEEP_OLD_DUMPS

The number of dumps that are kept (not deleted) if KDUMP_SAVEDIR points to a local

directory. Specify 0 if you do not want any dumps to be automatically deleted, specify -1 if all

dumps except the current one should be deleted.

<KDUMP_KEEP_OLD_DUMPS>4</KDUMP_KEEP_OLD_DUMPS>

optional

4.36.3. E-mail notification

Configure e-mail notification to be informed when a machine crashes and a dump is saved.

Because Kdump runs in the initrd, a local mail server cannot send the notification e-mail. An SMTP

server needs to be specified (see below).

You need to provide exactly one address in KDUMP_NOTIFICATION_TO. More addresses can be

specified in KDUMP_NOTIFICATION_CC. Only use e-mail addresses in both cases, not a real

name.

Specify KDUMP_SMTP_SERVER and (if the server needs authentication) KDUMP_SMTP_USER and

KDUMP_SMTP_PASSWORD. Support for TLS/SSL is not available but may be added in the future.

Chapter 4. Configuration and installation options

175

E-mail notification settings: XML representation

KDUMP_NOTIFICATION_TO

Exactly one e-mail address to which the e-mail should be sent. Additional recipients can be

specified in KDUMP_NOTIFICATION_CC.

<KDUMP_NOTIFICATION_TO
>tux@example.com</KDUMP_NOTIFICATION_TO>

optional (notification disabled if empty)

KDUMP_NOTIFICATION_CC

Zero, one or more recipients that are in the cc line of the notification e-mail.

<KDUMP_NOTIFICATION_CC
>wilber@example.com suzanne@example.com</KDUMP_NOTIFICATION_CC>

optional

KDUMP_SMTP_SERVER

Host name of the SMTP server used for mail delivery. SMTP authentication is supported

(see KDUMP_SMTP_USER and KDUMP_SMTP_PASSWORD) but TLS/SSL are not.

<KDUMP_SMTP_SERVER>email.suse.de</KDUMP_SMTP_SERVER>

optional (notification disabled if empty)

KDUMP_SMTP_USER

User name used together with KDUMP_SMTP_PASSWORD for SMTP authentication.

<KDUMP_SMTP_USER>bwalle</KDUMP_SMTP_USER>

optional

KDUMP_SMTP_PASSWORD

Password used together with KDUMP_SMTP_USER for SMTP authentication.

<KDUMP_SMTP_PASSWORD>geheim</KDUMP_SMTP_PASSWORD>

optional

4.36.4. Kdump kernel settings

As already mentioned, a special kernel is booted to save the dump. If you do not want to use the

auto-detection mechanism to find out which kernel is used (see the kdump(5) manual page that

describes the algorithm which is used to find the kernel), you can specify the version of a custom

176

kernel in KDUMP_KERNELVER. If you set it to foo, then the kernel located in /boot/vmlinuz-

foo or /boot/vmlinux-foo (in that order on platforms that have a vmlinuz file) will be used.

You can specify the command line used to boot the Kdump kernel. Normally the boot command

line is used, minus settings that are not relevant for Kdump (like the crashkernel parameter)

plus some settings needed by Kdump (see the manual page kdump(5)). To specify additional

parameters, use KDUMP_COMMANDLINE_APPEND. If you know what you are doing and you want to

specify the entire command line, set KDUMP_COMMANDLINE.

Kernel settings: XML representation

KDUMP_KERNELVER

Version string for the kernel used for Kdump. Leave it empty to use the auto-detection

mechanism (strongly recommended).

<KDUMP_KERNELVER>6.4.0-default</KDUMP_KERNELVER>

optional (auto-detection if empty)

KDUMP_COMMANDLINE_APPEND

Additional command line parameters for the Kdump kernel.

<KDUMP_COMMANDLINE_APPEND>console=ttyS0,57600</KDUMP_COMMANDLINE_APPEND>

optional

KDUMP_Command Line

Overwrite the automatically generated Kdump command line. Use with care. Usually,

KDUMP_COMMANDLINE_APPEND should suffice.

<KDUMP_COMMANDLINE_APPEND>root=/dev/sda5 nr_cpus=1 irqpoll</
KDUMP_COMMANDLINE>

optional

4.36.5. Expert settings

Expert settings: XML representations

KDUMP_IMMEDIATE_REBOOT

true if the system should be rebooted automatically after the dump has been saved, false

otherwise. The default is to reboot the system automatically.

<KDUMP_IMMEDIATE_REBOOT>true</KDUMP_IMMEDIATE_REBOOT>

optional

Chapter 4. Configuration and installation options

177

KDUMP_VERBOSE

Bitmask that specifies how verbose the Kdump process should be. Read kdump(5) for

details.

<KDUMP_VERBOSE>3</KDUMP_VERBOSE>

optional

KEXEC_OPTIONS

Additional options that are passed to kexec when loading the Kdump kernel. Normally empty.

<KEXEC_OPTIONS>--noio</KEXEC_OPTIONS>

optional

4.37. DNS server

The Bind DNS server can be configured by adding a dns-server resource. The three more

straightforward properties of that resource can have a value of 1 to enable them or 0 to disable.

Attribute Value Description

chroot 0 / 1 The DNS server must be jailed in a chroot.

start_service 0 / 1 Bind is enabled (executed on system start).

use_ldap 0 / 1 Store the settings in LDAP instead of native configuration files.

Example 4.73. Basic DNS server settings

<dns-server>
 <chroot>0</chroot>
 <start_service>1</start_service>
 <use_ldap>0</use_ldap>
</dns-server>

In addition to those basic settings, there are three properties of type list that can be used to fine-

tune the service configuration.

List Description

logging Options of the DNS server logging.

options
Bind options like the files and directories to use, the list of forwarders and other

configuration settings.

178

List Description

zones
List of DNS zones known by the server, including all the settings, records and SOA

records.

Example 4.74. Configuring DNS server zones and advanced settings

<dns-server>
 <logging config:type="list">
 <listentry>
 <key>channel</key>
 <value>log_syslog { syslog; }</value>
 </listentry>
 </logging>
 <options config:type="list">
 <option>
 <key>forwarders</key>
 <value>{ 10.10.0.1; }</value>
 </option>
 </options>
 <zones config:type="list">
 <listentry>
 <is_new>1</is_new>
 <modified>1</modified>
 <options config:type="list"/>
 <records config:type="list">
 <listentry>
 <key>mydom.uwe.</key>
 <type>MX</type>
 <value>0 mail.mydom.uwe.</value>
 </listentry>
 <listentry>
 <key>mydom.uwe.</key>
 <type>NS</type>
 <value>ns.mydom.uwe.</value>
 </listentry>
 </records>
 <soa>
 <expiry>1w</expiry>
 <mail>root.aaa.aaa.cc.</mail>
 <minimum>1d</minimum>
 <refresh>3h</refresh>
 <retry>1h</retry>
 <serial>2005082300</serial>
 <server>aaa.aaa.cc.</server>
 <zone>@</zone>
 </soa>
 <soa_modified>1</soa_modified>
 <ttl>2d</ttl>
 <type>master</type>
 <update_actions config:type="list">
 <listentry>
 <key>mydom.uwe.</key>
 <operation>add</operation>
 <type>NS</type>
 <value>ns.mydom.uwe.</value>
 </listentry>
 </update_actions>
 <zone>mydom.uwe</zone>
 </listentry>
 </zones>
</dns-server>

Chapter 4. Configuration and installation options

179

4.38. DHCP server

The dhcp-server resource makes it possible to configure all the settings of a DHCP server by

means of the six following properties.

Element Value Description

chroot 0 / 1
A value of 1 means that the DHCP server must be jailed in a

chroot.

start_service 0 / 1
Set this to 1 to enable the DHCP server (that is, run it on

system start-up).

use_ldap 0 / 1
If set to 1, the settings will be stored in LDAP instead of

native configuration files.

other_options Text

String with parameters that will be passed to the DHCP

server executable when started. For example, use "-p 1234"

to listen on a non-standard 1234 port. For all possible

options, consult the dhcpd manual page. If left blank, default

values will be used.

allowed_interfaces List
List of network cards in which the DHCP server will be

operating. See the example below for the exact format.

settings List

List of settings to configure the behavior of the DHCP server.

The configuration is defined in a tree-like structure where the

root represents the global options, with subnets and host

nested from there. The children, parent_id and

parent_type properties are used to represent that nesting.

See the example below for the exact format.

180

Example 4.75. Example dhcp-server section

Chapter 4. Configuration and installation options

181

<dhcp-server>
 <allowed_interfaces config:type="list">
 <allowed_interface>eth0</allowed_interface>
 </allowed_interfaces>
 <chroot>0</chroot>
 <other_options>-p 9000</other_options>
 <start_service>1</start_service>
 <use_ldap>0</use_ldap>

 <settings config:type="list">
 <settings_entry>
 <children config:type="list"/>
 <directives config:type="list">
 <listentry>
 <key>fixed-address</key>
 <type>directive</type>
 <value>192.168.0.10</value>
 </listentry>
 <listentry>
 <key>hardware</key>
 <type>directive</type>
 <value>ethernet d4:00:00:bf:00:00</value>
 </listentry>
 </directives>
 <id>static10</id>
 <options config:type="list"/>
 <parent_id>192.168.0.0 netmask 255.255.255.0</parent_id>
 <parent_type>subnet</parent_type>
 <type>host</type>
 </settings_entry>
 <settings_entry>
 <children config:type="list">
 <child>
 <id>static10</id>
 <type>host</type>
 </child>
 </children>
 <directives config:type="list">
 <listentry>
 <key>range</key>
 <type>directive</type>
 <value>dynamic-bootp 192.168.0.100 192.168.0.150</value>
 </listentry>
 <listentry>
 <key>default-lease-time</key>
 <type>directive</type>
 <value>14400</value>
 </listentry>
 <listentry>
 <key>max-lease-time</key>
 <type>directive</type>
 <value>86400</value>
 </listentry>
 </directives>
 <id>192.168.0.0 netmask 255.255.255.0</id>
 <options config:type="list"/>
 <parent_id/>
 <parent_type/>
 <type>subnet</type>
 </settings_entry>
 <settings_entry>
 <children config:type="list">
 <child>
 <id>192.168.0.0 netmask 255.255.255.0</id>
 <type>subnet</type>
 </child>
 </children>

182

 <directives config:type="list">
 <listentry>
 <key>ddns-update-style</key>
 <type>directive</type>
 <value>none</value>
 </listentry>
 <listentry>
 <key>default-lease-time</key>
 <type>directive</type>
 <value>14400</value>
 </listentry>
 </directives>
 <id/>
 <options config:type="list"/>
 <parent_id/>
 <parent_type/>
 <type/>
 </settings_entry>
 </settings>
</dhcp-server>

4.39. Firewall configuration

SuSEfirewall2 has been replaced by firewalld starting with SUSE Linux Enterprise Server 15

GA. Profiles using SuSEfirewall2 properties will be translated to firewalld profiles. However, not

all profile properties can be converted. For details about firewalld, refer to the section called “

firewalld ” in “Security and Hardening Guide”.

Limited backward compatibility with SuSEFirewall2 based profiles

The use of SuSEfirewall2-based profiles will be only partially supported as many

options are not valid in firewalld, and some missing configuration could affect

your network security.

4.39.1. General firewall configuration

In firewalld, the general configuration only exposes a few properties, and most of the

configuration is done by zones.

Attribute Value Description

start_firewall Boolean
Whether firewalld should be started right after

applying the configuration.

enable_firewall Boolean
Whether firewalld should be started on every

system start-up.

default_zone Zone name
The default zone is used for everything that is not

explicitly assigned.

Chapter 4. Configuration and installation options

183

https://fsteimke.github.io/xsltng-docs/suse/book-security.pdf

Attribute Value Description

log_denied_packets

Type of

dropped

packets to

be logged

Enable logging of dropped packets for the type

selected. Values: off, unicast, multicast,

broadcast, all.

name
Identifier of

zone

Used to identify a zone. If the zone is not known yet, a

new zone will be created.

short

Short

summary

of zone

Briefly summarizes the purpose of the zone. Ignored

for already existing zones. If not specified, the name is

used.

description
Description

of zone

Describes the purpose of the zone. Ignored for already

existing zones. If not specified, the name is used.

target
Default

action

Defines the default action in the zone if no rule

matches. Possible values are ACCEPT, %%REJECT%%,

DROP and default. If not specified, default is used.

For details about values, see https://firewalld.org/

documentation/zone/options.html.

4.39.2. Firewall zones configuration

The configuration of firewalld is based on the existence of several zones, which define the trust

level for a connection, interface, or source address. The behavior of each zone can be tweaked in

several ways although not all the properties are exposed yet.

Attributes Value Description

interfaces
List of interface

names

List of interface names assigned to this zone. Interfaces or

sources can only be part of one zone.

services List of services List of services accessible in this zone.

ports List of ports
List of single ports or ranges to be opened in the assigned

zone.

protocols List of protocols
List of protocols to be opened or be accessible in the

assigned zone.

masquerade
Enable

masquerade

It will enable or disable network address translation (NAT)

in the assigned zone.

184

https://firewalld.org/documentation/zone/options.html
https://firewalld.org/documentation/zone/options.html

4.39.3. Installation stages when the firewalld profile is applied

Starting with SUSE Linux Enterprise Server 15 SP3, the firewalld profile is usually applied at

the end of the first stage of the installation. (To learn about the installation stages, see the section

called “Overview and concept”.) However, there are circumstances where the profile is applied in

the second stage. The following list specifies the conditions under which the firewalld profile is

applied in the first or second stage:

You are running AutoYaST with a firewalld section, and not installing SUSE Linux

Enterprise Server over SSH or VNC. The firewall is configured in the first stage.

You are running AutoYaST with a firewalld section, installing SUSE Linux Enterprise

Server over SSH or VNC, and no second stage is required. The firewall is configured in the

first stage.

You are running AutoYaST with a firewalld section, installing SUSE Linux Enterprise

Server over SSH or VNC, and the second stage is required. The firewall is configured in the

second stage.

You are running AutoYaST without a firewalld section. The firewall is configured in the

first stage according to the default product proposals.

You are running AutoYaST with or without a firewall section, together with custom script

which requires network access. The firewall is configured in the first stage either according to

the profile or the product proposals, and the firewall configuration must be adapted so that

the custom script has network access as needed.

4.39.4. A full example

A full example of the firewall section, including general and zone specific properties, could look like

this.

•

•

•

•

•

Chapter 4. Configuration and installation options

185

Example 4.76. Example firewall section

<firewall>
 <enable_firewall config:type="boolean">true</enable_firewall>
 <log_denied_packets>all</log_denied_packets>
 <default_zone>external</default_zone>
 <zones config:type="list">
 <zone>
 <name>public</name>
 <interfaces config:type="list">
 <interface>eth0</interface>
 </interfaces>
 <services config:type="list">
 <service>ssh</service>
 <service>dhcp</service>
 <service>dhcpv6</service>
 <service>samba</service>
 <service>vnc-server</service>
 </services>
 <ports config:type="list">
 <port>21/udp</port>
 <port>22/udp</port>
 <port>80/tcp</port>
 <port>443/tcp</port>
 <port>8080/tcp</port>
 </ports>
 </zone>
 <zone>
 <name>dmz</name>
 <interfaces config:type="list">
 <interface>eth1</interface>
 </interfaces>
 </zone>
 </zones>
</firewall>

4.40. Miscellaneous hardware and system components

In addition to the core component configuration, like network authentication and security, AutoYaST

offers a wide range of hardware and system configuration options, the same as available by default

on any system installed manually and in an interactive way. For example, it is possible to configure

printers, sound devices, TV cards and any other hardware components which have a module

within YaST.

Any new configuration options added to YaST will be automatically available in AutoYaST.

4.40.1. Printer

AutoYaST support for printing is limited to basic settings defining how CUPS is used on a client for

printing via the network.

There is no AutoYaST support for setting up local print queues. Modern printers are usually

connected via USB. CUPS accesses USB printers by a model-specific device URI like usb://

ACME/FunPrinter?serial=1a2b3c. Usually it is not possible to predict the correct USB device

URI in advance, because it is determined by the CUPS back-end usb during runtime. Therefore it

is not possible to set up local print queues with AutoYaST.

186

Basics on how CUPS is used on a client workstation to print via network:

On client workstations application programs submit print jobs to the CUPS daemon process

(cupsd). cupsd forwards the print jobs to a CUPS print server in the network where the print jobs

are processed. The server sends the printer specific data to the printer device.

If there is only a single CUPS print server in the network, there is no need to have a CUPS

daemon running on each client workstation. Instead it is simpler to specify the CUPS server in /

etc/cups/client.conf and access it directly (only one CUPS server entry can be set). In this

case application programs that run on client workstations submit print jobs directly to the specified

CUPS print server.

Example 4.77, “Printer configuration” shows a printer configuration section. The

cupsd_conf_content entry contains the whole verbatim content of the cupsd configuration file

/etc/cups/cupsd.conf. The client_conf_content entry contains the whole verbatim

content of /etc/cups/client.conf. The printer section contains the cupsd configuration

but it does not specify whether the cupsd should run.

Example 4.77. Printer configuration

 <printer>
 <client_conf_content>
 <file_contents><![CDATA[
... verbatim content of /etc/cups/client.conf ...
]]></file_contents>
 </client_conf_content>
 <cupsd_conf_content>
 <file_contents><![CDATA[
... verbatim content of /etc/cups/cupsd.conf ...
]]></file_contents>
 </cupsd_conf_content>
 </printer>

/etc/cups/cups-files.conf

With release 1.6 the CUPS configuration file has been split into two files:

cupsd.conf and cups-files.conf. As of SUSE Linux Enterprise Server15 SP7,

AutoYaST only supports modifying cupsd.conf since the default settings in cups-

files.conf are sufficient for usual printing setups.

4.40.2. Sound devices

An example of the sound configuration created using the configuration system is shown below.

Chapter 4. Configuration and installation options

187

Example 4.78. Sound configuration

<sound>
 <autoinstall config:type="boolean">true</autoinstall>
 <modules_conf config:type="list">
 <module_conf>
 <alias>snd-card-0</alias>
 <model>M5451, ALI</model>
 <module>snd-ali5451</module>
 <options>
 <snd_enable>1</snd_enable>
 <snd_index>0</snd_index>
 <snd_pcm_channels>32</snd_pcm_channels>
 </options>
 </module_conf>
 </modules_conf>
 <volume_settings config:type="list">
 <listentry>
 <Master config:type="integer">75</Master>
 </listentry>
 </volume_settings>
</sound>

4.41. Importing SSH keys and configuration

YaST allows SSH keys and server configuration to be imported from previous installations. The

behavior of this feature can also be controlled through an AutoYaST profile.

Example 4.79. Importing SSH keys and configuration from /dev/sda2

<ssh_import>
 <import config:type="boolean">true</import>
 <copy_config config:type="boolean">true</copy_config>
 <device>/dev/sda2</device>
</ssh_import>

Attributes Value Description

import
true /

false

SSH keys will be imported. If set to false, nothing will be

imported.

copy_config
true /

false

Additionally, SSH server configuration will be imported. This setting

will not have effect if import is set to false.

device Partition
Partition to import keys and configuration from. If it is not set, the

partition which contains the most recently accessed key is used.

4.42. Configuration management

AutoYaST allows delegating part of the configuration to a configuration management tool like Salt.

AutoYaST takes care of the basic system installation (partitioning, network setup, etc.) and the

remaining configuration tasks can be delegated.

188

Only Salt is supported

Although Puppet is mentioned in this document, only Salt is supported. Nevertheless,

feel free to report any problems you might find with Puppet.

AutoYaST supports two different approaches:

Using a configuration management server. In this case, AutoYaST sets up a configuration

management tool. It connects to a master server to get the instructions to configure the

system.

Getting the configuration from elsewhere (for example, an HTTP server or a flash disk like a

USB stick) and running the configuration management tool in stand-alone mode.

4.42.1. Connecting to a configuration management server

This approach is especially useful when a configuration management server (a master in Salt and

Puppet jargon) is already in place. In this case, the hardest part might be to set up a proper

authentication mechanism.

Both Salt and Puppet support the following authentication methods:

Manual authentication on the fly. When AutoYaST starts the client, a new authentication

request is generated. The administrator can manually accept this request on the server.

AutoYaST will retry the connection. If the key was accepted meanwhile, AutoYaST continues

the installation.

Using a preseed key. Refer to the documentation of your configuration management system

of choice to find out how to generate them. Use the keys_url option to tell AutoYaST

where to look for them.

With the configuration example below, AutoYaST will launch the client to generate the

authentication request. It will try to connect up to three times, waiting 15 seconds between each try.

Example 4.80. Client/server with manual authentication

<configuration_management>
 <type>salt</type>
 <master>my-salt-server.example.net</master>
 <auth_attempts config:type="integer">3</auth_attempts>
 <auth_time_out config:type="integer">15</auth_time_out>
</configuration_management>

However, with the following example, AutoYaST will retrieve the keys from a flash disk (for

example, a USB stick) and will use them to connect to the master server.

•

•

•

•

Chapter 4. Configuration and installation options

189

Example 4.81. Client/server with preseed keys

<configuration_management>
 <type>salt</type>
 <master>my-salt-server.example.net</master>
 <keys_url>usb:/</keys_url>
</configuration_management>

The table below summarizes the supported options for these scenarios.

Attributes Value Description

type String
Configuration management name. Currently only salt is

supported.

master String
Host name or IP address of the configuration management

server.

auth_attempts Integer
Maximum attempts to connect to the server. The default is

three attempts.

auth_time_out Integer
Time (in seconds) between attempts to connect to the server.

The default is 15 seconds.

keys_url
URL of

used key

Path to an HTTP server, hard disk, flash disk or similar with

the files default.key and default.pub. This key must

be known to the configuration management master.

enable_services
True/

False

Enables the configuration management services on the client

side after the installation. The default is true.

4.42.2. Running in stand-alone mode

For simple scenarios, deploying a configuration management server is unnecessary. Instead, use

Salt or Puppet in stand-alone (or masterless) mode.

As there is no server, AutoYaST needs to know where to get the configuration from. Put the

configuration into a TAR archive and store it anywhere (for example, on a flash disk, an HTTP/

HTTPS server, an NFS/SMB share).

The TAR archive must have the same layout that is expected under /srv in a Salt server. This

means that you need to place your Salt states in a salt directory and your formulas in a separate

formulas directory.

Additionally, you can have a pillar directory containing the pillar data. Alternatively, you can

provide that data in a separate TAR archive by using the pillar_url option.

190

Example 4.82. Stand-alone mode

<configuration_management>
 <type>salt</type>
 <states_url>my-salt-server.example.net</states_url>
 <pillar_url>my-salt-server.example.net</pillar_url>
</configuration_management>

Attributes Value Description

type String Configuration management name. Currently only salt is supported.

states_url URL
Location of the Salt states TAR archive. It may include formulas and

pillars. Files must be located in a salt directory.

pillar_url URL Location of the TAR archive that contains the pillars.

modules_url URL Location of Puppet modules.

4.42.3. SUSE Multi-Linux Manager Salt formulas support

AutoYaST offers support for SUSE Multi-Linux Manager Salt formulas when running in stand-alone

mode. In case a formula is found in the states TAR archive, AutoYaST displays a screen which

allows the user to select and configure the formulas to apply.

Bear in mind that this feature defeats the AutoYaST purpose of performing an unattended

installation, as AutoYaST will wait for the user's input.

Chapter 4. Configuration and installation options

191

Part III. Managing mass installations with
dynamic profiles

5 Supported approaches to dynamic profiles
193

6 Rules and classes 194

7 ERB templates 208

8 Combining ERB templates and scripts 215

192

Chapter 5. Supported approaches to dynamic profiles

When dealing with the installation of multiple systems, it might be useful to use a single profile (or a

reduced set of them) that adapts automatically to each system. In this regard, AutoYaST offers

three different mechanisms to modify the profile at installation time.

Rules and classes

Rules and classes offer the possibility to configure a system by merging multiple control files

during installation. You can read more about this feature in the Chapter 6, Rules and classes

section.

ERB templates

AutoYaST supports Embedded Ruby (ERB) templates syntax to modify the profile's content

during installation. The Chapter 7, ERB templates section describes how to use them.

Pre-installation scripts

You can use a pre-installation script to modify or even create a brand new profile during

installation. the section called “Pre-scripts” describes how to benefit from them.

Asking the user during installation

As an alternative, AutoYaST can ask the user for values to use in the profile at runtime. The

installation is not fully unattended in that case, but it can be rather useful to set user names,

passwords, IP addresses and so on. You can find more information about this feature in the

the section called “Ask the user for values during installation” section.

Chapter 5. Supported approaches to dynamic profiles

193

Chapter 6. Rules and classes

Rules and classes allow customizing installations for sets of machines in different ways:

Rules allow configuring a system depending on its attributes.

Classes represent configurations for groups of target systems. Classes can be assigned to

systems.

Use autoyast boot option only

Rules and classes are only supported by the boot parameter autoyast=URL.

autoyast2=URL is not supported, because this option downloads a single

AutoYaST control file only.

6.1. Rule-based automatic installation

Rules offer the possibility to configure a system depending on system attributes by merging

multiple control files during installation. The rule-based installation is controlled by a rules file.

For example, this could be useful to install systems in two departments in one go. Assume a

scenario where machines in department A need to be installed as office desktops, whereas

machines in department B need to be installed as developer workstations. You would create a

rules file with two different rules. For each rule, you could use different system parameters to

distinguish the installations from one another. Each rule would also contain a link to an appropriate

profile for each department.

The rules file is an XML file containing rules for each group of systems (or single systems) that you

want to automatically install. A set of rules distinguish a group of systems based on one or more

system attributes. After passing all rules, each group of systems is linked to a control file. Both the

rules file and the control files must be located in a pre-defined and accessible location.

The rules file is retrieved only if no specific control file is supplied using the autoyast keyword.

For example, if the following is used, the rules file will not be evaluated:

autoyast=http://10.10.0.1/profile/myprofile.xml
autoyast=http://10.10.0.1/profile/rules/rules.xml

Instead use:

autoyast=http://10.10.0.1/profile/

which will load http://10.10.0.1/profile/rules/rules.xml (the slash at the end of the

directory name is important).

•

•

194

Figure 6.1. Rules

If more than one rule applies, the final control file for each group is generated on the fly using a

merge script. The merging process is based on the order of the rules and later rules override

configuration data in earlier rules. Note that the names of the top sections in the merged XML files

need to be in alphabetical order for the merge to succeed.

The use of a rules file is optional. If the rules file is not found, system installation proceeds in the

standard way by using the supplied control file or by searching for the control file depending on the

MAC or the IP address of the system.

6.1.1. Rules file explained

Example 6.1. Simple rules file

The following simple example illustrates how the rules file is used to retrieve the configuration for a

client with known hardware.

Chapter 6. Rules and classes

195

<?xml version="1.0"?>
<!DOCTYPE autoinstall>
<autoinstall xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://
www.suse.com/1.0/configns">
 <rules config:type="list">
 <rule>
 <disksize>
 <match>/dev/sdc 1000</match>
 <match_type>greater</match_type>
 </disksize>
 <result>
 <profile>department_a.xml</profile>
 <continue config:type="boolean">false</continue>
 </result>
 </rule>
 <rule>
 <disksize>
 <match>/dev/sda 1000</match>
 <match_type>greater</match_type>
 </disksize>
 <result>
 <profile>department_b.xml</profile>
 <continue config:type="boolean">false</continue>
 </result>
 </rule>
 </rules>
</autoinstall>

The last example defines two rules and provides a different control file for every rule. The rule used

in this case is disksize. After parsing the rules file, YaST attempts to match the target system

with the rules in the rules.xml file. A rule match occurs when the target system matches all

system attributes defined in the rule. When the system matches a rule, the respective resource is

added to the stack of control files AutoYaST will use to create the final control file. The continue

property tells AutoYaST whether it should continue with other rules after a match has been found.

If the first rule does not match, the next rule in the list is examined until a match is found.

Using the disksize attribute, you can provide different configurations for systems with hard disks

of different sizes. The first rule checks if the device /dev/sdc is available and if it is greater than 1

GB in size using the match property.

A rule must have at least one attribute to be matched. If you need to check more attributes, such

as memory or architectures, you can add more attributes in the rule resource as shown in the next

example.

Example 6.2. Simple rules file

The following example illustrates how the rules file is used to retrieve the configuration for a client

with known hardware.

196

<?xml version="1.0"?>
<!DOCTYPE autoinstall>
<autoinstall xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://
www.suse.com/1.0/configns">
 <rules config:type="list">
 <rule>
 <disksize>
 <match>/dev/sdc 1000</match>
 <match_type>greater</match_type>
 </disksize>
 <memsize>
 <match>1000</match>
 <match_type>greater</match_type>
 </memsize>
 <result>
 <profile>department_a.xml</profile>
 <continue config:type="boolean">false</continue>
 </result>
 </rule>
 <rule>
 <disksize>
 <match>/dev/sda 1000</match>
 <match_type>greater</match_type>
 </disksize>
 <memsize>
 <match>256</match>
 <match_type>greater</match_type>
 </memsize>
 <result>
 <profile>department_b.xml</profile>
 <continue config:type="boolean">false</continue>
 </result>
 </rule>
 </rules>
</autoinstall>

The rules directory must be located in the same directory specified via the autoyast keyword at

boot time. If the client was booted using autoyast=http://10.10.0.1/profiles/,

AutoYaST will search for the rules file at http://10.10.0.1/profiles/rules/rules.xml.

6.1.2. Custom rules

If the attributes AutoYaST provides for rules are not enough for your purposes, use custom rules.

Custom rules contain a shell script. The output of the script (STDOUT, STDERR is ignored) can be

evaluated.

Here is an example for the use of custom rules:

Chapter 6. Rules and classes

197

<rule>
 <custom1>
 <script>
if grep -i intel /proc/cpuinfo > /dev/null; then
echo -n "intel"
else
echo -n "non_intel"
fi;
 </script>
 <match>*</match>
 <match_type>exact</match_type>
 </custom1>
 <result>
 <profile>@custom1@.xml</profile>
 <continue config:type="boolean">true</continue>
 </result>
</rule>

The script in this rule can echo either intel or non_intel to STDOUT (the output of the grep

command must be directed to /dev/null in this case). The output of the rule script will be filled

between the two '@' characters, to determine the file name of the control file to fetch. AutoYaST

will read the output and fetch a file with the name intel.xml or non_intel.xml. This file can

contain the AutoYaST profile part for the software selection; for example, in case you want a

different software selection on Intel hardware than on others.

The number of custom rules is limited to five. So you can use custom1 to custom5.

6.1.3. Match types for rules

You can use five different match_types:

exact (default)

greater

lower

range

regex (a simple =~ operator like in Bash)

If using exact, the string must match exactly as specified. regex can be used to match

substrings like ntel will match Intel, intel and intelligent. greater and lower can be used for

memsize or totaldisk for example. They can match only with rules that return an integer value.

A range is only possible for integer values too and has the form of value1-value2, for example

512-1024.

6.1.4. Combine attributes

Multiple attributes can be combined via a logical operator. It is possible to let a rule match if

disksize is greater than 1GB or memsize is exactly 512MB.

You can do this with the operator element in the rules.xml file. and and or are possible

operators, and being the default. Here is an example:

•

•

•

•

•

198

<rule>
 <disksize>
 <match>/dev/sda 1000</match>
 <match_type>greater</match_type>
 </disksize>
 <memsize>
 <match>256</match>
 <match_type>greater</match_type>
 </memsize>
 <result>
 <profile>machine2.xml</profile>
 <continue config:type="boolean">false</continue>
 </result>
 <operator>or</operator>
</rule>

6.1.5. Rules file structure

The rules.xml file needs to:

have at least one rule,

have the name rules.xml,

be located in the directory rules in the profile repository,

have at least one attribute to match in the rule.

6.1.6. Predefined system attributes

The following table lists the predefined system attributes you can match in the rules file.

If you are unsure about a value on your system, run /sbin/yast2 ayast_probe ncurses.

The text box displaying the detected values can be scrolled. Note that this command will not work

while another YaST process that requires a lock (for example the installer) is running. Therefore

you cannot run it during the installation.

Table 6.1. System attributes

Attribute Values Description

hostaddress IP address of the host
This attribute must always match

exactly.

hostname The name of the host
This attribute must always match

exactly.

domain Domain name of host
This attribute must always match

exactly.

•

•

•

•

Chapter 6. Rules and classes

199

Attribute Values Description

installed_product

The name of the

product to be

installed.

This attribute must always match

exactly.

installed_product_version

The version of the

product to be

installed.

This attribute must always match

exactly.

network
network address of

host

This attribute must always match

exactly.

mac MAC address of host

This attribute must always match

exactly (the MAC addresses

should have the form

0080c8f6484c).

linux

Number of installed

Linux partitions on the

system

This attribute can be 0 or more.

others

Number of installed

non-Linux partitions

on the system

This attribute can be 0 or more.

xserver
X Server needed for

graphic adapter

This attribute must always match

exactly.

memsize
Memory available on

host in megabytes
All match types are available.

totaldisk

Total disk space

available on host in

megabytes

All match types are available.

hostid
Hex representation of

the IP address
Exact match required

arch Architecture of host Exact match required

karch

Kernel Architecture of

host (for example

SMP kernel, Xen

kernel)

Exact match required

200

Attribute Values Description

disksize
Drive device and size

in megabytes
All match types are available.

product

The hardware product

name as specified in

SMBIOS

Exact match required

product_vendor

The hardware vendor

as specified in

SMBIOS

Exact match required

board

The system board

name as specified in

SMBIOS

Exact match required

board_vendor

The system board

vendor as specified in

SMBIOS

Exact match required

custom1-5
Custom rules using

shell scripts
All match types are available.

6.1.7. Rules with dialogs

You can use dialog pop-ups with check boxes to select rules you want matched.

The elements listed below must be placed within the following XML structure in the rules.xml

file:

<rules config:type="list">
 <rule>
 <dialog>
 ...
 </dialog>
 </rule>
</rules>

Attribute, Values, Description

dialog_nr

All rules with the same dialog_nr are presented in the same pop-up dialog. The same

dialog_nr can appear in multiple rules.

<dialog_nr config:type="integer">3</dialog_nr>

Chapter 6. Rules and classes

201

This element is optional and the default for a missing dialog_nr is always 0. To use one pop-

up for all rules, you do not need to specify the dialog_nr.

element

Specify a unique ID. Even if you have more than one dialog, you must not use the same id

twice. Using id 1 on dialog 1 and id 1 on dialog 2 is not supported. (This behavior is contrary

to the ask dialog, where you can have the same ID for multiple dialogs.)

<element config:type="integer">3</element>

Optional. If omitted, AutoYaST adds its own IDs internally. Then you cannot specify

conflicting rules (see below).

title

Caption of the pop-up dialog

<title>Desktop Selection</title>

Optional

question

Question shown in the pop-up behind the check box.

<question>GNOME Desktop</question>

Optional. If you do not configure a text here, the name of the XML file that is triggered by this

rule will be shown instead.

timeout

Timeout in seconds after which the dialog will automatically “press” the okay button. Useful

for a non-blocking installation in combination with rules dialogs.

<timeout config:type="integer">30</timeout>

Optional. A missing timeout will stop the installation process until the dialog is confirmed by

the user.

conflicts

A list of element ids (rules) that conflict with this rule. If this rule matches or is selected by the

user, all conflicting rules are deselected and disabled in the pop-up. Take care that you do

not create deadlocks.

202

<conflicts config:type="list">
 <element config:type="integer">1</element>
 <element config:type="integer">5</element>
 ...
</conflicts>

Optional

Here is an example of how to use dialogs with rules:

Chapter 6. Rules and classes

203

<rules config:type="list">
 <rule>
 <custom1>
 <script>
echo -n 100
 </script>
 <match>100</match>
 <match_type>exact</match_type>
 </custom1>
 <result>
 <profile>rules/gnome.xml</profile>
 <continue config:type="boolean">true</continue>
 </result>
 <dialog>
 <element config:type="integer">0</element>
 <question>GNOME Desktop</question>
 <title>Desktop Selection</title>
 <conflicts config:type="list">
 <element config:type="integer">1</element>
 </conflicts>
 <dialog_nr config:type="integer">0</dialog_nr>
 </dialog>
 </rule>
 <rule>
 <custom1>
 <script>
echo -n 100
 </script>
 <match>101</match>
 <match_type>exact</match_type>
 </custom1>
 <result>
 <profile>rules/gnome.xml</profile>
 <continue config:type="boolean">true</continue>
 </result>
 <dialog>
 <element config:type="integer">1</element>
 <dialog_nr config:type="integer">0</dialog_nr>
 <question>Gnome Desktop</question>
 <conflicts config:type="list">
 <element config:type="integer">0</element>
 </conflicts>
 </dialog>
 </rule>
 <rule>
 <custom1>
 <script>
echo -n 100
 </script>
 <match>100</match>
 <match_type>exact</match_type>
 </custom1>
 <result>
 <profile>rules/all_the_rest.xml</profile>
 <continue config:type="boolean">false</continue>
 </result>
 </rule>
</rules>

6.2. Classes

Classes represent configurations for groups of target systems. Unlike rules, classes need to be

configured in the control file. Then classes can be assigned to target systems.

Here is an example of a class definition:

204

<classes config:type="list">
 <class>
 <class_name>TrainingRoom</class_name>
 <configuration>Software.xml</configuration>
 </class>
</classes>

In the example above, the file Software.xml must be placed in the subdirectory classes/

TrainingRoom/. It will be fetched from the same location as the AutoYaST control file and rules.

If you have multiple control files and those control files share parts, better use classes for common

parts. You can also use XIncludes.

Using the configuration management system, you can define a set of classes. A class definition

consists of the following variables:

Name: class name

Description:

Order: order (or priority) of the class in the stack of migration

Figure 6.2. Defining classes

You can create as many classes as you need, however it is recommended to keep the set of

classes as small as possible to keep the configuration system concise. For example, the following

sets of classes can be used:

site: classes describing a physical location or site,

machine: classes describing a type of machine,

role: classes describing the function of the machine,

•

•

•

•

•

•

Chapter 6. Rules and classes

205

group: classes describing a department or a group within a site or a location.

A file saved in a class directory can have the same syntax and format as a regular control file but

represents a subset of the configuration. For example, to create a new control file for a computer

with a specific network interface, you only need the control file resource that controls the

configuration of the network. Having multiple network types, you can merge the one needed for a

special type of hardware with other class files and create a new control file which suits the system

being installed.

6.3. Mixing rules and classes

It is possible to mix rules and classes during an auto-installation session. For example you can

identify a system using rules which contain class definitions in them. The process is described in

the figure Figure A.1, “Rules retrieval process”.

After retrieving the rules and merging them, the generated control file is parsed and checked for

class definitions. If classes are defined, then the class files are retrieved from the original

repository and a new merge process is initiated.

6.4. Merging of rules and classes

With classes and with rules, multiple XML files get merged into one resulting XML file. This

merging process is often confusing for people, because it behaves different than one would expect.

First of all, it is important to note that the names of the top sections in the merged XML files must

be in alphabetical order for the merge to succeed.

For example, the following two XML parts should be merged:

<partitioning config:type="list">
 <drive>
 <partitions config:type="list">
 <partition>
 <filesystem config:type="symbol">swap</filesystem>
 <format config:type="boolean">true</format>
 <mount>swap</mount>
 <partition_id config:type="integer">130</partition_id>
 <size>2000mb</size>
 </partition>
 <partition>
 <filesystem config:type="symbol">xfs</filesystem>
 <partition_type>primary</partition_type>
 <size>4Gb</size>
 <mount>/data</mount>
 </partition>
 </partitions>
 </drive>
</partitioning>

•

206

<partitioning config:type="list">
 <drive>
 <initialize config:type="boolean">false</initialize>
 <partitions config:type="list">
 <partition>
 <format config:type="boolean">true</format>
 <filesystem config:type="symbol">xfs</filesystem>
 <mount>/</mount>
 <partition_id config:type="integer">131</partition_id>
 <partition_type>primary</partition_type>
 <size>max</size>
 </partition>
 </partitions>
 <use>all</use>
 </drive>
</partitioning>

You might expect the control file to contain three partitions. This is not the case. You will end up

with two partitions and the first partition is a mix up of the swap and the root partition. Settings

configured in both partitions, like mount or size, will be used from the second file. Settings that

only exist in the first or second partition, will be copied to the merged partition too.

In this example, you do not want a second drive. The two drives should be merged into one. With

regard to partitions, three separate ones should be defined. Using the dont_merge method solves

the merging problem:

<classes config:type="list">
 <class>
 <class_name>swap</class_name>
 <configuration>largeswap.xml</configuration>
 <dont_merge config:type="list">
 <element>partition</element>
 </dont_merge>
 </class>
</classes>

<rule>
 <board_vendor>
 <match>ntel</match>
 <match_type>regex</match_type>
 </board_vendor>
 <result>
 <profile>classes/largeswap.xml</profile>
 <continue config:type="boolean">true</continue>
 <dont_merge config:type="list">
 <element>partition</element>
 </dont_merge>
 </result>
 <board_vendor>
 <match>PowerEdge [12]850</match>
 <match_type>regex</match_type>
 </board_vendor>
 <result>
 <profile>classes/smallswap.xml</profile>
 <continue config:type="boolean">true</continue>
 <dont_merge config:type="list">
 <element>partition</element>
 </dont_merge>
 </result>
</rule>

Chapter 6. Rules and classes

207

Chapter 7. ERB templates

ERB templates are for embedding Ruby code within an AutoYaST profile to modify the profile

during the installation. With this approach, you can inspect the system and adjust the profile by

setting values, adding or skipping sections, and so on.

To activate the ERB processing, the profile must have the extension .erb (for example,

autoyast.xml.erb). Hence, it is not possible to combine rules/classes and ERB templates.

7.1. What is ERB?

ERB stands for Embedded Ruby. ERB uses the power of the Ruby programming language to

generate different kinds of content. With ERB, you can include some Ruby code in your profiles to

adapt them at runtime, depending on the installation system.

When using ERB, the Ruby code is enclosed between <% and %> signs. Use an equals sign, =, to

include command output in the resulting profile.

Example 7.1. Including a file using ERB

<bootloader>
 <% require "open-uri" %>
 <%= URI.open("http://192.168.1.1/profiles/bootloader-common.xml").read %>
</bootloader> <!-- this line gets replaced with the content of bootloader-
common.xml -->

You can use Ruby facilities to run arbitrary commands. If you want to get the output of a command,

then enclose it between backticks. If you want to know whether a command was successful or not,

run the command with the system function.

Example 7.2. Running commands with Ruby

<% files = `ls` %> <!-- files contains the output of the command (for instance
"file1\nfile2\nfile3") -->
<% success = system("dmidecode | grep some-model") %> <!-- success contains true
or false -->

Also, you can use more advanced Ruby code structures such as conditions and loops.

Example 7.3. Using Ruby structures

<% ip_forward = File.read("/proc/sys/net/ipv4/ip_forward").strip %>
<% if ip_forward == "1" %>
 <!-- something -->
<% end %>

<% files = `ls /tmp/config/*.xml` %>
<% files.split.each do |file| %>
 <%= file.read %>
<% end %>

208

AutoYaST offers a small set of helper functions to retrieve information from the underlying system,

like disks or network_cards. You can check the list of helpers and their values in the the

section called “Template helpers” section.

7.2. Template helpers

Template helpers are sets of Ruby methods that can be used in the profiles to retrieve information

about the installation system.

7.2.1. boot_efi?

boot_efi? is a boolean helper that returns whether the system is booted using EFI. In the

example below, the profile configures the bootloader according to the current boot mode.

Example 7.4. Configuring the boot loader

<% if env.boot_efi? %>
 <loader_type>grub2-efi</loader_type>
<% else %>
 <loader_type>grub2</loader_type>
<% end %>

7.2.2. disks

The disks helper returns a list of the detected disks. Each element of the list contains some basic

information like the device name or the size.

Key Type Value

:device String Device kernel name (for example, sda).

:model String Disk model

:serial String Serial number

:size Integer Disk size (is a count of disk sectors)

:udev_names Array<String>
List of disk udev names. You can use any of them to refer to

the device.

:vendor String Disk vendor's name

The profile in the example below installs the system on the largest disk. It sorts the list of existing

disks by size and takes the last one. Then it uses the :device key as value for the device

element.

Chapter 7. ERB templates

209

Example 7.5. Using the largest disk

<partitioning t="list">
 <drive>
 <% disk = disks.sort_by { |d| d[:size] }.last %> <!-- find the largest disk
-->
 <device><%= disk[:device] %></device> <!-- print the disk device name -->
 <initialize t="boolean">true</initialize>
 <use>all</use>
 </drive>
</partitioning>

7.2.3. network_cards

The network_cards helper returns a list of network cards, including their names, status

information (for example, if they are connected or not).

Key Type Value

:device String Device name (for example, eth0 or enp3s0)

:mac String MAC address

:active Boolean Whether the device is active or not

:link Boolean Whether the device is connected or not

:vendor String Disk vendor's name

The following example finds the first network card that is connected to the network and configures

it to use DHCP.

Example 7.6. Configure the connected network cards

<interfaces t="list">
 <% with_link = network_cards.sort_by { |n| n[:name] }.find { |n| n[:link] } %>
 <% if with_link %>
 <interface>
 <device><%= with_link[:device] %></device>
 <startmode>auto</startmode>
 <bootproto>dhcp</bootproto>
 </interface>
 <% end %>
</interfaces>

7.2.4. os_release

The os_release helper returns the operating system information, which is included in the /etc/

os-release file.

210

Key Type Value

:id String Distribution ID (for example, sles, opensuse-tumbleweed)

:name String Distribution name (for example, SLES or openSUSE Tumbleweed)

:version String Distribution version (for example, 15.2)

You might use this information to decide which product to install, using pretty much the same

profile for all of them (SLE or openSUSE distributions).

Example 7.7. Reusing the same profile for different distributions

<products t="list">
 <% if os_release[:id] == 'sle' %>
 <product>SLES</product>
 <% else %>
 <product>openSUSE</product>
 <% end %>
</products>

7.2.5. hardware

The hardware helper provides additional hardware information. It returns all the information from

the hwinfo command. You can use this helper as a fallback for those cases in which the

information available through the described helpers is not enough. In the next example, the

hardware helper is used to filter USB devices. Check the section called “Running ERB helpers” to

learn how to inspect all the information provided by the hardware helper.

Example 7.8. Filtering USB devices

<% usb_disks = hardware["disk"].select { |d| d["driver"] != "usb-storage" } %>

7.3. Running ERB helpers

You can use the Ruby console to run AutoYaST ERB helpers and find out what they offer. All ERB

helpers are accessed through an instance of the

Y2Autoinstallation::Y2ERB::TemplateEnvironment class. Start the Ruby interactive

interpreter by running, as root: irb -ryast -rautoinstall/y2erb.

Chapter 7. ERB templates

211

Example 7.9. Running helpers

irb > env = Y2Autoinstallation::Y2ERB::TemplateEnvironment.new # the env
variable gives access to the helpers

irb > env.disks
=>
[{:vendor=>"WDC", :device=>"sda", ...},
 {:vendor=>"TOSHIBA", :device=>"sdb", ...},
...]

irb > env.hardware.keys
=>
["architecture",
 "bios",
 "bios_video",
 ...]

irb > env.hardware["architecture"]
=>
"x86_64"

7.4. Rendering ERB profiles

The AutoYaST command line provides a check-profile command that can be used to generate

a profile from an ERB file. This command asks AutoYaST to parse, run the ERB code, and

generate the resulting profile. You can inspect the rendered profile to check that everything worked

as expected. See the command help for all the options it supports: autoyast check-profile

--help. In the following example, check-profile asks AutoYaST to download and parse the

profile, interpret the ERB code and run the pre-scripts. The result will be dumped to the

result.xml file.

Example 7.10. Rendering profile

>sudo yast2 autoyast check-profile filename=http://192.168.1.100/autoinst.erb
output=result.xml run-scripts=true run-erb=true

check-profile permissions

In most cases, check-profile requires root permissions, so be careful when

running pre-installation scripts and ERB profiles as root. Use only profiles that you

trust.

7.5. Debugging ERB profiles

For those cases in which you want to stop the ERB evaluation and check what is happening, YaST

offers integration with the byebug debugger. Install the rubygem(byebug) package and set the

Y2DEBUGGER environment variable to 1.

Example 7.11. Preparing the debug environment

>sudo zypper --non-interactive in "rubygem(byebug)"
>sudo Y2DEBUGGER=1 yast2 autoyast check-profile ...

212

Adding breakpoints is as easy as adding <% byebug %> where you want to stop. For more

information about byebug, see https://github.com/deivid-rodriguez/byebug.

Example 7.12. Adding a breakpoint

<% byebug %>
<% if system("dmidecode | grep some-model") %>
 <!-- do something -->
%<% end %>

7.6. ERB compared to rules and classes

Although both ERB and rules/classes enable generating profiles dynamically, in general ERB

profiles are easier to read and understand. One important difference is that rules and classes can

merge profiles, and ERB cannot. See more about merging profiles in Chapter 6, Rules and

classes. On the other hand, ERB brings all the power of a high-level language, Ruby. Let's see an

example using both. In the following example, we want to place /home directory in /dev/sdb if it

exists.

Example 7.13. Rules and classes

<rule>
 <custom1>
 <script>
if blkid | grep /dev/sdb > /dev/null; then
echo -n "yes"
else
echo -n "no"
fi;
 </script>
 <match>yes</match>
 <match_type>exact</match_type>
 </custom1>
 <result>
 <profile>classes/sdb_home.xml</profile>
 <dont_merge config:type="list">
 <element>partition</element>
 </dont_merge>
 </result>
</rule>

Chapter 7. ERB templates

213

https://github.com/deivid-rodriguez/byebug

Example 7.14. ERB

<% home_in_sdb = disks.map { |d| d[:device] }.include?("sdb") %>

<partitioning config:type="list">
 <drive>
 ...
 </drive>
 <% if home_in_sdb %>
 <drive>
 <device>/dev/sdb</device>
 <disklabel>none</disklabel>
 <partitions t="list">
 <partition>
 <format t="boolean">true</format>
 <filesystem t="symbol">xfs</filesystem>
 <mount>/home</mount>
 </partition>
 </partitions>
 </drive>
 <% end %>
</partitioning>

214

Chapter 8. Combining ERB templates and scripts

the section called “Pre-scripts” already describes how to use a pre-script to modify the current

profile. In a nutshell, if the script creates a /tmp/profile/modified.xml file, AutoYaST

imports that profile and forgets about the initial one.

This is a pretty flexible approach and the only limitation is that you need to rely on the languages

and libraries that are available in the installation media.

8.1. Embedding ERB in your scripts

Unlike with rules, it is possible to combine ERB templates with scripts. AutoYaST will evaluate any

ERB tag that you include in your script before running it. This behavior only applies to the scripts

defined inside the profile and not to the external ones.

The script in the example below downloads a profile whose name is based on the MAC address.

Saving the file as /tmp/profile/modified.xml will cause AutoYaST to load and use the

downloaded profile.

Example 8.1. Using the MAC address to get the profile

<scripts>
 <pre-scripts config:type="list">
 <script>
 <interpreter>shell</interpreter>
 <filename>load_profile.sh</filename>
 <% mac = network_cards.first >
 <source><![CDATA[#!/bin/bash
wget -O /tmp/profile/modified.xml http://myserver/<%= network_cards.first[:mac]
%>.xml
]]></source>
 </script>
 </pre-scripts>
</scripts>

8.2. Accessing ERB helpers from Ruby scripts

It is possible to use the ERB helpers in Ruby scripts. To use those helpers, you need to require the

yast and autoinstall/y2erb libraries and use the

Y2Autoinstall::Y2ERB::TemplateEnvironment class to access them.

Chapter 8. Combining ERB templates and scripts

215

Example 8.2. Accessing ERB helpers from a Ruby script

<scripts>
 <pre-scripts config:type="list">
 <script>
 <interpreter>/usr/bin/ruby</interpreter>
 <filename>load_profile.rb</filename>
 <source><![CDATA[#!/usr/bin/env ruby
require "yast"
require "autoinstall/y2erb"
helpers = Y2Autoinstallation::Y2ERB::TemplateEnvironment.new
Now you can use the TemplateEnvironment instance to call the helpers
disk_devices = helpers.disks.map { |d| d[:device] }
File.write("/root/disks.txt", disk_devices.join("\n"))
]]></source>
 </script>
 </pre-scripts>
</scripts>

216

Part IV. Understanding the auto-installation
process

9 The auto-installation process
218

Part IV. Understanding the auto-installation process

217

Chapter 9. The auto-installation process

9.1. Introduction

After the system has booted into an automatic installation and the control file has been retrieved,

YaST configures the system according to the information provided in the control file. All

configuration settings are summarized in a window that is shown by default and should be

deactivated if a fully automatic installation is needed.

By the time YaST displays the summary of the configuration, YaST has only probed hardware and

prepared the system for auto-installation. Nothing has been changed in the system yet. In case of

any error, you can still abort the process.

A system should be automatically installable without the need to have any graphic adapter or

monitor. Having a monitor attached to the client machine is nevertheless recommended so you can

supervise the process and to get feedback in case of errors. Choose between the graphical and

the text-based Ncurses interfaces. For headless clients, system messages can be monitored using

the serial console.

9.1.1. X11 interface (graphical)

This is the default interface while auto-installing. No special variables are required to activate it.

9.1.2. Serial console

Start installing a system using the serial console by adding the keyword console (for example

console=ttyS0) to the command line of the kernel. This starts linuxrc in console mode and

later YaST in serial console mode.

9.1.3. Text-based YaST installation

This option can also be activated on the command line. To start YaST in text mode, add

textmode=1 on the command line.

Starting YaST in the text mode is recommended when installing a client with less than 64 MB or

when X11 should not be configured, especially on headless machines.

9.2. Choosing the right boot medium

There are different methods for booting the client. The computer can boot from its network

interface card (NIC) to receive the boot images via DHCP or TFTP. Alternatively a suitable kernel

and initrd image can be loaded from a flash disk (for example, a USB stick) or a bootable DVD-

ROM.

218

YaST will check for autoinst.xml in the root directory of the boot medium or the initrd upon

start-up and switch to an automated installation if it was found. In case the control file is named

differently or located elsewhere, specify its location on the kernel command line with the parameter

AutoYaST=URL.

Alternatively, you can place the autoinst.xml into a device, mounted either physically or

virtually, that is labeled OEMDRV. In this case, you do not need to specify the location of the

autoinst.xml on the kernel command line. The autoinst.xml must be located in the root

directory of the device.

9.2.1. Booting from a flash disk (for example, a USB stick)

For testing/rescue purposes or because the NIC does not have a PROM or PXE, you can build a

bootable flash disk to use with AutoYaST. Flash disks can also store the control file.

Copying the installation medium image to a removable flash disk

Use the following command to copy the contents of the installation image to a

removable flash disk.

>sudo dd if=IMAGE of=FLASH_DISK bs=4M && sync

IMAGE needs to be replaced with the path to the SLE-15-SP7-Online-ARCH-GM-

media1.iso or SLE-15-SP7-Full-ARCH-GM-media1.iso image file.

FLASH_DISK needs to be replaced with the flash device. To identify the device,

insert it and run:

#grep -Ff <(hwinfo --disk --short) <(hwinfo --usb --short)
 disk:
 /dev/sdc General USB Flash Disk

Make sure the size of the device is sufficient for the desired image. You can check

the size of the device with:

#fdisk -l /dev/sdc | grep -e "^/dev"
 /dev/sdc1 * 2048 31490047 31488000 15G 83 Linux

In this example, the device has a capacity of 15 GB. The command to use for the

SLE-15-SP7-Full-ARCH-GM-media1.iso would be:

dd if=SLE-15-SP7-Full-ARCH-GM-media1.iso of=/dev/sdc bs=4M && sync

The device must not be mounted when running the dd command. Note that all data

on the partition will be erased!

Chapter 9. The auto-installation process

219

9.2.2. Booting from the SUSE Linux Enterprise installation medium

You can use the SUSE Linux Enterprise installation medium (SLE-15-SP7-Online-ARCH-GM-

media1.iso or SLE-15-SP7-Full-ARCH-GM-media1.iso) in combination with other media.

For example, the control file can be provided via a flash disk or a specified location on the network.

Alternatively, create a customized installation media that includes the control file.

9.2.3. Booting via PXE over the network

Booting via PXE requires a DHCP and a TFTP server in your network. The computer will then boot

without a physical medium. For instructions on setting up the required infrastructure, see

Chapter 13, Remote installation in “Deployment Guide”.

If you install via PXE, the installation will run in an endless loop. This happens because after the

first reboot, the machine performs the PXE boot again and restarts the installation instead of

booting from the hard disk for the second stage of the installation.

There are several ways to solve this problem. You can use an HTTP server to provide the

AutoYaST control file. Alternatively, instead of a static control file, run a CGI script on the Web

server that provides the control file and changes the TFTP server configuration for your target host.

This way, the next PXE boot of the machine will be from the hard disk by default.

Another way is to use AutoYaST to upload a new PXE boot configuration for the target host via the

control file:

<pxe>
 <pxe_localboot config:type="boolean">true</pxe_localboot>
 <pxelinux-config>
 DEFAULT linux
 LABEL linux
 localboot 0
 </pxelinux-config>
 <tftp-server>192.168.1.115</tftp-server>
 <pxelinux-dir>/pxelinux.cfg</pxelinux-dir>
 <filename>__MAC__</filename>
</pxe>

This entry will upload a new configuration for the target host to the TFTP server shortly before the

first reboot happens. In most installations the TFTP daemon runs as user nobody. You need to

make sure this user has write permissions to the pxelinux.cfg directory. You can also configure

the file name that will be uploaded. If you use the “magic”__MAC__ file name, the file name will be

the MAC address of your machine like, for example 01-08-00-27-79-49-ee. If the file name

setting is missing, the IP address will be used for the file name.

To do another auto-installation on the same machine, you need to remove the file from the TFTP

server.

9.3. Invoking the auto-installation process

220

https://fsteimke.github.io/xsltng-docs/suse/book-deployment.pdf

9.3.1. Command line options

Adding the command line variable autoyast causes linuxrc to start in automated mode. The

linuxrc program searches for a configuration file, which should be distinguished from the main

control file, in the following places:

in the root directory of the initial RAM disk used for booting the system;

in the root directory of the boot medium.

The linuxrc configuration file supports multiple keywords. For a detailed description of how

linuxrc works and other keywords, see Appendix C, Advanced linuxrc options. Some of the

more common ones are:

autoupgrade

Initiate an automatic upgrade using AutoYaST; see the section called “Upgrade”.

autoyast

Location of the control file for automatic installation; see AutoYaST control file locations for

details.

ifcfg

Configure and start the network. Required if the AutoYaST is to be fetched from a remote

location. See the section called “Advanced network setup” for details.

insmod

Kernel modules to load

install

Location of the installation directory, for example install=nfs://192.168.2.1/CDs/.

•

•

Chapter 9. The auto-installation process

221

Disabling SSL checks

When you are using HTTPS, SSL checking is enabled by default. If necessary,

you can disable SSL checking by appending ssl_verify=no to your HTTPS

URL, like the following examples:

install=https://192.168.2.1/CDs/?ssl_verify=no

If you are passing multiple query options, separate them with ampersands:

install=https://192.168.2.1/CDs/?foo=bar&ssl_verify=no

See the "FTP/HTTP/HTTPS directory tree" section of man 8 zypper for more

information.

instmode

Installation mode, for example nfs, http etc. (not needed if install is set).

rootpassword

Password for root user if not specified in AutoYaST profile

server

Server (NFS) to contact for source directory

serverdir

Directory on NFS Server

y2confirm

Even with <confirm>no</confirm> in the control file, the confirm proposal comes up.

These variables and keywords will bring the system up to the point where YaST can take over with

the main control file. Currently, the source medium is automatically discovered, which in some

cases makes it possible to initiate the auto-install process without giving any instructions to

linuxrc.

The traditional linuxrc configuration file (info) has the function of giving the client enough

information about the installation server and the location of the sources. Usually, this file is not

required, but it is needed in special network environments where DHCP and BOOTP are not used

or when special kernel modules need to be loaded.

You can pass keywords to linuxrc using the kernel command line. This can be done in several

ways. You can specify linuxrc keywords along with other kernel parameters interactively at boot

222

time, in the usual way. You can also insert kernel parameters into custom network-bootable disk

images. It is also possible to configure a DHCP server to pass kernel parameters in combination

with Etherboot or PXE.

Using autoyast2 boot option instead of autoyast

The autoyast2 option is similar to the autoyast option, but linuxrc parses the

provided value and, for example, tries to configure a network when needed. This

option is not described in this documentation. For information about differences

between the AutoYaST and linuxrc URI syntax, see the linuxrc appendix:

Appendix C, Advanced linuxrc options. AutoYaST's rules and classes are not

supported.

The command line variable autoyast can be used in the format described in the following list.

AutoYaST control file locations

Format of URIs

The autoyast syntax for the URIs for your control file locations can be confusing. The

format is SCHEMA://HOST/PATH-TO-FILE. The number of forward slashes to use varies.

For remote locations of your control file, the URI looks like this example for an NFS server,

with two slashes: autoyast=nfs://SERVER/PATH.

It is different when your control file is on a local file system. For example,

autoyast=usb:///profile.xml is the same as autoyast=usb://localhost/

profile.xml. You may omit the local host name, but you must keep the third slash.

autoyast=usb://profile.xml will fail because profile.xml is interpreted as the host

name.

When no control file specification is needed

For upgrades, no autoyast variable is needed for an automated offline upgrade, see

Procedure 4.1, “Starting AutoYaST in offline upgrade mode”.

For new installations, autoyast will be started if a file named autoinst.xml is in one of

the following three locations:

The root directory of the installation flash disk (for example, a USB stick)

The root directory of the installation medium

The root directory of the initial RAM disk used to boot the system

1.

2.

3.

Chapter 9. The auto-installation process

223

autoyast=file:///PATH

Looks for control file in the specified path, relative to the source root directory, for example

file:///autoinst.xml when the control file is in the top-level directory of any local file

system, including mounted external devices such as a CD or USB drive. (This is the same as

file://localhost/autoinst.xml.)

autoyast=device://DEVICE/FILENAME

Looks for the control file on a storage device. Do not specify the full path to the device, but

the device name only (for example, device://vda1/autoyast.xml). You may also omit

specifying the device and trigger autoyast to search all devices, for example,

autoyast=device://localhost/autoinst.xml, or autoyast=device:///

autoinst.xml.

autoyast=nfs://SERVER/PATH

Looks for the control file on an NFS server.

autoyast=http://[user:password@]SERVER/PATH

Retrieves the control file from a Web server using the HTTP protocol. Specifying a user

name and a password is optional.

autoyast=https://[user:password@]SERVER/PATH

Retrieves the control file from a Web server using HTTPS. Specifying a user name and a

password is optional.

autoyast=tftp://SERVER/PATH

Retrieve the control file via TFTP.

autoyast=ftp://[user:password@]SERVER/PATH

Retrieve the control file via FTP. Specifying a user name and a password is optional.

autoyast=usb:///PATH

Retrieve the control file from USB devices (autoyast will search all connected USB

devices).

autoyast=relurl://PATH

Retrieve the control file from the installation source: either from the default installation source

or from the installation source defined in install=INSTALLATION_SOURCE_PATH.

224

autoyast=repo:/PATH

Retrieve the control file from the specified path. The path must be relative to the installation

source.

autoyast=cifs://SERVER/PATH

Looks for the control file on a CIFS server.

autoyast=label://LABEL/PATH

Searches for a control file on a device with the specified label.

Several scenarios for auto-installation are possible using different types of infrastructure and

source media. The simplest way is to use the appropriate installation media of SUSE Linux

Enterprise Server (SLE-15-SP7-Online-ARCH-GM-media1.iso or SLE-15-SP7-Full-

ARCH-GM-media1.iso). But to initiate the auto-installation process, the auto-installation

command line variable should be entered at system boot-up and the control file should be

accessible for YaST.

In a scripting context, you can use a serial console for your virtual machine, that allows you to work

in text mode. Then you can pass the required parameters from an expect script or equivalent.

The following list of scenarios explains how the control file can be supplied:

Using the SUSE Linux Enterprise Server installation media

When using the original installation media (SLE-15-SP7-Online-ARCH-GM-media1.iso

or SLE-15-SP7-Full-ARCH-GM-media1.iso is needed), the control file needs to be

accessible via flash disk (for example, a USB stick) or network:

Flash disk (for example, a USB stick)Access the control file via the autoyast=usb://

PATH option.

NetworkAccess the control file via the following commands: autoyast=nfs://..,

autoyast=ftp://.., autoyast=http://.., autoyast=https://..,

autoyast=tftp://.., or autoyast=cifs://... Network access needs to be defined

using the boot options in linuxrc. This can be done via DHCP: netsetup=dhcp

autoyast=http://163.122.3.5/autoyast.xml

Using a custom installation media

In this case, you can include the control file directly on the installation media. When placing it

in the root directory and naming it autoinst.xml, it will automatically be found and used

for the installation. Otherwise use autoyast=file:///PATH to specify the path to the

control file.

Chapter 9. The auto-installation process

225

Using a network installation source

This option is the most important one because installations of multiple machines are usually

done using SLP or NFS servers and other network services like BOOTP and DHCP. The

easiest way to make the control file available is to place it in the root directory of the

installation source, naming it autoinst.xml. In this case, it will automatically be found and

used for the installation. The control file can also reside in the following places:

Flash disk (for example, a USB stick)Access the control file via the autoyast=usb://

PATH option.

NetworkAccess the control file via the following commands: autoyast=nfs://..,

autoyast=ftp://.., autoyast=http://.., autoyast=https://..,

autoyast=tftp://.., or autoyast=cifs://...

Disabling network and DHCP

To disable the network during installations where it is not needed or unavailable, for

example when auto-installing from DVD-ROMs, use the linuxrc option

netsetup=0 to disable the network setup.

With all AutoYaST invocation options it is possible to specify the location of the control file in the

following ways:

Specify the exact location of the control file:

autoyast=http://192.168.1.1/control-files/client01.xml

Specify a directory where several control files are located:

autoyast=http://192.168.1.1/control-files/

In this case the relevant control file is retrieved using the hex digit representation of the IP as

described below.

The path of this directory needs to end with a /.

The files in the directory must not have any extension, for example .xml. So the file name

needs to be the IP or MAC address only.

>ls -r control-files
C00002 0080C8F6484C default

If only the path prefix variable is defined, YaST will fetch the control file from the specified location

in the following way:

First, it will search for the control file using its own IP address in uppercase hexadecimal, for

example 192.0.2.91 -> C000025B.

1.

2.

1.

226

If this file is not found, YaST will remove one hex digit and try again. This action is repeated

until the file with the correct name is found. Ultimately, it will try looking for a file with the

MAC address of the client as the file name (mac should have the following syntax:

0080C8F6484C) and if not found a file named default (in lowercase).

As an example, for 192.0.2.91, the HTTP client will try:

C000025B
C000025
C00002
C0000
C000
C00
C0
C
0080C8F6484C
default

in that order.

To determine the hex representation of the IP address of the client, use the utility called /usr/

bin/gethostip available with the syslinux package.

Example 9.1. Determine HEX code for an IP address

>/usr/bin/gethostip 10.10.0.1
10.10.0.1 10.10.0.1 0A0A0001

9.3.2. Auto-installing a single system

The easiest way to auto-install a system without any network connection is to use the original

SUSE Linux Enterprise Server DVD-ROMs and a flash disk (for example, a USB stick). You do not

need to set up an installation server nor the network environment.

Create the control file and name it autoinst.xml. Copy the file autoinst.xml to the flash disk.

9.3.3. Combining the linuxrc info file with the AutoYaST control file

If you choose to pass information to linuxrc using the info file or as boot options, you may

integrate the keywords into the AutoYaST control file. Add an info_file section as shown in the

example below. This section contains keyword—value pairs, separated by colons, one pair per

line.

2.

Chapter 9. The auto-installation process

227

Example 9.2. linuxrc Options in the AutoYaST control file

....
 <install>
....
 <init>
 <info_file>

install: nfs://192.168.1.1/CDs/full-x86_64
dud: https://example.com/driver_updates/filename.dud
upgrade: 1
textmode: 1
 </info_file>
 </init>
......
 </install>

Note that the autoyast2 keyword must point to the same file. If it is on a flash disk (for example,

a USB stick), then the option usb:// needs to be used. If the info file is stored in the initial RAM

disk, the file:/// option needs to be used.

9.4. System configuration

The system configuration during auto-installation is the most important part of the whole process.

As you have seen in the previous chapters, almost anything can be configured automatically on the

target system. In addition to the pre-defined directives, you can always use post-scripts to change

other things in the system. Additionally you can change any system variables, and if required, copy

complete configuration files into the target system.

9.4.1. Post-install and system configuration

The post-installation and system configuration are initiated directly after the last package is

installed on the target system and continue after the system has booted for the first time.

Before the system is booted for the first time, AutoYaST writes all data collected during installation

and writes the boot loader in the specified location. In addition to these regular tasks, AutoYaST

executes the chroot-scripts as specified in the control file. Note that these scripts are executed

while the system is not yet mounted.

If a different kernel than the default is installed, a hard reboot will be required. A hard reboot can

also be forced during auto-installation, independent of the installed kernel. Use the reboot

property of the general resource (see the section called “General options”).

9.4.2. System customization

Most of the system customization is done in the second stage of the installation. If you require

customization that cannot be done using AutoYaST resources, use post-install scripts for further

modifications.

228

You can define an unlimited number of custom scripts in the control file, either by editing the

control file or by using the configuration system.

Chapter 9. The auto-installation process

229

Part V. Uses for AutoYaST on installed systems

10 Running AutoYaST in an installed system
231

230

Chapter 10. Running AutoYaST in an installed system

In some cases it is useful to run AutoYaST in a running system. Keep in mind that the

partitioning section is ignored in this scenario.

In the following example, an additional software package (foo) is going to be installed. To run this

software, a user needs to be added and an NTP client needs to be configured.

The respective AutoYaST profile needs to include a section for the package installation (the section

called “Installing packages in stage 2”), a user (the section called “Users”) section and an NTP

client (the section called “NTP client”) section:

<?xml version="1.0"?>
<!DOCTYPE profile>
<profile xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://
www.suse.com/1.0/configns">
 <ntp-client>
 <peers config:type="list">
 <peer>
 <address>us.pool.ntp.org</address>
 <comment/>
 <options> iburst</options>
 <type>server</type>
 </peer>
 </peers>
 <start_at_boot config:type="boolean">true</start_at_boot>
 <start_in_chroot config:type="boolean">false</start_in_chroot>
 <sync_interval config:type="integer">5</sync_interval>
 <synchronize_time config:type="boolean">false</synchronize_time>
 </ntp-client>
 <software>
 <post-packages config:type="list">
 <package>ntp</package>
 <package>yast2-ntp-client</package>
 <package>foo</package>
 </post-packages>
 </software>
 <users config:type="list">
 <user>
 <encrypted config:type="boolean">false</encrypted>
 <fullname>Foo user</fullname>
 <gid>100</gid>
 <home>/home/foo</home>
 <password_settings>
 <expire/>
 <flag/>
 <inact/>
 <max>99999</max>
 <min>0</min>
 <warn>7</warn>
 </password_settings>
 <shell>/bin/bash</shell>
 <uid>1001</uid>
 <user_password>linux</user_password>
 <username>foo</username>
 </user>
 </users>
</profile>

Store this file as /tmp/install_foo.xml and start the AutoYaST installation process by calling:

Chapter 10. Running AutoYaST in an installed system

231

>sudo yast2 ayast_setup setup filename=/tmp/install_foo.xml dopackages="yes"

For more information, run yast2 ayast_setup longhelp

232

Part VI. Appendixes

A Handling rules 234

B AutoYaST FAQ—frequently asked questions 235

C Advanced linuxrc options 239

D Differences between AutoYaST profiles in SLE 12 and 15

243

E GNU licenses 255

Part VI. Appendixes

233

Appendix A. Handling rules

The following figure illustrates how rules are handled and the processes of retrieval and merge.

Figure A.1. Rules retrieval process

234

Appendix B. AutoYaST FAQ—frequently asked questions

1. How do I invoke an AutoYaST installation? .. 235

2. What is an AutoYaST profile? .. 235

3. How do I create an AutoYaST profile? ... 235

4. How can I check the syntax of a created AutoYaST profile? .. 236

5. What is smallest AutoYaST profile that makes sense? .. 236

6. How do I do an automatic installation with autodetection of my sound card? 236

7. I want to install from DVD only. Where do I put the AutoYaST profile? 236

8. How can I test a merging process on the command line? ... 237

9. Can I call Zypper from scripts? .. 237

10. Is the order of sections in an AutoYaST profile important? .. 237

11. linuxrc blocks the installation with File not signed. I need to manually interact. 237

12. I want to install from DVD/USB/HD but fetch the XML file from the network. 238

13. Is installation onto an NFS root (/) possible? ... 238

14. Where can I ask questions which have not been answered here? .. 238

1.

How do I invoke an AutoYaST installation?

On all SUSE Linux Enterprise Server versions, the automatic installation gets invoked by adding

autoyast=<PATH_TO_PROFILE> to the kernel parameter list. So for example adding

autoyast=http://MYSERVER/MYCONFIG.xml will start an automatic installation where the

profile with the AutoYaST configuration gets fetched from the Web server myserver. See the

section called “Invoking the auto-installation process” for more information.

2.

What is an AutoYaST profile?

A profile is the AutoYaST configuration file. The content of the AutoYaST profile determines how

the system will be configured and which packages will get installed. This includes partitioning,

network setup, and software sources, to name but a few. Almost everything that can be configured

with YaST in a running system can also be configured in an AutoYaST profile. The profile format is

an ASCII XML file.

3.

How do I create an AutoYaST profile?

The easiest way to create an AutoYaST profile is to use an existing SUSE Linux Enterprise Server

system as a template. On an already installed system, start YaST > Miscellaneous >

Autoinstallation. Now select Tools > Create Reference Profile from the menu. Choose the system

Appendix B. AutoYaST FAQ—frequently asked questions

235

components you want to include in the profile. Alternatively, create a profile containing the

complete system configuration by running sudo yast clone_system from the command line.

Both methods will create the file /root/autoinst.xml. The version created on the command

line can be used to set up an identical clone of the system on which the profile was created.

However, usually you will want to adjust the file to make it possible to install several machines that

are very similar, but not identical. This can be done by adjusting the profile using your favorite text/

XML editor.

4.

How can I check the syntax of a created AutoYaST profile?

The most efficient way to check your created AutoYaST profile is by using jing or xmllint.

See the section called “Creating/editing a control file manually” for details.

5.

What is smallest AutoYaST profile that makes sense?

If a section has not been defined in the AutoYaST profile the settings of the general YaST

installation proposal will be used. However, you need to specify at least the root password to be

able to log in to the machine after the installation.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE profile>
<profile xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://
www.suse.com/1.0/configns">
 <users config:type="list">
 <user>
 <encrypted config:type="boolean">false</encrypted>
 <user_password>linux</user_password>
 <username>root</username>
 </user>
 </users>
</profile>

6.

How do I do an automatic installation with autodetection of my sound card?

Use the following sound section in your profile:

<sound>
 <autoinstall config:type="boolean">true</autoinstall>
 <configure_detected config:type="boolean">true</configure_detected>
</sound>

7.

I want to install from DVD only. Where do I put the AutoYaST profile?

Put the profile in the root of the DVD. Refer to it with file:///PROFILE.xml.

236

8.

How can I test a merging process on the command line?

To merge two profiles, a.xml with base.xml, run the following command:

>/usr/bin/xsltproc --novalid --param replace "'false'" \
--param dontmerge1 "'package'" --param with "'a.xml'" --output out.xml \
/usr/share/autoinstall/xslt/merge.xslt base.xml

This requires sections in both profiles to be in alphabetical order (<software>, for example, needs

to be listed after <add-on>). If you have created the profile with YaST, profiles are automatically

sorted correctly.

The dontmerge1 parameter is optional and an example of what to do when you use the

dont_merge element in your profile. See the section called “Merging of rules and classes” for

more information.

9.

Can I call Zypper from scripts?

Zypper can only be called from AutoYaST init scripts, because during the post-script phase, YaST

still has an exclusive lock on the RPM database.

If you really need to use other script types (for example a post-script) you will need to break the

lock at your own risk:

<post-scripts config:type="list">
 <script>
 <filename>yast_clone.sh</filename>
 <interpreter>shell</interpreter>
 <location/>
 <feedback config:type="boolean">false</feedback>
 <source><![CDATA[#!/bin/sh
mv /var/run/zypp.pid /var/run/zypp.sav
zypper in foo
mv /var/run/zypp.sav /var/run/zypp.pid
]]></source>
 </script>
</post-scripts>

10.

Is the order of sections in an AutoYaST profile important?

Actually the order is not important. The order of sections in the profile has no influence on the

AutoYaST workflow. However, to merge different profiles, sections need to be in alphabetical order.

11.

linuxrc blocks the installation with File not signed. I need to manually interact.

Appendix B. AutoYaST FAQ—frequently asked questions

237

linuxrc found an unsigned file, such as a driver update. To use an unsigned file, you can

suppress that message by passing insecure=1 to the linuxrc parameter list (together with the

autoyast=... parameter).

12.

I want to install from DVD/USB/HD but fetch the XML file from the network.

You need to pass ifcfg to linuxrc. This is required to set up the network, otherwise AutoYaST

cannot download the profile from the remote host. See the section called “Advanced network

setup” for more information.

13.

Is installation onto an NFS root (/) possible?

Yes, but it is more complex than other methods. The environment (DHCP, TFTP, etc.) must be set

up very carefully. The AutoYaST profile must look like the following:

<?xml version="1.0"?>
<!DOCTYPE profile>
<profile xmlns="http://www.suse.com/1.0/yast2ns" xmlns:config="http://
www.suse.com/1.0/configns">
 <partitioning config:type="list">
 <drive>
 <device>/dev/nfs</device>
 <initialize config:type="boolean">false</initialize>
 <type config:type="symbol">CT_NFS</type>
 <partitions config:type="list">
 <partition>
 <filesystem config:type="symbol">nfs</filesystem>
 <fstopt>nolock</fstopt>
 <device>10.10.1.53:/tmp/m4</device>
 <mount>/</mount>
 </partition>
 </partitions>
 <use>all</use>
 </drive>
 </partitioning>
</profile>

14.

Where can I ask questions which have not been answered here?

There is an AutoYaST mailing list where you can post your questions. Join us at https://

lists.opensuse.org/opensuse-autoinstall/.

238

https://lists.opensuse.org/opensuse-autoinstall/
https://lists.opensuse.org/opensuse-autoinstall/

Appendix C. Advanced linuxrc options

linuxrc is a small program that runs after the kernel has loaded, but before AutoYaST or other

stages. It prepares the system for installation. It allows the user to load modules, start an installed

system or a rescue system, and to guide the operation of YaST.

AutoYaST and linuxrc settings are not identical

Some linuxrc settings coincidentally have the same names as settings used by

AutoYaST in its autoyast.xml file. This does not mean that they take the same

parameters or function in the same way. For example, AutoYaST takes a

self_update setting. If this value is set to 1, another setting, self_update_url

will be read and followed. Although linuxrc also has a self_update setting,

linuxrc's setting takes values of either 0 or a URL.

Do not pass AutoYaST parameters to linuxrc, as this will almost certainly not give

the desired results.

If linuxrc is installed on a machine, information about it can be found in the directory /usr/

share/doc/packages/linuxrc/. Alternatively, its documentation can be found online at:

https://en.opensuse.org/SDB:Linuxrc.

Running linuxrc on an installed system

If you run linuxrc on an installed system, it will work slightly differently so as not to

destroy your installation. As a consequence, you cannot test all features this way.

To keep the linuxrc binary file as small as possible, all its libraries and other supplemental files

are linked directly into the main program binary file. This means that there is no need for any

shared libraries in the initial RAM disk, initrd.

C.1. Passing parameters to linuxrc

Unless linuxrc is in manual mode, it will look for an info file in these locations: first /info on

the flash disk (for example, a USB stick) and if that does not exist, for /info in the initrd. After

that, it parses the kernel command line for parameters. You may change the info file linuxrc

reads by setting the info command line parameter. If you do not want linuxrc to read the kernel

command line (for example, because you need to specify a kernel parameter that linuxrc

recognizes as well), use linuxrc=nocmdline.

Appendix C. Advanced linuxrc options

239

https://en.opensuse.org/SDB:Linuxrc

linuxrc will always look for and parse a file called /linuxrc.config. Use this file to change

default values if you need to. In general, it is better to use the info file instead. Note that /

linuxrc.config is read before any info file, even in manual mode.

C.2. info file format

Lines starting with # are comments. Valid entries are of the form:

key: value

Note that value extends to the end of the line and therefore may contain spaces. The matching of

key is on a case-insensitive basis.

You can use the same key-value pairs on the kernel command line using the syntax key=value.

Lines that do not have the form described above will be ignored.

The table below lists important keys and example values. For a complete list of linuxrc

parameters, refer to https://en.opensuse.org/SDB:Linuxrc.

Table C.1. Advanced linuxrc keywords

Keyword: Example Value Description

addswap: 0|3|/dev/sda5

If 0, never ask for swap; if the argument is a positive

number n, activate the swap partition; if the argument is

a partition name, activate this swap partition.

autoyast: ftp://

AUTOYASTFILE

Location of the auto installation file; activates auto

installation mode. See AutoYaST control file locations for

details.

bootptimeout: 10 10 seconds timeout for BOOTP requests.

bootpwait: 5
Sleep 5 seconds between network activation and starting

bootp.

display: color|mono|alt Set the menu color scheme.

exec: COMMAND Run command.

forceinsmod: 0|1
Use the -f option (force) when running insmod

commands.

forcerootimage: 0|1 Load the installation system into RAM disk.

ifcfg:

NETWORK_CONFIGURATION

Set up and start the network. See the section called

“Advanced network setup” for more information.

240

https://en.opensuse.org/SDB:Linuxrc

Keyword: Example Value Description

insmod: MODULE Load MODULE.

install: URL

Install from the repository specified with URL. For the

syntax of URL refer to https://en.opensuse.org/

SDB:Linuxrc#url_descr.

keytable: de-lat1-nd Virtual console keyboard map to load.

language: de_DE Language preselected for the installation.

loghost: 10.10.0.22 Enable remote logging via syslog via UDP port 514

loghost: @10.10.0.22 Enable remote logging via syslog via TCP port 514

memloadimage: 50000
Load installation system into RAM disk if free memory is

above 50000 KB.

memlimit: 10000 Ask for swap if free memory drops below 10000 KB.

memYaST: 20000
Run YaST in text mode if free memory is below 20000

KB.

memYaSTText: 10000
Ask for swap before starting YaST if free memory is

below 10000 KB.

proxy: http://

10.10.0.1:3128

Defines an HTTP proxy server. For the full parameter

syntax, refer to https://en.opensuse.org/

SDB:Linuxrc#p_proxy.

rescue: 1|nfs://server/dir
Load the rescue system; the URL variant specifies the

location of the rescue image explicitly.

rescueimage: /suse/images/

rescue
Location of the rescue system image.

rootimage: /suse/images/

root
Location of the installation system image.

textmode: 1 Start YaST in text mode.

usbwait: 4 Wait four seconds after loading the USB modules.

y2confirm
Overrides the confirm parameter in a control file and

requests confirmation of installation proposal.

Appendix C. Advanced linuxrc options

241

https://en.opensuse.org/SDB:Linuxrc#url_descr
https://en.opensuse.org/SDB:Linuxrc#url_descr
https://en.opensuse.org/SDB:Linuxrc#p_proxy
https://en.opensuse.org/SDB:Linuxrc#p_proxy

C.3. Advanced network setup

Even if parameters like hostip, nameserver, and gateway are passed to linuxrc, the

network is only started when it is needed (for example, when installing via SSH or VNC). Because

autoyast is not a linuxrc parameter (this parameter is ignored by linuxrc and is only passed

to YaST), the network will not be started automatically when specifying a remote location for the

AutoYaST profile.

Therefore, the network needs to be started explicitly. This is done by using the parameter ifcfg.

ifcfg directly controls the content of the /etc/sysconfig/network/ifcfg-* files.

DHCP network configuration

The general syntax to configure DHCP is

 ifcfg=INTERFACE=DHCP*,OPTION1=VALUE1,OPTION2=VALUE2

where INTERFACE is the interface name, for example eth0, or eth* for all interfaces.

DHCP* can either be dhcp (IPv4 and IPv6), dhcp4, or dhcp6.

To set up DHCP for eth0 use:

ifcfg=eth0=dhcp

To set up DHCP on all interfaces use:

ifcfg=eth*=dhcp

Static network configuration

The general syntax to configure a static network is

ifcfg=INTERFACE=IP_LIST,GATEWAY_LIST,NAMESERVER_LIST,DOMAINSEARCH_LIST,\
OPTION1=value1,...

where INTERFACE is the interface name, for example eth0. If using eth*, the first device

available will be used. The other parameters need to be replaced with the respective values

in the given order. Example:

ifcfg=eth0=192.168.2.100/24,192.168.5.1,192.168.1.116,example.com

When specifying multiple addresses for a parameter, use spaces to separate them and

quote the complete string. The following example uses two name servers and a search list

containing two domains.

ifcfg="eth0=192.168.2.100/24,192.168.5.1,192.168.1.116
192.168.1.117,example.com example.net"

For more information refer to https://en.opensuse.org/SDB:Linuxrc#Network_Configuration.

242

https://en.opensuse.org/SDB:Linuxrc#Network_Configuration

Appendix D. Differences between AutoYaST profiles in SLE 12 and
15

D.1. Product selection

For backward compatibility with profiles created for pre-SLE 15 products, AutoYaST implements a

heuristic that selects products automatically. This heuristic will be used when the profile does not

contain a product element. Automatic product selection is based on the package and pattern

selection in the profile. However, whenever possible, avoid relying on this mechanism and adapt

old profiles to use explicit product selection.

For information about explicit product selection, refer to the section called “Product selection”.

If automatic product selection fails, an error is shown and the installation will not be continued.

D.2. Software

The SUSE Linux Enterprise Server15 SP7 installation medium only contains a very minimal set of

packages to install. This minimal set only provides an installation environment and does not

include any server applications or advanced tools. Additional software repositories, providing more

packages are offered as “modules” or “extensions”. They are provided via two alternatives:

via a registration server (the SUSE Customer Center or a local SMT/RMT proxy)

via the SLE-15-SP7-Full-ARCH-GM-media1.iso image containing all modules and

extensions. Using this medium does not require access to a registration server during

installation. It can be shared on the local network via an installation server.

Maintenance updates

Only using the registration server will grant access to all maintenance updates at

installation time. Maintenance updates are not available when using the DVD

medium without registration.

D.2.1. Adding modules or extensions using the registration server

To add a module or extension from the registration server, use the addons tag for each module/

extension in the suse_register section. Extensions require an additional registration code,

which can be specified with the reg_code tag.

The following XML code adds the Basesystem and Server Applications modules and the Live

Patching extension. To get the respective values for the tags name, version, and arch, run the

command SUSEConnect --list-extensions on a system that already has SLE 15 SP7

installed.

•

•

Appendix D. Differences between AutoYaST profiles in SLE 12 and 15

243

Example D.1. Adding modules and extensions (online)

<suse_register>
 <addons config:type="list">
 <addon>
 <name>sle-module-basesystem</name>
 <version>15.7</version>
 <arch>x86_64</arch>
 </addon>
 <addon>
 <name>sle-module-server-applications</name>
 <version>15.7</version>
 <arch>x86_64</arch>
 </addon>
 <addon>
 <name>sle-module-live-patching</name>
 <version>15.7</version>
 <arch>x86_64</arch>
 <reg_code>REGISTRATION_CODE</reg_code>
 </addon>
 </addons>
</suse_register>

Refer to the section called “System registration and extension selection” for more information.

D.2.2. Adding modules or extensions using the SLE-15-SP7-Full-ARCH-GM-
media1.iso image

To add a module or extension using the SLE-15-SP7-Full-ARCH-GM-media1.iso image, create

entries in the add-on section as shown in the example below. The following XML code adds the

Basesystem module from a USB flash drive that contains the image:

Example D.2. Adding modules and extensions (offline)

<add-on>
 <add_on_products config:type="list">
 <listentry>
 <media_url><![CDATA[dvd:///?devices=/dev/sda%2C/dev/sdb%2C/dev/sdc%2C/dev/
sdd]]></media_url>
 <product_dir>/Module-Basesystem</product_dir>
 <product>sle-module-basesystem</product>
 </listentry>
 </add_on_products>
</add-on>

Product name matching

The product tag must match the internal product name contained in the repository.

If the product name does not match at installation AutoYaST will report an error.

244

Using the installation media image from a local server

You can share the content of the USB flash drive on the local network via an NFS,

FTP or HTTP server. To do so, replace the URL in the media_url tag so it points to

root of the medium on the server, for example:

<media_url>ftp://ftp.example.com/sle_15_sp7_full/</media_url>

D.2.3. Renamed software patterns

Software patterns have also changed since SUSE Linux Enterprise Server 15. Some patterns have

been renamed; a short summary is provided in the following table.

Old SLE 12 Pattern New SLE 15 Pattern

Basis-Devel devel_basis

gnome-basic gnome_basic

Minimal enhanced_base

printing print_server

SDK-C-C++ devel_basis

SDK-Doc technical_writing

SDK-YaST devel_yast

Carefully check if all required packages are available in the defined patterns and adjust the profiles

accordingly. Additionally, the required patterns and packages need to be available in the activated

extensions or modules.

Notes

The pattern renames in the table above are not 1:1 replacements; the content of some

patterns has been changed as well, some packages were moved to a different pattern or

even removed from SUSE Linux Enterprise Server 15.

Check that the required packages are still included in the used patterns, and optionally use

the packages tag to specify additional packages.

The list above might be incomplete, as some products have not been released for SUSE

Linux Enterprise Server 15, yet.

•

•

•

Appendix D. Differences between AutoYaST profiles in SLE 12 and 15

245

D.3. Registration of module and extension dependencies

Starting with SUSE Linux Enterprise Server 15, AutoYaST automatically reorders the extensions

according to their dependencies during registration. This means the order of the extensions in the

AutoYaST profile is not important.

Also AutoYaST automatically adds the dependent modules even though they are missing in the

profile. This means you are not required to specify all required modules. However, if an extension

depends on another extension, it needs to be specified in the profile, including the registration key.

Otherwise the registration would fail.

You can list the available extensions and modules in a registered system using the SUSEConnect

--list-extensions command.

D.4. Partitioning

The partitioning back-end previously used by YaST, libstorage, has been replaced by

libstorage-ng which is designed to allow new capabilities that were not possible before.

Despite the back-end change, the XML syntax for profiles has not changed. However, SUSE Linux

Enterprise Server 15 comes with some general changes, which are explained below.

D.4.1. GPT becomes the default partition type on AMD64/Intel 64

On AMD64/Intel 64 systems, GPT is now the preferred partition type. However, if you prefer to

retain the old behavior, you can explicitly indicate this in the profile by setting the disklabel

element to msdos.

D.4.2. Setting partition numbers

AutoYaST will no longer support forcing partition numbers, as it might not work in some situations.

Moreover, GPT is now the preferred partition table type, so partition numbers are less relevant.

However, the partition_nr tag is still available to specify a partition to be reused. Refer to the

section called “Partition configuration” for more information.

D.4.3. Forcing primary partitions

It is still possible to force a partition as primary (only on MS-DOS partition tables) by setting the

partition_type to primary. However, any other value, like logical, will be ignored by

AutoYaST, which will automatically determine the partition type.

246

D.4.4. Btrfs: Default subvolume name

The new storage layer allows the user to set different default subvolumes (or none) for every Btrfs

file system. As shown in the example below, a prefix name can be specified for each partition using

the subvolumes_prefix tag:

Example D.3. Specifying the Btrfs default subvolume name

<partition>
 <mount>/</mount>
 <filesystem config:type="symbol">btrfs</filesystem>
 <size>max</size>
 <subvolumes_prefix>@</subvolumes_prefix>
</partition>

To omit the subvolume prefix, set the subvolumes_prefix tag:

Example D.4. Disabling Btrfs subvolumes

<partition>
 <mount>/</mount>
 <filesystem config:type="symbol">btrfs</filesystem>
 <size>max</size>
 <subvolumes_prefix>@</subvolumes_prefix>
</partition>

As a consequence of the new behavior, the old btrfs_set_default_subvolume_name tag is

not needed and, therefore, it is not supported anymore.

D.4.5. Btrfs: Disabling subvolumes

Btrfs subvolumes can be disabled by setting create_subvolumes to false. To skip the default

@ subvolume, specify subvolumes_prefix.

<partition>
 <create_subvolumes config:type="boolean">false</create_subvolumes>
 <subvolumes_prefix><![CDATA[]]></subvolumes_prefix>
</partition>]]>

D.4.6. Reading an existing /etc/fstab is no longer supported

On SUSE Linux Enterprise Server 15 the ability to read an existing /etc/fstab from a previous

installation when trying to determine the partitioning layout is no longer supported.

D.4.7. Setting for aligning partitions has been dropped

As cylinders have become obsolete, the partition_alignment> tag makes no sense and it is

no longer available. AutoYaST will always try to align partitions in an optimal way.

Appendix D. Differences between AutoYaST profiles in SLE 12 and 15

247

D.4.8. Using the type to define a volume group

The is_lvm_vg element has been dropped in favor of setting the type to the CT_LVM value.

Refer to the section called “Logical volume manager (LVM)” for further details.

D.5. Firewall configuration

In SUSE Linux Enterprise Server 15, SuSEfirewall2 has been replaced by firewalld as the

default firewall. The configuration of these two firewalls differs significantly, and therefore the

respective AutoYaST profile syntax has changed.

Old profiles will continue working, but the supported configuration will be very limited. It is

recommended to update profiles for SLE 15 as outlined below. If keeping SLE12 profiles, we

recommend to check the final configuration to avoid unexpected behavior or network security

threats.

Table D.1. AutoYaST firewall configuration in SLE 15: backward compatibility

Supported (but deprecated) Unsupported

FW_CONFIGURATIONS_\{DMZ, EXT, INT}
FW_ALLOW_FW_BROADCAST_\{DMZ, EXT,

INT}

FW_DEV_\{DMZ, EXT, INT}
FW_IGNORE_FW_BROADCAST_\{DMZ, EXT,

INT}

FW_LOG_DROP_ALL FW_IPSECT_TRUST

FW_LOG_DROP_CRIT FW_LOAD_MODULES

FW_MASQUERADE FW_LOG_ACCEPT_ALL

FW_SERVICES_\{DMZ, INT, EXT}_\

{TCP, UDP, IP}
FW_LOG_ACCEPT_CRIT

FW_PROTECT_FROM_INT

FW_ROUTE

FW_SERVICES_\{DMZ, EXT, INT}_RPC

FW_SERVICES_ACCEPT_RELATED_\{DMZ,

EXT, INT}

Configuration options from SuSEfirewall2 that are no longer available either have no equivalent

mapping in firewalld or will be supported in future releases of SUSE Linux Enterprise Server.

Some firewalld features are not yet supported by YaST and AutoYaST—you can use them with

248

post installation scripts in your AutoYaST profile. See the section called “Custom user scripts” for

more information.

Enabling and starting the firewall

Enabling and starting the systemd service for firewalld is done with the same

syntax as in SLE 12. This is the only part of the firewall configuration syntax in

AutoYaST that has not changed:

<firewall>
 <enable_firewall config:type="boolean">true</enable_firewall>
 <start_firewall config:type="boolean">true</start_firewall>
 ...
</firewall>

The following examples show how to convert deprecated (but still supported) profiles to the SLE 15

syntax:

D.5.1. Assigning interfaces to zones

Both SuSEfirewall2 and firewalld are zone-based, but have a different set of predefined rules

and a different level of trust for network connections.

Table D.2. Mapping of SuSEfirewall2 and firewalld zones

firewalld (SLE 15) SuSEfirewall2 (SLE 12)

dmz DMZ

external EXT with FW_MASQUERADE set to yes

public EXT with FW_MASQUERADE set to no

internal INT with FW_PROTECT_FROM_INT set to yes

trusted INT with FW_PROTECT_FROM_INT set to no

block N/A

drop N/A

home N/A

work N/A

In SuSEfirewall2 the default zone is the external one (EXT) but it also allows the use of the special

keyword any to assign all the interfaces that are not listed anywhere to a specified zone.

Appendix D. Differences between AutoYaST profiles in SLE 12 and 15

249

D.5.1.1. Default configuration

The following two examples show the default configuration that is applied for the interfaces eth0,

eth1, wlan0 and wlan1.

Example D.5. Assigning zones: default configuration (deprecated syntax)

<firewall>
 <FW_DEV_DMZ>any eth0</FW_DEV_DMZ>
 <FW_DEV_EXT>eth1 wlan0</FW_DEV_EXT>
 <FW_DEV_INT>wlan1</FW_DEV_INT>
</firewall>

Example D.6. Assigning zones: default configuration (SLE 15 syntax)

<firewall>
 <default_zone>dmz</default_zone>
 <zones config:type="list">
 <zone>
 <name>dmz</name>
 <interfaces config:type="list">
 <interface>eth0</interface>
 </interfaces>
 </zone>
 <zone>
 <name>public</name>
 <interfaces config:type="list">
 <interface>eth1</interface>
 </interfaces>
 </zone>
 <zone>
 <name>trusted</name>
 <interfaces config:type="list">
 <interface>wlan1</interface>
 </interfaces>
 </zone>
 </zones>
</firewall>

D.5.1.2. Masquerading and protecting internal zones

The following two examples show how to configure the interfaces eth0, eth1, wlan0 and wlan1

with masquerading and protected internal zones.

Example D.7. Masquerading and protecting internal zones (deprecated syntax)

<firewall>
 <FW_DEV_DMZ>any eth0</FW_DEV_DMZ>
 <FW_DEV_EXT>eth1 wlan0</FW_DEV_EXT>
 <FW_DEV_INT>wlan1</FW_DEV_INT>
 <FW_MASQUERADE>yes</FW_MASQUERADE>
 <FW_PROTECT_FROM_INT>yes</FW_PROTECT_FROM_INT>
</firewall>

250

Example D.8. Masquerading and protecting internal zones (SLE 15 syntax)

<firewall>
 <default_zone>dmz</default_zone>
 <zones config:type="list">
 <zone>
 <name>dmz</name>
 <interfaces config:type="list">
 <interface>eth0</interface>
 </interfaces>
 </zone>
 <zone>
 <name>external</name>
 <interfaces config:type="list">
 <interface>eth1</interface>
 </interfaces>
 </zone>
 <zone>
 <name>internal</name>
 <interfaces config:type="list">
 <interface>wlan1</interface>
 </interfaces>
 </zone>
 </zones>
</firewall>

D.5.2. Opening ports

In SuSEfirewall2 the FW_SERVICES_\{DMZ,EXT,INT}_\{TCP,UDP,IP,RPC} tags were used

to open ports in different zones.

For TCP or UDP, SuSEfirewall2 supported a port number or range, or a service name from /etc/

services with a single tag for the respective zone and service. For IP services a port number or

range, or a protocol name from /etc protocols could be specified with

FW_SERVICES_ZONE_IP.

For firewalld each port, port range, and service requires a separate entry in the port section

for the respective zone. IP services need separate entries in the protocol section.

RPC services, which were supported by SuSEfirewall2, are no longer supported with firewalld.

Example D.9. Opening ports (deprecated syntax)

<firewall>
 <FW_SERVICES_DMZ_TCP>ftp ssh 80 5900:5999</FW_SERVICES_DMZ_TCP>
 <FW_SERVICES_EXT_UDP>1723 ipsec-nat-t</FW_SERVICES_EXT_UDP>
 <FW_SERVICES_EXT_IP>esp icmp gre</FW_SERVICES_EXT_IP>
 <FW_MASQUERADE>yes</FW_MASQUERADE>
</firewall>

Appendix D. Differences between AutoYaST profiles in SLE 12 and 15

251

Example D.10. Opening ports (SLE 15 syntax)

<firewall>
 <zones config:type="list">
 <zone>
 <name>dmz</name>
 <ports config:type="list">
 <port>ftp/tcp</port>
 <port>ssh/tcp</port>
 <port>80/tcp</port>
 <port>5900-5999/tcp</port>
 <ports>
 </zone>
 <zone>
 <name>external</name>
 <ports config:type="list">
 <port>1723/udp</port>
 <port>ipsec-nat-t/udp</port>
 </ports>
 <protocols config:type="list">
 <protocol>esp</protocol>
 <protocol>icmp</protocol>
 <protocol>gre</protocol>
 </protocols>
 </zone>
 </zones>
</firewall>

D.5.3. Opening firewalld services

For opening a combination of ports and/or protocols, SuSEfirewall2 provides the

FW_CONFIGURATIONS_\{EXT, DMZ, INT} tags which are equivalent to services in

firewalld.

Example D.11. Opening Services (Deprecated Syntax)

<firewall>
 <FW_CONFIGURATIONS_EXT>dhcp dhcpv6 samba vnc-server</FW_CONFIGURATIONS_EXT>
 <FW_CONFIGURATIONS_DMZ>ssh</FW_CONFIGURATIONS_DMZ>
</firewall>

Example D.12. Opening services (SLE 15 syntax)

<firewall>
 <zones config:type="list">
 <zone>
 <name>dmz</name>
 <services config:type="list">
 <service>ssh</service>
 </services>
 </zone>
 <zone>
 <name>public</name>
 <services config:type="list">
 <service>dhcp</service>
 <service>dhcpv6</service>
 <service>samba</service>
 <service>vnc-server</service>
 </services>
 </zone>
 </zones>
</firewall>

252

The services definition can be added via packages in both cases:

SuSEfirewall2 Service Definitions: https://en.opensuse.org/SuSEfirewall2/

Service_Definitions_Added_via_Packages

firewalld RPM Packaging https://en.opensuse.org/firewalld/RPM_Packaging

firewalld already provides support for the majority of important services in /usr/lib/

firewalld/services. Check this directory for an existing configuration before defining a

new one.

D.5.4. More information

SuSEfirewall2/AutoYaST Documentation for SLE 12

Official firewalld Documentation

D.6. NTP configuration

The time server synchronization daemon ntpd has been replaced with the more modern daemon

chrony. Therefore the configuration syntax for the time-keeping daemon in AutoYaST has

changed. AutoYaST profiles from SLE12 that contain a section with ntp:client need to be

updated.

Instead of containing low level configuration options, NTP is now configured by a set of high level

options that are applied on top of the default settings:

Example D.13. NTP configuration (SLE 15 syntax)

<ntp-client>
 <ntp_policy>auto</ntp_policy>
 <ntp_servers config:type="list">
 <ntp_server>
 <iburst config:type="boolean">false</iburst>
 <address>cz.pool.ntp.org</address>
 <offline config:type="boolean">true</offline>
 </ntp_server>
 </ntp_servers>
 <ntp_sync>systemd</ntp_sync>
 </ntp-client>

D.7. AutoYaST packages are needed for the second stage

A regular installation is performed in a single stage, while an installation performed via AutoYaST

usually needs two stages. To perform the second stage of the installation AutoYaST requires a few

additional packages, for example autoyast2-installation and autoyast2. If these are

missing, a warning will be shown.

•

•

•

•

Appendix D. Differences between AutoYaST profiles in SLE 12 and 15

253

https://en.opensuse.org/SuSEfirewall2/Service_Definitions_Added_via_Packages
https://en.opensuse.org/SuSEfirewall2/Service_Definitions_Added_via_Packages
https://en.opensuse.org/firewalld/RPM_Packaging
https://documentation.suse.com/sles-12/html/SLES-all/configuration.html#CreateProfile-firewall
https://www.firewalld.org/documentation/
https://www.firewalld.org/documentation/

D.8. The CA management module has been dropped

The module for CA Management (yast2-ca-management) has been removed from SUSE Linux

Enterprise Server 15, and for the time being there is no replacement available. In case you are

reusing SLE12 profile, make sure it does not contain a ca_mgm section.

D.9. Upgrade

D.9.1. Software

SLE 12 has two modes of evaluating which packages need to be upgraded. In SUSE Linux

Enterprise Server15 SP7, upgrades are always determined by the dependency solver, equivalent

to using zypper dup.

This makes the option only_installed_packages in the software section obsolete.

D.9.2. Registration

When upgrading a registered system, all old repositories are removed. This is done to avoid

possible conflicts between the new and old repositories and to clean-up the repositories for the

dropped products. If you need to keep custom repositories, add them again using the add-on

option.

Example D.14. Minimal registration configuration for upgrade

<suse_register>
 <do_registration config:type="boolean">true</do_registration>
</suse_register>

If the registration server returns more than one possible migration target, AutoYaST will

automatically select the first one. Currently you cannot select a different migration target.

After upgrading an unregistered system or skipping registration upgrade by omitting the

suse_register option, you might need to adjust the repository setup manually.

254

Appendix E. GNU licenses

This appendix contains the GNU Free Documentation License version 1.2.

E.1. GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,

MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful

document "free" in the sense of freedom: to assure everyone the effective freedom to copy and

redistribute it, with or without modifying it, either commercially or non-commercially. Secondarily,

this License preserves for the author and publisher a way to get credit for their work, while not

being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must

themselves be free in the same sense. It complements the GNU General Public License, which is

a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software

needs free documentation: a free program should come with manuals providing the same

freedoms that the software does. But this License is not limited to software manuals; it can be used

for any textual work, regardless of subject matter or whether it is published as a printed book. We

recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by

the copyright holder saying it can be distributed under the terms of this License. Such a notice

grants a world-wide, royalty-free license, unlimited in duration, to use that work under the

conditions stated herein. The "Document", below, refers to any such manual or work. Any member

of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or

distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,

either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals

exclusively with the relationship of the publishers or authors of the Document to the Document's

overall subject (or to related matters) and contains nothing that could fall directly within that overall

Appendix E. GNU licenses

255

subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not

explain any mathematics.) The relationship could be a matter of historical connection with the

subject or with related matters, or of legal, commercial, philosophical, ethical or political position

regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being

those of Invariant Sections, in the notice that says that the Document is released under this

License. If a section does not fit the above definition of Secondary then it is not allowed to be

designated as Invariant. The Document may contain zero Invariant Sections. If the Document does

not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-

Cover Texts, in the notice that says that the Document is released under this License. A Front-

Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format

whose specification is available to the general public, that is suitable for revising the document

straightforwardly with generic text editors or (for images composed of pixels) generic paint

programs or (for drawings) some widely available drawing editor, and that is suitable for input to

text formatters or for automatic translation to a variety of formats suitable for input to text

formatters. A copy made in an otherwise Transparent file format whose markup, or absence of

markup, has been arranged to thwart or discourage subsequent modification by readers is not

Transparent. An image format is not Transparent if used for any substantial amount of text. A copy

that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo

input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-

conforming simple HTML, PostScript or PDF designed for human modification. Examples of

transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary

formats that can be read and edited only by proprietary word processors, SGML or XML for which

the DTD and/or processing tools are not generally available, and the machine-generated HTML,

PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are

needed to hold, legibly, the material this License requires to appear in the title page. For works in

formats which do not have any title page as such, "Title Page" means the text near the most

prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely

XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here

XYZ stands for a specific section name mentioned below, such as "Acknowledgements",

"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you

modify the Document means that it remains a section "Entitled XYZ" according to this definition.

256

The Document may include Warranty Disclaimers next to the notice which states that this License

applies to the Document. These Warranty Disclaimers are considered to be included by reference

in this License, but only as regards disclaiming warranties: any other implication that these

Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-

commercially, provided that this License, the copyright notices, and the license notice saying this

License applies to the Document are reproduced in all copies, and that you add no other

conditions whatsoever to those of this License. You may not use technical measures to obstruct or

control the reading or further copying of the copies you make or distribute. However, you may

accept compensation in exchange for copies. If you distribute a large enough number of copies

you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display

copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the

Document, numbering more than 100, and the Document's license notice requires Cover Texts,

you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-

Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also

clearly and legibly identify you as the publisher of these copies. The front cover must present the

full title with all words of the title equally prominent and visible. You may add other material on the

covers in addition. Copying with changes limited to the covers, as long as they preserve the title of

the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones

listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must

either include a machine-readable Transparent copy along with each Opaque copy, or state in or

with each Opaque copy a computer-network location from which the general network-using public

has access to download using public-standard network protocols a complete Transparent copy of

the Document, free of added material. If you use the latter option, you must take reasonably

prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this

Transparent copy will remain thus accessible at the stated location until at least one year after the

last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition

to the public.

Appendix E. GNU licenses

257

It is requested, but not required, that you contact the authors of the Document well before

redistributing any large number of copies, to give them a chance to provide you with an updated

version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections

2 and 3 above, provided that you release the Modified Version under precisely this License, with

the Modified Version filling the role of the Document, thus licensing distribution and modification of

the Modified Version to whoever possesses a copy of it. In addition, you must do these things in

the Modified Version:

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,

and from those of previous versions (which should, if there were any, be listed in the History

section of the Document). You may use the same title as a previous version if the original

publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for authorship

of the modifications in the Modified Version, together with at least five of the principal authors

of the Document (all of its principal authors, if it has fewer than five), unless they release you

from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.

Include, immediately after the copyright notices, a license notice giving the public permission

to use the Modified Version under the terms of this License, in the form shown in the

Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document's license notice.

Include an unaltered copy of this License.

Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the Title

Page. If there is no section Entitled "History" in the Document, create one stating the title,

year, authors, and publisher of the Document as given on its Title Page, then add an item

describing the Modified Version as stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to a

Transparent copy of the Document, and likewise the network locations given in the

Document for previous versions it was based on. These may be placed in the "History"

section. You may omit a network location for a work that was published at least four years

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

258

before the Document itself, or if the original publisher of the version it refers to gives

permission.

For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the

section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.

Section numbers or the equivalent are not considered part of the section titles.

Delete any section Entitled "Endorsements". Such a section may not be included in the

Modified Version.

Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any

Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary

Sections and contain no material copied from the Document, you may at your option designate

some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections

in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of

your Modified Version by various parties--for example, statements of peer review or that the text

has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25

words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one

passage of Front-Cover Text and one of Back-Cover Text may be added by (or through

arrangements made by) any one entity. If the Document already includes a cover text for the same

cover, previously added by you or by arrangement made by the same entity you are acting on

behalf of, you may not add another; but you may replace the old one, on explicit permission from

the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their

names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the

terms defined in section 4 above for modified versions, provided that you include in the

combination all of the Invariant Sections of all of the original documents, unmodified, and list them

all as Invariant Sections of your combined work in its license notice, and that you preserve all their

Warranty Disclaimers.

11.

12.

13.

14.

15.

Appendix E. GNU licenses

259

The combined work need only contain one copy of this License, and multiple identical Invariant

Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same

name but different contents, make the title of each such section unique by adding at the end of it,

in parentheses, the name of the original author or publisher of that section if known, or else a

unique number. Make the same adjustment to the section titles in the list of Invariant Sections in

the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original

documents, forming one section Entitled "History"; likewise combine any sections Entitled

"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled

"Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this

License, and replace the individual copies of this License in the various documents with a single

copy that is included in the collection, provided that you follow the rules of this License for verbatim

copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this

License, provided you insert a copy of this License into the extracted document, and follow this

License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents

or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the

copyright resulting from the compilation is not used to limit the legal rights of the compilation's

users beyond what the individual works permit. When the Document is included in an aggregate,

this License does not apply to the other works in the aggregate which are not themselves

derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the

Document is less than one half of the entire aggregate, the Document's Cover Texts may be

placed on covers that bracket the Document within the aggregate, or the electronic equivalent of

covers if the Document is in electronic form. Otherwise they must appear on printed covers that

bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document

under the terms of section 4. Replacing Invariant Sections with translations requires special

260

permission from their copyright holders, but you may include translations of some or all Invariant

Sections in addition to the original versions of these Invariant Sections. You may include a

translation of this License, and all the license notices in the Document, and any Warranty

Disclaimers, provided that you also include the original English version of this License and the

original versions of those notices and disclaimers. In case of a disagreement between the

translation and the original version of this License or a notice or disclaimer, the original version will

prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the

requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual

title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for

under this License. Any other attempt to copy, modify, sublicense or distribute the Document is

void, and will automatically terminate your rights under this License. However, parties who have

received copies, or rights, from you under this License will not have their licenses terminated so

long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation

License from time to time. Such new versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies

that a particular numbered version of this License "or any later version" applies to it, you have the

option of following the terms and conditions either of that specified version or of any later version

that has been published (not as a draft) by the Free Software Foundation. If the Document does

not specify a version number of this License, you may choose any version ever published (not as a

draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”

line with this:

Appendix E. GNU licenses

261

https://www.gnu.org/copyleft/

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge

those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these

examples in parallel under your choice of free software license, such as the GNU General Public

License, to permit their use in free software.

262

	Contents
	Preface
	Available documentation
	Improving the documentation
	Documentation conventions
	Support
	Support statement for SUSE Linux Enterprise Server
	Technology previews

	Chapter 1. Introduction to AutoYaST
	1.1. Motivation
	1.2. Overview and concept

	Part I. Understanding and creating the AutoYaST control file
	Chapter 2. The AutoYaST control file
	2.1. Introduction
	2.2. Format
	2.3. Structure
	2.3.1. Resources and properties
	2.3.2. Nested resources
	2.3.3. Attributes

	Chapter 3. Creating an AutoYaST control file
	3.1. Collecting information
	3.2. Using the configuration management system (CMS)
	3.2.1. Creating a new control file

	3.3. Creating/editing a control file manually
	3.4. Creating a control file via script with XSLT
	3.5. Checking a control file
	3.5.1. Basic checks
	3.5.2. Running pre-scripts
	3.5.3. Importing the profile

	Part II. AutoYaST configuration examples
	Chapter 4. Configuration and installation options
	4.1. General options
	4.1.1. The mode section
	4.1.2. Configuring the installation settings screen
	4.1.3. The self-update section
	4.1.4. The semi-automatic section
	4.1.5. The signature handling section
	4.1.6. The wait section
	4.1.7. Ignoring unused devices on IBM Z
	4.1.8. Examples for the general section

	4.2. Reporting
	4.3. System registration and extension selection
	4.3.1. Extensions

	4.4. The GRUB 2 boot loader
	4.4.1. Loader type
	4.4.2. Globals
	4.4.3. Device map

	4.5. The Systemd boot loader
	4.5.1. Loader type
	4.5.2. Globals

	4.6. Partitioning
	4.6.1. Automatic partitioning
	4.6.2. Guided partitioning
	4.6.3. Expert partitioning
	4.6.3.1. Drive configuration
	4.6.3.2. Partition configuration
	4.6.3.3. Btrfs subvolumes
	4.6.3.4. Using the whole disk
	4.6.3.5. Filling the gaps
	4.6.4. Advanced partitioning features
	4.6.4.1. Wipe out partition table
	4.6.4.2. Mount options
	4.6.4.3. Keeping specific partitions
	4.6.5. Logical volume manager (LVM)
	4.6.6. Software RAID
	4.6.6.1. Using the deprecated syntax
	4.6.6.2. RAID options
	4.6.7. Multipath support
	4.6.8. bcache configuration
	4.6.9. Multi-device Btrfs configuration
	4.6.10. NFS configuration
	4.6.11. tmpfs configuration
	4.6.12. IBM Z specific configuration
	4.6.12.1. Configuring DASD disks
	4.6.12.2. Configuring zFCP disks

	4.7. iSCSI initiator overview
	4.8. Fibre channel over Ethernet configuration (FCoE)
	4.9. Country settings
	4.10. Software
	4.10.1. Product selection
	4.10.2. Package selection with patterns and packages sections
	4.10.3. Installing additional/customized packages or products
	4.10.4. Kernel packages
	4.10.5. Removing automatically selected packages
	4.10.6. Installing recommended packages and patterns
	4.10.7. Installing packages in stage 2
	4.10.8. Installing patterns in stage 2
	4.10.9. Online update in stage 2

	4.11. Upgrade
	4.12. Services and targets
	4.13. Network configuration
	4.13.1. Configuration Workflow
	4.13.2. The Network Resource
	4.13.3. Interfaces
	4.13.4. Assigning multiple IP addresses
	4.13.5. Persistent names of network interfaces
	4.13.6. Domain name system
	4.13.7. Routing
	4.13.8. s390 options

	4.14. Proxy
	4.15. NIS client and server
	4.16. NIS server
	4.17. Hosts definition
	4.18. Windows domain membership
	4.19. Samba server
	4.20. Authentication client
	4.21. NFS client and server
	4.22. NTP client
	4.23. Mail server configuration
	4.24. Apache HTTP server configuration
	4.25. Squid server
	4.26. FTP server
	4.27. TFTP server
	4.28. Firstboot workflow
	4.29. Security settings
	4.29.1. Password settings options
	4.29.2. Boot settings
	4.29.3. Login settings
	4.29.4. New user settings (useradd settings)
	4.29.5. Linux Security Module (LSM) settings
	4.29.6. Using OpenSCAP security policies

	4.30. Linux audit framework (LAF)
	4.31. Users and groups
	4.31.1. Users
	4.31.2. User defaults
	4.31.3. Groups
	4.31.4. Login settings

	4.32. Custom user scripts
	4.32.1. Pre-scripts
	4.32.2. Postpartitioning scripts
	4.32.3. Chroot environment scripts
	4.32.4. Post-scripts
	4.32.5. Init scripts
	4.32.6. Script XML representation
	4.32.7. Script example

	4.33. System variables (sysconfig)
	4.34. Adding complete configurations
	4.35. Ask the user for values during installation
	4.35.1. Default value scripts
	4.35.2. Scripts

	4.36. Kernel dumps
	4.36.1. Memory reservation
	4.36.2. Dump saving
	4.36.2.1. Target
	4.36.2.2. Filtering and compression
	4.36.2.3. Summary
	4.36.3. E-mail notification
	4.36.4. Kdump kernel settings
	4.36.5. Expert settings

	4.37. DNS server
	4.38. DHCP server
	4.39. Firewall configuration
	4.39.1. General firewall configuration
	4.39.2. Firewall zones configuration
	4.39.3. Installation stages when the firewalld profile is applied
	4.39.4. A full example

	4.40. Miscellaneous hardware and system components
	4.40.1. Printer
	4.40.2. Sound devices

	4.41. Importing SSH keys and configuration
	4.42. Configuration management
	4.42.1. Connecting to a configuration management server
	4.42.2. Running in stand-alone mode
	4.42.3. SUSE Multi-Linux Manager Salt formulas support

	Part III. Managing mass installations with dynamic profiles
	Chapter 5. Supported approaches to dynamic profiles
	Chapter 6. Rules and classes
	6.1. Rule-based automatic installation
	6.1.1. Rules file explained
	6.1.2. Custom rules
	6.1.3. Match types for rules
	6.1.4. Combine attributes
	6.1.5. Rules file structure
	6.1.6. Predefined system attributes
	6.1.7. Rules with dialogs

	6.2. Classes
	6.3. Mixing rules and classes
	6.4. Merging of rules and classes

	Chapter 7. ERB templates
	7.1. What is ERB?
	7.2. Template helpers
	7.2.1. boot_efi?
	7.2.2. disks
	7.2.3. network_cards
	7.2.4. os_release
	7.2.5. hardware

	7.3. Running ERB helpers
	7.4. Rendering ERB profiles
	7.5. Debugging ERB profiles
	7.6. ERB compared to rules and classes

	Chapter 8. Combining ERB templates and scripts
	8.1. Embedding ERB in your scripts
	8.2. Accessing ERB helpers from Ruby scripts

	Part IV. Understanding the auto-installation process
	Chapter 9. The auto-installation process
	9.1. Introduction
	9.1.1. X11 interface (graphical)
	9.1.2. Serial console
	9.1.3. Text-based YaST installation

	9.2. Choosing the right boot medium
	9.2.1. Booting from a flash disk (for example, a USB stick)
	9.2.2. Booting from the SUSE Linux Enterprise installation medium
	9.2.3. Booting via PXE over the network

	9.3. Invoking the auto-installation process
	9.3.1. Command line options
	9.3.2. Auto-installing a single system
	9.3.3. Combining the linuxrc info file with the AutoYaST control file

	9.4. System configuration
	9.4.1. Post-install and system configuration
	9.4.2. System customization

	Part V. Uses for AutoYaST on installed systems
	Chapter 10. Running AutoYaST in an installed system

	Part VI. Appendixes
	Appendix A. Handling rules
	Appendix B. AutoYaST FAQ—frequently asked questions
	Appendix C. Advanced linuxrc options
	C.1. Passing parameters to linuxrc
	C.2. info file format
	C.3. Advanced network setup

	Appendix D. Differences between AutoYaST profiles in SLE 12 and 15
	D.1. Product selection
	D.2. Software
	D.2.1. Adding modules or extensions using the registration server
	D.2.2. Adding modules or extensions using the SLE-15-SP7-Full-ARCH-GM-media1.iso image
	D.2.3. Renamed software patterns

	D.3. Registration of module and extension dependencies
	D.4. Partitioning
	D.4.1. GPT becomes the default partition type on AMD64/Intel 64
	D.4.2. Setting partition numbers
	D.4.3. Forcing primary partitions
	D.4.4. Btrfs: Default subvolume name
	D.4.5. Btrfs: Disabling subvolumes
	D.4.6. Reading an existing /etc/fstab is no longer supported
	D.4.7. Setting for aligning partitions has been dropped
	D.4.8. Using the type to define a volume group

	D.5. Firewall configuration
	D.5.1. Assigning interfaces to zones
	D.5.1.1. Default configuration
	D.5.1.2. Masquerading and protecting internal zones
	D.5.2. Opening ports
	D.5.3. Opening firewalld services
	D.5.4. More information

	D.6. NTP configuration
	D.7. AutoYaST packages are needed for the second stage
	D.8. The CA management module has been dropped
	D.9. Upgrade
	D.9.1. Software
	D.9.2. Registration

	Appendix E. GNU licenses
	E.1. GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents

